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Abstract
The European Union’s ban on animal testing for cosmetic products and their ingredients, combined with the lack of validated animal-free meth-
ods, poses challenges in evaluating their potential repeated-dose organ toxicity. To address this, innovative strategies like Next-Generation 
Risk Assessment (NGRA) are being explored, integrating historical animal data with new mechanistic insights from non-animal New Approach 
Methodologies (NAMs). This paper introduces the TOXIN knowledge graph (TOXIN KG), a tool designed to retrieve toxicological information on 
cosmetic ingredients, with a focus on liver-related data. TOXIN KG uses graph-structured semantic technology and integrates toxicological data 
through ontologies, ensuring interoperable representation. The primary data source is safety information on cosmetic ingredients from scientific 
opinions issued by the Scientific Committee on Consumer Safety between 2009 and 2019. The ToxRTool automates the reliability assessment 
of toxicity studies, while the Simplified Molecular Input Line Entry System (SMILES) notation standardizes chemical identification, enabling in 
silico prediction of repeated-dose toxicity via the implementation of the Organization for Economic Co-operation and Development Quantitative 
Structure–Activity Relationship Toolbox (OECD QSAR Toolbox). The ToXic Process Ontology, enriched with relevant biological repositories, is 
employed to represent toxicological concepts systematically. Search filters allow the identification of cosmetic compounds potentially linked to 
liver toxicity. Data visualization is achieved through Ontodia, a JavaScript library. TOXIN KG, filled with information for 88 cosmetic ingredients, 
allowed us to identify 53 compounds affecting at least one liver toxicity parameter in a 90-day repeated-dose animal study. For one compound, 
we illustrate how TOXIN KG links this observation to hepatic cholestasis as an adverse outcome. In an ab initio NGRA context, follow-up in 
vitro studies using human-based NAMs would be necessary to understand the compound’s biological activity and the molecular mechanism 
leading to the adverse effect. In summary, TOXIN KG emerges as a valuable tool for advancing the reusability of cosmetics safety data, providing 
knowledge in support of NAM-based hazard and risk assessments.
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Introduction
Since July 2013, Regulation (EC) No. 1223/2009 has been 
fully enforced for cosmetic products within the European 
Union (EU). According to Article 3 of this regulation, any cos-
metic product introduced to the EU market must be safe for 
human health under normal or reasonably anticipated con-
ditions of use. To ensure the safety of cosmetic products, 
the safety of their composing ingredients is controlled via 
two parallel channels running simultaneously, as depicted in 
Fig. 1. At the EU level, the Scientific Committee on Consumer 
Safety (SCCS) evaluates cosmetic ingredients that could raise 
health concerns. These substances are listed in Annexes II–
VI, with Annexes II and III serving as “negative lists”—List 
II includes prohibited pharmaceutical substances. At the same 
time, List III contains restricted substances allowed only for 
specific uses and concentrations, such as hair dyes. Annexes 

IV, V, and VI are “positive lists,” including approved col-
orants, preservatives, and ultraviolet (UV) filters. The SCCS 
provides comprehensive toxicological reports, known as “Sci-
entific Opinions,” based on industry-prepared dossiers. These 
reports, which mainly include exposure data and toxicologi-
cal studies, are used by the Directorate-General for risk man-
agement for the Internal Market, Industry, Entrepreneurship, 
and small and medium enterprises (SMEs) (DG GROW). All 
SCCS Opinions are publicly accessible through the EU’s offi-
cial health webpage. Concurrently, the industry is responsible 
for the safety assessment of finished cosmetic products and 
their ingredients before market entry. Qualified safety asses-
sors compile these assessments and report to the “Responsible 
Person,” the industry’s risk manager.

A significant complicating factor in the safety evaluation 
of cosmetics within the EU is that since March 2013, a 
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Figure 1. Taken from [1]. In the EU, cosmetic ingredient safety is ensured through two parallel and simultaneous control channels. Abbreviation: PIF, 
Product Information File.

total ban on animal testing has been in place [Regulation 
(EC) No. 1223/2009]. Before this date, a phased series of 
bans was implemented, starting with prohibiting testing cos-
metic products on animals on 11 March 2004. This was 
succeeded on 11 March 2009, by the cessation of animal 
tests for all human health effects, except for long-term tests 
conducted outside the EU. Finally, a total ban for all toxi-
cological endpoints, without any exceptions, was instituted 
on 11 March 2013. Consequently, only validated replacement 
alternative methods can be used to assess the safety of cosmet-
ics. Validated replacement alternative methods are available 
for specific toxicity endpoints (local toxicity), such as skin and 
eye corrosion/irritation, skin sensitization, and phototoxicity. 
However, for more complex endpoints such as repeated-dose 
systemic toxicity, the development of New Approach Method-
ologies (NAMs) is necessary to replace traditional animal 
testing and make the transition toward animal-free risk assess-
ment methodology without relying on experimental animals, 
commonly referred to as Next Generation Risk Assessment 
(NGRA) [1].

Because long-term and complex toxicological responses in 
living animals cannot be captured using single non-animal 
methods, it is necessary to combine several test meth-
ods for chemical hazard characterization, e.g. Integrated 
Approaches to Testing and Assessment (IATA). IATAs rely 
on an integrated analysis of existing information and the 
generation of new data using non-testing and testing meth-
ods. Non-testing methods involve in silico techniques like 

grouping (category formation based on toxicological crite-
ria), read-across (extrapolating information from structural 
and functional analogs), and quantitative structure–activity 
relationship (QSAR) predictions. In the context of cos-
metics, testing methods encompass in chemico approaches 
(providing physicochemical and mechanistic organic chem-
istry data) and in vitro and ex vivo methodologies that 
are preferably human-based and inform on the toxico-
logical mechanisms of the compound under investigation
[2–4].

This paper introduces a usable knowledge graph (KG), 
where ‘usability’ refers to the design of the KG to facili-
tate its use and integration into processes and applications, 
known as TOXIN knowledge graph (TOXIN KG), to assist 
in new risk assessment approaches for evaluating the safety 
of cosmetic ingredients. The developed TOXIN KG is built 
upon a graph-structured semantic technology, specifically the 
Resource Description Framework (RDF), and integrates rel-
evant data using ontologies. The primary data source for 
TOXIN KG comprises existing safety data of annexed cos-
metic ingredients, including information from animal studies 
carried out on cosmetic ingredients before the testing and 
marketing bans, as presented in SCCS scientific opinions. In 
addition, in silico toxicity predictions are made possible by 
integrating the OECD QSAR Toolbox into TOXIN KG. Fur-
thermore, TOXIN KG can deduce implicit information from 
explicit data using rule-based mechanisms, exemplified for 
liver toxicity.
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The TOXIN knowledge graph 3

Figure 2. The development of TOXIN KG follows a structured workflow consisting of three main stages: data gathering, data structuring and ingestion, 
and leveraging functionality using Semantic Web technologies.

Methodology
The development of the TOXIN KG prototype involves three 
main steps: (I) data gathering, (II) data structuring and input 
(In computer science, “data ingestion” refers to the process of 
data input, while in toxicology, the term “ingestion” specif-
ically denotes oral intake. This paper has adopted a neutral 
term, “data input,” to prevent potential confusion.), and (III) 
leveraging the tool’s functionality (Fig. 2). The data process-
ing workflow begins with the first step, data gathering, which 
involves collecting SCCS opinions in PDF format. During this 
phase, opinions not meeting initial criteria—specifically, the 
presence of a repeated dose toxicity (RDT) study and the 
absence of nano-ingredients—are excluded. The second step 
focuses on structuring the data by providing a framework 
based on OECD guidelines. This step ensures consistency 
through input rules and involves capturing and inputting 
data in a structured manner. As a resource-intensive phase, 
it relies on human expertise with a fundamental understand-
ing of toxicology. Together, these two steps constitute the data 
curation phase.The third step prepares the curated data for 
exploitation by implementing tools for data retrieval, relia-
bility assessment, and structural analysis. This step leverages 
the functionalities of the TOXIN KG and is closely tied to the 
data curation steps from the first two stages. It includes tasks 
such as automatic SMILES generation, automated assessment 
of toxicological studies using Klimisch scores, retrieving in sil-
ico HESS predictions for RDT, and utilizing profilers through 
the OECD QSAR Toolbox for identifying structural alerts and 
structure–activity relationship (SAR)–based chemical group-
ing. To enhance specificity, liver-specific search filters are 
introduced to refine the data. For improved data accessibil-
ity and user experience, Ontodia is employed to create an 
attractive and user-friendly interface.

Phase I—data curation and transformation to a 
machine-processable format
Data curation, as defined by the National Library of Medicine, 
involves collecting, organizing, managing, and maintaining 
data to ensure its accuracy, reliability, and usability over time 
[5]. For TOXIN KG, this involves the following.

Data gathering
SCCS opinions from 2009 to 2019 without nano-ingredients 
and containing 90-day repeated-dose toxicity studies were 
used as sources [6]. These 93 opinions cover 88 cosmetic 
ingredients: 62 hair dyes, 9 preservatives and disinfectants, 
5 UV filters, 2 fragrances, 2 solvents, 4 ingredients with mul-
tiple applications, and 4 substances with other cosmetic uses 
(oral hygiene, antiwrinkle, skin lightening, and hair-waving 
products). Each SCCS opinion details exposure, physicochem-
ical properties, and toxicological studies. The opinions were 
downloaded in Portable Document Format (PDF) from the 
official EU health page for analysis [7].

The SCCS opinions often use natural language without 
a controlled vocabulary, posing a challenge for tools like 
TOXIN KG that rely on structured data. To address this, 
the Universe of Discourse for TOXIN KG has been meticu-
lously structured at a granular level, facilitating the generation 
of the KG. Given the complexity and diversity of opinions, 
domain experts, rather than Artificial Intelligence (AI) tech-
nologies such as large language models (LLMs), were involved 
in interpreting these varied perspectives.

Data structuring and input
Data were manually entered into Microsoft Excel follow-
ing predefined rules and the structure of the opinions. Excel 
was chosen for its simplicity and familiarity among toxi-
cologists, allowing them to capture data without extensive 
Information Technology (IT) expertise. However, Excel has 
limitations in handling hierarchical data and large tables 
directly [8]. The Excel files were converted to a comma-
separated value (CSV) format to facilitate data processing 
and transformation. CSV serves as an intermediary format 
that is more coding-friendly before converting the data into 
RDF. The CSV files were then transformed into RDF graphs 
using Relational Database (RDB) to RDF Mapping Language 
(R2RML). R2RML was employed because it is the standard 
mapping language for converting relational data into RDF. 
It is suitable for knowledge storage and semantic reason-
ing, especially in the context of linked data and the Semantic 
Web [9]. We adopted the R2RML-F engine for this process, 
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which processes CSV files as in memory for the RDF gener-
ation process. This choice facilitates efficient transformation 
from the CSV format to RDF, leveraging the strengths of 
R2RML for mapping and the flexibility of the CSV format 
[10]. Storing data as RDF ensures interoperability by provid-
ing a standardized format that supports data integration and 
advanced querying. RDF organizes data for machine compre-
hension, allowing seamless data exchange between systems 
and improving the overall utility of the information. It also 
supports semantic applications, enhancing machines’ capa-
bility to reason about data and providing flexibility in data
structuring [11].

Data structuring
Data organization aligns with OECD guideline testing meth-
ods, breaking it into “concepts” and “value properties.” This 
process, termed “guideline profiling,” involves defining “con-
cepts” as entities without data values that shape the data 
hierarchy and “value properties” as specific data values. In our 
data structure, concepts are denoted with capital letters, while 
value properties are written in lowercase. Initially, profiles 
were created for acute toxicity, RDT, toxicokinetics, and skin 
absorption. For example, the data structure for OECD test 
No. 408 on repeated-dose oral toxicity [12] (Fig. 3) includes 
standardized units such as ml/kg body weight (bw) for dose 
volume, and value types such as YES/NO for the value prop-
erty “moribund or dead animals prior to study termination” 
[13]. This comprehensive structure supports automated Klim-
isch scoring and liver-specific search filters (see Phase II). The 
“Reliability” concept, created by the authors, was added to 
incorporate value properties capturing study credibility. This 
concept includes elements such as SCCS comments, study 
year, Good Laboratory Practice (GLP) status, ref. in dossier 
(links to the study reference mentioned in the opinion), and 
additional information fields. This structure facilitates future 
data queries using AI-based Natural Language Processing 
(NLP) tools.

Figure 3 illustrates the data structure utilized in TOXIN KG 
for assessing RDT in compliance with OECD test guideline 
No. 408. The structure includes key concepts such as clinical 
and functional observations, hematology, clinical biochem-
istry, and pathology in rodents exposed for 90 days. These 
are organized into three levels of concepts, each starting with 
a capital letter, and their value properties are aligned with 
OECD 408 requirements. Liver-specific parameters are inte-
grated through the “hepatocellular effect” concept, which is 
delineated into specific value properties associated with liver 
enzymes and other biomarkers used to monitor liver function. 
For instance, the value property “moribund or dead ani-
mals prior to study termination” is mapped to Boolean values 
(YES/NO), while “mortality rate” provides textual explana-
tions. The “Test animal” concept ensures clear representation 
by distinguishing numerical age values from their units (days, 
weeks, months and years). Additionally, the structure incor-
porates the “Reliability” concept, which includes value prop-
erties such as “additional information,” “own comments,” 
and “ref. in dossier.” These properties enhance data credibil-
ity and enable the automated assignment of Klimisch scores, 
a significant advantage of this data structure. The comprehen-
sive design further supports liver-specific analysis by enabling 
the extension of liver-specific search filters and facilitating the 
exploitation of hepatotoxicity data (see Phase II).

Data input
Initially, toxicology experts entered data into Excel, which 
was reviewed by another expert for accuracy. Although Excel 
was easy to use, it had limitations in capturing tables and 
structuring data hierarchy, leading to potential inconsistencies 
[8]. Tables were entered as linear text using specific predefined 
delimiters. However, Excel provided reliable data backup, 
making it a secure choice for initial data capture [14]. Dur-
ing data input, redundant information within a single study, 
such as repeated mentions of dosages, administration routes, 
and test substance specifications across different sections, was 
captured only once in TOXIN KG. This practice minimized 
unnecessary repetition and ensured a more concise and effi-
cient data representation. Figure 4 provides an overview of 
the number of entries in the Excel files for each toxicologi-
cal end point and study, regardless of their compliance with 
OECD guidelines, with human studies integrated to ensure 
that all relevant data are included in TOXIN KG. For key 
end points such as acute toxicity, RDT, toxicokinetics, and 
skin absorption, a detailed and comprehensive data structure 
was developed. This structure breaks down extensive text val-
ues into smaller, specific segments, enabling more effective 
data retrieval and enhancing the ability to query liver-specific 
effects and related information. In contrast, a less detailed 
data structure was implemented for other end points, result-
ing in larger, unsegmented text values. For ingredients with 
multiple opinions, data were extracted from various opinions, 
with conclusions drawn from the most recent one for accu-
racy. Later on, with LLM advancements, the TOXIN Report 
Analyzer (https://sccs-csv.netlify.app) using ChatGPT-4 was 
developed to extract text from SCCS opinions and convert it 
into tables automatically to speed up the data input process. 
Note that the generated tables are to be reviewed by experts to 
ensure accuracy (also see the Data governance section). This 
hybrid AI-expert approach ensures high-quality, scalable data 
processing and reproducibility [15].

Data governance
Transitioning from human text-based data to computer-
processable data underscores the crucial need for data 
accuracy and minimizing errors. The axiom “garbage in, 
garbage out” highlights the importance of precise data input 
for quality output. Fu et al. emphasized various dimensions 
of data governance: data accuracy, completeness, integrity, 
metadata management, availability, and authorization [16]. 
In TOXIN KG, toxicologists oversee data accuracy and com-
pleteness, while computer scientists handle metadata man-
agement, data availability, and authorization. Both groups 
share responsibility for data integrity. The quality assurance 
related to metadata management has been documented else-
where [11]. Hence, only the other five remaining aspects are 
briefly discussed hereunder.

Data accuracy
Ensuring data accuracy and consistency is vital. Human errors 
in data reading, transferring, and inputting can compromise 
accuracy. We followed a rigorous data input process from each 
opinion, including a data validation step. Random sampling 
was conducted against the original SCCS opinions as the gold 
standard to refine this process further. For instance, in the 

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baae121/7989333 by guest on 19 February 2025

https://sccs-csv.netlify.app


The TOXIN knowledge graph 5

Figure 3. Data structure in TOXIN KG for OECD 408–guided RDT assessment, integrating liver-specific parameters, reliability metrics, and automated 
Klimisch scoring.
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Figure 4. Overview of entries per toxicological end point and study, highlighting detailed data structures for key end points like repeated dose toxicity.

case of repeated-dose toxicity studies, a total of 332 stud-
ies, we conducted random reviews on 10% of these studies 
(32 studies). The data input accuracy percentage was calcu-
lated by multiplying the number of correct entries (948) by 
100 and dividing it by the total entries (990), resulting in an 
accuracy rate of 96%. Researchers may tolerate some errors, 
but tools for automated decision-making demand rigorous 
data governance to ensure accuracy. A computerized tool is 
yet to be implemented to verify and quantify data accuracy. 
To further enhance data accuracy and ensure the reliability of 
the information stored in the KG, toxicologists can input any 
comments or inconsistencies they may encounter during the 
data input phase, labeled as “own comments.” This feature 
contributes to data provenance by allowing experts to doc-
ument observations and discrepancies, providing additional 
context and transparency for future data users.

Data completeness
Thoroughly capturing SCCS opinions prioritized data com-
pleteness. The “additional information” value property was 
introduced to capture supplementary details not explicitly 
requested by OECD guidelines. This ensures comprehensive 
data input and contributes to data provenance. An automated 

tool is yet to be implemented to verify and quantify data 
completeness.

Data integrity
Data integrity ensures accuracy, consistency, and complete-
ness while preventing unauthorized modifications. It involves 
maintaining data quality and consistency over time [17]. Phys-
ical and logical integrity protects against disruptions, errors, 
and misuse. Physical integrity safeguards data storage, while 
logical integrity ensures consistency and security through 
entity, referential, domain, and user-defined rules. Key traits 
include completeness, accuracy, consistency, timeliness, and 
standards compliance. Mitigation includes limiting access, 
validating data, regular audits, error-detection software, and 
robust backups [18]. Human and transfer errors were elab-
orated on earlier under data accuracy. On the other hand, 
computer scientists need to tackle other issues endangering 
data integrity.

Data availability
SCCS opinions and integrated data, including TOXIN KG, 
are publicly accessible. A disclaimer notifies users that not all 
SCCS opinions are (yet) included in TOXIN KG.
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Data authorization
User access to private and sensitive data is controlled through 
user privileges and predefined authorization policies. Tox-
icologists transcribe data but cannot generate RDF. Com-
puter scientists have read-only access to Excel for RDF graph 
generation and maintain the ontology underlying TOXIN KG.

Phase II—data exploitation
Leveraging the functionality of TOXIN KG by using 
Semantic Web technologies
Semantic Web technology enhances web content to be more 
meaningful and machine-understandable, improving informa-
tion organization, linking, and representation. It adds explicit 
meaning to web content, enabling sophisticated processing 
and interpretation. Standardized data formats like ontolo-
gies and RDF define relationships between data elements. 
In predictive toxicology, semantic mapping and ontologies 
enable data integration, standardize representation, facilitate 
inference, and support knowledge sharing within the commu-
nity, enhancing the accuracy and effectiveness of predictive 
models [19–22]. KGs, built using Semantic Web technol-
ogy, organize information within a graph-like framework, 
linking entities (nodes) through relationships (edges). This 
arrangement enhances data analysis, retrieval, and decision-
making capabilities. Integrating data involves amalgamat-
ing and streamlining diverse sources to construct a cohesive 
KG [23]. The primary data source for TOXIN KG is CSV 
files derived from the created Excel files and integrated into 
TOXIN KG using R2RML to ensure uniform and compre-
hensive integration. To make a thorough, multidata source 
tool for animal-free cosmetics’ hazard and risk assessment, we 
integrate data through semantic mapping, linking individual 
elements to a common ontology within TOXIN KG. ToXic 
Process Ontology (TXPO) was selected as the primary ontol-
ogy structure [22], part of the Open Biomedical Ontologies 
Foundry. TXPO includes elements from Uber-anatomy ontol-
ogy, Cell Ontology, National Center for Biotechnology Infor-
mation (NCBI), Taxonomy, Chemical Entities of Biological 
Interest, Gene Ontology (GO), Phenotype and Trait Ontol-
ogy, Integrating Network Objects with Hierarchies, Ontology 
of Genes and Genomes, and Disease Ontology [24–30]. TXPO 
focuses on toxicity mechanisms, particularly hepatotoxic 
mechanisms, aligning with TOXIN KG’s goals [31]. To enrich 
TXPO, we integrated ontologies such as GO, GO-Causal 
Activity Model (GO-CAM), and UniProt for human gene
products [32].

Additionally, we incorporated biological pathway
databases Kyoto Encyclopedia of Genes and Genomes 
(KEGG) and Reactome to provide a complete overview of bio-
logical processes, including biochemical reactions, substance 
transport, and gene expression [33–37]. The various datasets 
and ontologies have been integrated into the TOXIN KG 
by linking to external resources’ Internationalized Resource 
Identifiers (IRIs), resulting in a distributed KG. To maintain 
traceability and prevent incoherencies, these integrations are 
stored in separate “named graphs,” allowing users to easily 
manage and trace the origins of the information [38]. Sanc-
torum et al. detailed the automatic data integration approach 
by comparing labels and IRIs [39].

Four extra modules were developed to enhance TOXIN 
KG’s functionalities, focusing on improving the end-user 

experience through seamless integration of the enriched 
TXPO ontology.

Addition of SMILES to standardize chemical identification
Various molecular representations have been developed to 
accommodate the growing number of chemicals and meet 
computational needs. SCCS opinions use diverse string rep-
resentations for cosmetic ingredients, including International 
Nomenclature of Cosmetic Ingredients (INCI) names, chem-
ical names, trade names, synonyms, Chemical Abstracts Ser-
vice (CAS) numbers, EC numbers, empirical formulas, and 
2D graphics. These need standardization to avoid interoper-
ability issues. SMILES, introduced by Weininger in 1988, pro-
vides a flexible and efficient chemical structure notation. We 
implemented SMILES annotations to ensure consistent repre-
sentation across datasets, enabling accurate data retrieval and 
improving interoperability. While SMILES strings for small 
molecules can be easily written and are theoretically cor-
rect, variations can occur in generating SMILES models [40]. 
Canonical SMILES, produced through canonicalization algo-
rithms, ensure a unique SMILES identifier [41, 42]. Including 
canonical SMILES in TOXIN KG is essential for providing 
a concise and standardized representation of chemical struc-
tures within linked data. Except for two polymer ingredients 
unsuitable for canonical SMILES notation, canonical SMILES 
has been manually integrated using sources such as PubChem, 
ChemSpider, and Cheminfo SMILES generator.

Automatic Klimisch score attribution to evaluate the reliability 
of studies
Toxicological studies must be reliable for safety evaluations, 
regulatory decisions, and public health protection. The Klim-
isch scoring system, introduced in 1997, assesses study reli-
ability. A score of “1” means “reliable without restriction,” 
adhering to valid guidelines and often conducted under GLP. 
A score of “2” means “reliable with restriction,” while scores 
of “3” and “4” denote “not reliable” and “not assignable” 
due to flaws or lack of data [43, 44]. The ToxRTool, an Excel-
based application developed by EURL ECVAM, enhances 
transparency when assigning Klimisch scores. It evaluates 
studies based on five criteria: (i) test substance identifica-
tion, (ii) test organism characterization, (iii) study design 
description, (iv) study result documentation, and (v) design 
and result plausibility. Each criterion includes “normal” and 
“red” questions rated as 0 or 1. Achieving categories 1 or 
2 requires a score of 1 for “red” questions [45]. Table 1 
summarizes the ToxRTool criteria and their classification. 
We developed a JavaScript tool for Klimisch category assign-
ment in TOXIN KG, focusing on OECD-compliant studies for 
acute and repeated-dose toxicity. Accurate Klimisch scoring 
relies on a comprehensive data structure to locate ToxRTool 
answers within TOXIN KG. For instance, to evaluate the 
question “Are sufficient details of the administration scheme 
given to judge the study?” (criteria Group iii, Question 6), 
essential details like dilution in diet, total volume applied, 
and media homogeneity must be retrieved. For the 90-day 
repeated oral toxicity test (OECD No. 408), the tool scans 
for “Test method: Test condition: Oral administration: gav-
age.” If found, it examines “Test method: Test substance: 
homogeneity and stability” or “Test method: Test condition: 
dose-volume ml/kg bw” (Fig. 3). This example highlights the 
detailed data structure designed following OECD guideline 
profiling, demonstrating the value added by this approach, as 
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Table 1. ToxRTool criteria and questions for Klimisch score grading

Criteria Questions
Type of Questions 
(N: normal, R: red)

I: Test substance 
identification

1. Was the test substance identified?
2. Is the purity of the substance given?
3. Is information on the source/origin of the substance given?
4. Is all information on the nature and/or physico-chemical properties of the test item 

given, which you deem indispensable for judging the data?

- R
- N
- N
- N

II: Test organism 
characterization

1. Is the species given?
2. Is the sex of the test organism given?
3. Is information given on the strain of test animal plus, if considered necessary to 

judge the study, other specifications?
4. Is age or body weight of the test organisms at the start of the study given?
5. For repeated dose toxicity studies only: Is information given on the housing or 

feeding conditions?

- R
- N
- N
- N
- N

III: Study design 
description

1. Is the administration route given?
2. Are doses administered or concentrations in application media given?
3. Are frequency and duration of exposure as well as time-points of observations 

explained?
4. Were negative and positive controls included?
5. Is the number of animals per group given?
6. Are sufficient details of the administration scheme given to judge the study?
7. For inhalation studies and repeated dose toxicity studies only: Were achieved con-

centrations analytically verified or was stability of the test substance otherwise 
ensured is made plausible?

- R
- R
- R
- R
- R
- N
- N

IV: Study results 
documentation

1. Are the study endpoint(s) and their method(s) of determination clearly described?
2. Is the description of the study results for all endpoints investigated transparent and 

complete?
3. Are the statistical methods applied for data analysis given and applied in a 

transparent manner?

- N
- N
- N

V: Plausibility of 
study design and 
results

1. Is the study design chosen appropriate for obtaining the substance-specific data 
aimed at?

2. Are the quantitative study results reliable?

- R
- N

The five sets of criteria and their corresponding questions in the ToxRTool are presented. The third column specifies the weight assigned to each question, 
categorized as either “normal” (N) or “red” (R). To achieve reliability categories 1 or 2, questions marked as “Red” must be scored as 1.

shown in Fig. 3. If the test substance is administered through 
diet or drinking water, the tool focuses on homogeneity and 
stability data, assigning a score of 0 or 1. For data related to 
positive and negative control groups (criteria Group iii, Ques-
tion 4), the “Reliability” structure includes a “control group 
& recovery group” data block. This demonstrates the advan-
tage of adding the “Reliability” concept by the authors—the 
tool checks for the presence of data here. If absent, it examines 
the dose level data for a “0” dose level representing the neg-
ative control. Studies following OECD guidelines generally 
expect Klimisch scores of 1 or 2, based on adherence to guide-
lines and GLP compliance. Some studies might omit properties 
like exposure duration and administration scheme. Therefore, 
we introduced default values to assume that missing details 
do not indicate non-compliance but are unintentional omis-
sions. For OECD No. 408 (Fig. 3), default values include 
“repeated administration scheme” (assumed “7 days/week”) 
and “duration of exposure” (assumed “90 days”). These 
assumptions enable efficient evaluation of OECD-compliant 
studies and prevent erroneous 0 scores for red criteria
questions. 

Integration of OECD QSAR Toolbox profilers
In IATAs, in silico methods are indispensable for evaluating 
chemical toxicity. These methods connect chemical activ-
ity/properties with structural characteristics to predict activ-
ity data or physicochemical attributes. They also identify 
structural components influencing these properties within a 
mechanistic framework. In regulatory contexts, the credibility 

of in silico predictions is enhanced when integrated into 
a broader Weight-of-Evidence strategy, supported by other 
information like human-based in vitro data [46].

The QSAR Toolbox, developed by the OECD, is crucial for 
chemical hazard assessment [47]. It uses the (Quantitative) 
Structure–Activity Relationship/Structure–Property Relation-
ship [(Q)SAR/SPR] methodology to predict chemical behavior 
by examining structural attributes and biological activities 
[48]. This toolbox includes software programs to profile, cat-
egorize, and address data gaps via (Q)SAR/SPR models and 
read-across techniques for different toxicological endpoints. 
The QSAR Toolbox encompasses 70 profilers in six groups: 
predefined, general mechanistic, endpoint–specific, empiric, 
toxicological, and custom. Metabolism profiling includes doc-
umented metabolism (400 observed pathways) and simulated 
metabolism, predicting the metabolic fate of target ingredients 
[49]. All these profilers are accessible within TOXIN KG by 
integrating the Application Programming Interface (API) of 
the QSAR Toolbox. The key profilers implemented in TOXIN 
KG are elaborated further.

Hazard Evaluation Support System
Hazard Evaluation Support System (HESS), in the toxico-
logical profiler category, is relevant for repeated-dose liver 
toxicity. Developed by Japanese institutions and universi-
ties, it categorizes mechanistic insights into in vivo RDT 
for 500 chemicals, defining 33 categories across 14 toxic-
ity types, including hepatotoxicity. Predictions are ranked 
based on the availability of toxicity mechanism information 
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and a well-defined structural boundary [50]. Rankings are as 
follows:

“A”: Mechanism information present, clear structural 
boundary, reliable data gap filling.

“B”: Mechanism information present, unclear structural 
boundary, limited data gap filling.

“C”: No mechanism information, empirical tendency, 
potential for improvement.

Extended Cramer toxic hazard classification
In the general mechanistic category, the Cramer classifica-
tion system, a structural classification system, typically assigns 
chemicals to three classes (I, II, and III) based on their antici-
pated levels of oral systemic toxicity. However, as recognized 
by the SCCS, this system is simplified into two classes by com-
bining Classes II and III. This two-class system underpins the 
Threshold of Toxicological Concern (TTC) concept, primar-
ily applicable to small quantities of chemicals, with exposure 
thresholds defined by the SCCS [1, 51, 52]. Chemicals with 
exposures below these TTC values pose a low risk of adverse 
health effects [53].

Documented and simulated metabolism profiler
This profiler provides pathways observed in mammals and 
simulations of in vivo and in vitro rat metabolism and skin 
metabolism. The skin metabolism simulator mimics mam-
malian liver metabolism [54].

It is important to note that the profilers provided in the 
QSAR Toolbox are not (Q)SAR models and have not under-
gone stringent validation to define applicability domains. 
Recent studies on profiler performance indicate limitations, 
showing that they may perform poor in predicting specific 
toxicological endpoints when tested against large datasets 
[55]. Therefore, in TOXIN KG, these profilers are used as 
an initial screening tool to identify potential toxicological 
alerts. For instance, for RDT, HESS predictions apply a 
similarity-based measurement focused on selected molecular 
features of the target chemical [56]. If the target chemical 
shows 50% structural similarity based on the Dice measure, 
it is assigned to the relevant toxicity alert. Thus, predic-
tions from the OECD QSAR Toolbox API in TOXIN KG are 
only preliminary indicators rather than definitive toxicolog-
ical assessments, which require a combination of more than 
one valid QSAR model and/or experimental validation.

Extended liver-specific filters for improved identification of
hepatotoxicants
Although cosmetics are mainly for dermal application, the 
liver is the primary target organ after repeated oral exposure 
in laboratory animals [6, 57]. However, translating animal 
model findings to human outcomes is often flawed, as shown 
by drugs causing liver problems leading to market withdrawal 
[58–60]. Therefore, it is crucial to assess the human relevance 
of these observations using human-based NAMs. As a case 
study, we selected parameters based on literature and OECD 
guidelines for evaluating liver function disturbances. These 
include liver tissue damage through necropsy and histopathol-
ogy, enzymatic changes [Alanine aminotransferase (ALT) 
(EC 2.6.1.2), aspartate aminotransferase (AST) (EC 2.6.1.1), 
alkaline phosphatase (ALP) (EC 3.1.3.1), gamma-glutamyl 
transpeptidase (GGT) (EC 2.3.2.1), sorbitol dehydroge-
nase (EC 1.1.1.14)], and biomarkers (total bilirubin, total 

cholesterol, fasting triglycerides, high-density lipoprotein, 
low-density lipoprotein, total protein, and albumin). These 
liver-specific search filters help identify cosmetics that may 
cause liver toxicity by highlighting observed harmful effects. 
The filters’ functionality is detailed in the Results and discus-
sion section.

Enhancing data visualization and exploration via Ontodia
Efficient data presentation is essential for both human under-
standing and machine analysis. Humans and computers use 
different methods to grasp and establish connections within 
data. While text-based representation suffices for human com-
prehension, forming relationships between various entities 
can be challenging [30–33]. Graph databases offer an appeal-
ing solution to address the complexity of data understanding 
and interlinking, especially for computer processing. They 
provide superior query performance and flexibility, mak-
ing them ideal for managing complex data. Ontodia (We 
have used a precompiled distribution of Ontodia that was 
made available on JSFiddle (https://jsfiddle.net/yn9ur13h/). 
This version, namely, 0.8.0, is hosted at https://unpkg.com/
ontodia@0.8.0/dist/ontodia-full.min.js.) is a powerful tool for 
data representation [61]. It allows end-users to visualize and 
seamlessly explore graph data by interacting with RDF graphs 
[62]. In TOXIN KG, Ontodia’s utility is evident at two lev-
els: at the information level through observations reported in 
the opinions and at the relationship level. The former links
the same observations in TOXIN KG’s internal data, while the 
latter allows more profound indirect linkage between internal 
and linked data. Both levels are explained and illustrated in 
the “TOXIN KG links observations to toxicological mech-
anisms through ontologies” section. Ontodia significantly 
enhances data visualization and exploration within TOXIN 
KG, facilitating a comprehensive understanding and stream-
lined navigation of intricate information. Tools like Ontodia 
are “unaware” of the application domain; they only recognize 
that the KG encodes data using RDF and interacts with RDF 
via the SPARQL query language, another Semantic Web stan-
dard. The integration of Ontodia shows that end-users can 
engage with RDF in different ways and that using open stan-
dards facilitates the integration and development of tools on 
top of the KG.

Results and discussion
The SCCS has issued scientific opinions since 1979, adapt-
ing their format and content to meet evolving legal require-
ments and scientific advances. On the EU health webpage, 
the opinions are organized by changes in the committee’s 
name: before October 2004 (“Scientific Committee on Cos-
metology” and “Scientific Committee on Cosmetic Products 
and Non-Food Products”), October 2004 to March 2009 
(“Scientific Committee on Consumer Products”), and April 
2009 to March 2013, April 2013 to March 2016, April 
2016 to December 2021, and beyond (“SCCS”). To enhance 
machine processability and simplify data organization, we 
classified the opinions into three periods, focusing on the 
2009–19 period for creating the TOXIN KG (Fig. 4). Despite 
220 opinions evaluating 163 chemicals within this timeframe, 
TOXIN KG development focused on 93 opinions on 88 cos-
metic ingredients, excluding nanoingredients and including 
90-day repeated-dose toxicity studies [6]. This limited dataset 
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does not impede TOXIN KG’s development but presents an 
opportunity for expansion.

Retrieving annexed cosmetic compound data with 
TOXIN KG
The user interface of TOXIN KG is designed according to user 
interface design principles to ensure human understandabil-
ity [63, 64]. It offers functions to search and retrieve safety 
information about annexed cosmetic ingredients using CAS 
numbers, INCI names, or SMILES notations. The “Chemical 
compound” search option in TOXIN KG’s interface includes 
the OECD QSAR Toolbox profilers, providing insights into 
in silico-based hazard and metabolite predictions. Figure 5 
shows the search results for “Basic Yellow 57” (CAS: 68391-
31-1) and SMILES, providing detailed information about the 
chemical, including its identity, physicochemical properties, 
and intended use. Users can search for specific compounds 
using various identifiers, such as CAS number, INCI name, 
and SMILES. TOXIN KG integrates 70 OECD QSAR Toolbox 
profilers, with a focus on three particularly relevant to sys-
temic and organ toxicity, which are accessible directly on the 
result page for convenient and efficient information retrieval 
[65, 66].

Switching the search function to “health effect” allows 
users to find compounds associated with specific toxicological 
effects. Results can be viewed in three formats: compound, 
opinion, or OECD. The compound view focuses on specific 
compounds, while the OECD view presents results per test 
guidelines. Maintaining uniform and standardized ingredient 
names is crucial for data retrieval. The EU health webpage 
shows slight variations in ingredient names, such as “HC 
Blue 15” appearing as “HC Blue No. 15” and “HC Blue 
No.15.” Such inconsistencies could lead to errors during data 
retrieval when using strict string matching. Alternative match-
ing methods, like hard-set and proportional thresholds, offer 
solutions. Hard-set thresholds retain entities meeting specific 
criteria (e.g. “95% similarity”), while proportional thresholds 
retain a percentage of the best-performing entities regardless 
of absolute similarity. In TOXIN KG, proportional searching 
is in place; for instance, searching “yellow” will display every 
ingredient with “yellow” in its name [67]. In the first dataset, 
TOXIN KG addressed naming inconsistencies by manually 
incorporating canonical SMILES. Future developments will 
employ automatic SMILES generation and include data from 
remaining SCCS opinions. We propose a scalable method pri-
oritizing precision over recall for evaluating correspondence 
between graphs [68–71].

Automatic attribution of Klimisch scores to acute 
and repeated-dose toxicity studies
Data must be readily available in the system to create an auto-
mated scoring tool. Non-OECD studies present challenges 
due to documentation and study design issues. While SCCS 
comments are integrated into TOXIN KG’s reliability assess-
ment part, the tool still needs to interpret these comments 
in text format. Therefore, the Klimisch scoring tool focuses 
solely on OECD-compliant studies, covering acute and RDT. 
To view the automatically scored studies, one can select 
either “acute toxicity” or “repeated-dose toxicity” under the 
“health effect” category and click “Go.” This will display a 
list of all studies related to the selected endpoint. Choosing the 
“OECD view” groups the studies according to their guideline.

The ToxRTool calculates the initial category based on 
numerical points: a sum of 18 or higher falls into Category 
1, 13 or higher belongs to Category 2, and <13 is Category 3. 
For the revised category, red criteria questions are first consid-
ered (Table 1). If all red criteria score 1, the study is Category 
1; if not, it is Category 2 or 3, depending on the sum of points. 
Our tool uses the same reasoning as the ToxRTool. Figure 6 
demonstrates the automated Klimisch scoring of an OECD 
408 study for Basic Yellow 57, presenting the “sum,” “initial 
category,” “revised category,” and individual criteria scores. 
Users can access individual criteria scores by clicking on them 
for a detailed examination, with SCCS opinion data shown 
in black and default values in green within the TOXIN KG 
environment. In this instance, the tool assumes a repeated 
administration scheme of 7 days/week, which is necessary to 
assign a score of 1 to Criteria (iii), Question 3 concerning 
exposure frequency.

Including default values and compensating for missing crit-
ical attributes in the red criteria questions have proven to be 
practical in categorizing OECD-compliant studies as 1 or 2. 
Scoring studies using the automatic Klimisch system is com-
plex due to limited detailed information in the opinions. An 
accuracy review was conducted by randomly selecting 20 out 
of 196 studies and comparing the automated scores with man-
ual Klimisch scoring performed by domain experts. The initial 
accuracy was imperfect, leading to refined data pathways and 
better mimicking human scoring processes. This exercise high-
lighted the necessity of incorporating default values to ensure 
that critical attributes, particularly in red criteria questions, 
are appropriately addressed, thereby enhancing the accuracy 
of categorizing OECD-compliant studies into Category 1 or 
2. Default values are based on the assumption that the study 
follows the guidelines. However, vital data, like the sex of 
animals, are sometimes buried within toxic effect descrip-
tions. This is critical for determining Category 1 or 2 in the 
Klimisch scoring system. Despite these improvements, some 
challenges remain. For ingredients with comprehensive opin-
ions, information like batch number or purity, initially stated 
in physicochemical properties, is not reiterated in the study 
report and is thus unavailable to the automatic scoring tool. 
To address this, default values are used to bridge information 
gaps. However, applying NLP techniques and LLMs could 
provide a more robust solution. NLP and LLM could auto-
matically extract and interpret critical data points from the 
text, allowing for a more precise Klimisch scoring process. The 
challenge is greater for non-OECD studies. The absence of 
specific information affects the evaluation of all criteria, rely-
ing more on expert judgment. Although SCCS comments on 
these studies are available within TOXIN KG, NLP is essential 
to interpret these comments and assign Klimisch scores, ensur-
ing a thorough and standardized evaluation of non-OECD 
studies.

TOXIN KG identifies potential liver toxicants
To test the performance of the extended liver-specific search 
filters in TOXIN KG for querying potential liver toxicants, 
we manually screened the 93 opinions accounting for 88 dif-
ferent cosmetic ingredients for compound-induced changes in 
liver-related parameters in 90-day RDT studies. This analysis 
indicated that 53 ingredients altered at least one parameter 
possibly associated with liver toxicity in animals. Table 2 lists 
these 53 ingredients, their respective altered parameters, and 
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Figure 5. Search results for Basic Yellow 57 in TOXIN KG, providing detailed chemical information and access to 70 OECD QSAR Toolbox profilers for 
systemic and organ toxicity.
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Figure 6. Automated Klimisch scoring of an OECD 408 study for Basic Yellow 57, showing total scores, categories, and individual criteria.
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their functions. However, replicating these results by a com-
puter using extended filters is more complex. Navigating a 
knowledge base in toxicology presents challenges due to vari-
ations in terminologies used by different experts but with 
similar meanings. Traditional query systems that rely on 
keyword-based searches or structured query languages need 
help capturing these intricacies. We can identify three dis-
tinct forms of language complexity within the opinions. The 
SCCS employs terms like “similar to” and “comparable to” 
when assessing the likeness of a non-OECD study to an OECD 
guideline, creating ambiguity.

Additionally, toxic effects not caused by the test substance 
are described using terms like “incidental” and “doubtful.” 
Expressions like “no adverse” and “adaptive compensatory” 
also require clarification to ensure that the intended mean-
ing is clear. From a scientific language perspective, terms 
such as “increase,” “raise,” and “higher” should be regarded 
as synonymous and interpreted accordingly when querying 
TOXIN KG. Variations in enzyme names also pose challenges; 
for example, “alanine aminotransferase” has been referred 
to as “serum glutamate-pyruvate transaminase,” with abbre-
viations like SGPT, GPT, ALAT, and ALT used in different 
opinions. TOXIN KG addresses these variations to ensure 
comprehensive search results comparable to those obtained 
manually using the Excel file containing the “raw data” of 
the SCCS opinions. Out of the 53 cosmetics identified as 
affecting at least one parameter related to liver toxicity in a 
90-day RDT animal study, we manually found that 18 impact 
ALT levels. Figure 7 displays the search results in TOXIN KG 
for ingredients that impact ALT liver enzyme levels, showing 
how keywords such as “increase,” “higher,” and “decrease” 
are searched separately. Additionally, terms like “change,”
“differ,” and “alter” are included to ensure a comprehen-
sive search for ingredients reporting disturbances in ALT 
levels in animals. By addressing enzyme naming complexities 
and clarifying synonymous terms, TOXIN KG successfully 
retrieved all 18 relevant cosmetic ingredients affecting ALT 
levels, demonstrating its capability to match the accuracy of 
manual analysis. 

Substantial enhancements can still be introduced to the 
search function by applying NLP and LLMs. Leveraging 
NLP can improve the tool’s understanding of user queries 
across diverse domains. NLP techniques such as Named Entity 
Recognition, Entity Linking, and Semantic Role Labeling 
can dissect user queries and extract pertinent information 
from opinions, thereby elevating the search results. Named 
Entity Recognition helps identify chemical compound names 
and essential terms, Entity Linking connects them to relevant 
database records, and Semantic Role Labeling assigns roles 
to words and breaks down user queries to understand the 
relationship between different parts. LLMs have also demon-
strated their use in extracting information from text, inter-
preting texts, and translating questions in natural language 
to SPARQL queries [72]. While there have been significant 
advancements in NLP and AI-driven automated text anal-
ysis within the field of toxicology, additional fine-tuning is 
required before these technologies can be widely integrated 
into NGRA tools like TOXIN KG [73–76].

TOXIN KG links observations to toxicological 
mechanisms through ontologies
In TOXIN KG, the enriched TXPO serves as the founda-
tional framework, integrating data from various sources into 
a machine-friendly format and facilitating the exploration 
of toxicological data, including molecular pathways, cellu-
lar responses, and adverse outcomes [19]. TXPO’s explicit 
relationships simplify data navigation and enhance interoper-
ability, fostering connections across toxicology. Recognizing 
the importance of identifying KG requirements through com-
petency questions, TOXIN KG adheres to this practice [77]. 
The required information may originate from diverse sources, 
ideally through a semiautomatic extraction process. Link-
ing entity descriptions to external representations enhances 
concept comprehension, even though errors in linking are con-
sidered noncritical [78]. TOXIN KG integrates information 
from external sources by establishing links to these sources 
while keeping integrations separate from internal data stored 
in dedicated entities known as “named graphs.” This strate-
gic approach ensures traceability, enabling the identification 
of information origins [38].

Figure 8 showcases insights obtained using semantic tech-
nologies and an enriched ontology. The information from 
a 90-day oral repeated-dose OECD 408 test for Basic Red 
51, retrieved by TOXIN KG, is potentially linked to a liver-
specific adverse outcome. The top section of the figure presents 
features retrieved from the SCCS opinion, including infor-
mation about the test species and three key observations 
presented in dashed circles: increased ALP and GGT (from 
the clinical biochemistry end point) and hepatocellular necro-
sis (from histopathology). The bottom section of the figure 
includes entities from the TOXIN Enriched Knowledge Graph 
(TEKG), which integrates toxicological data from SCCS opin-
ions with additional sources (enriched TXPO). These observa-
tions, “increased ALP,” “presence of GGT,” and “necrosis” 
are depicted in trapezoids and are linked to toxicological data 
through various relationships. Relationships are represented 
by arrows. Direct links are established in a “sameAs” relation 
between TOXIN KG and TEKG (solid lines), while dashed 
arrows indicate indirect links. Dashed lines symbolize indirect 
inheritance, and dotted lines denote indirect relations. Indirect 
inheritance allows flexible knowledge representation through 
intermediate classes, while indirect relations signify inferred 
connections not explicitly stated but deduced from the ontol-
ogy structure [37]. The “sameAs” link and the “is affected 
by” link demonstrate linguistic-based rationale. “sameAs” 
indicates linguistic similarity, while “is affected by” links are 
inferred through reasoning, counting common effects between 
a disease and an opinion. These automated links offer insights 
into the likelihood that Basic Red 51 suggests liver cholesta-
sis in the test subject. Ontologies and semantic technologies 
enable automation, while machine learning can also derive 
the “is affected by” relationship.

Figure 9, powered by Ontodia, introduces competency 
questions tailored to TOXIN KG, demonstrating how TEKG 
uses linked data to meet specific data retrieval needs and 
answer these questions. In Fig. 9, Zone a (solid line) illustrates 
the competency question: “Knowing some adverse effects 
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Figure 7. Displaying search results in TOXIN KG for ingredients that impact the ALT liver enzyme levels.

observed in a subject, what diseases or toxic processes may 
affect this subject?” On the left, it depicts the relationships 
between toxic processes, adverse effects, and their interac-
tions. Three key points are highlighted: “NAFLD” is cate-
gorized under “lipidosis,” indicating their connection. Two 
upward arrows represent adverse effects specific to NAFLD. 
Two hyperfunction symbols indicate adverse effects inherited 
by NAFLD from lipidosis, as NAFLD is a subtype of lipido-
sis. This illustrates the presence of these effects in NAFLD due 
to its classification. Additionally, the adverse effect “increas-
ing blood ALP concentration” is linked to cholestasis using 
the “has context” predicate, while the “has part” predicate 
connects adverse effects to toxic processes, such as link-
ing NAFLD to the hyperfunction of lipid biosynthesis. This 
approach enhances the organization and retrieval of infor-
mation on specific adverse effects occurring within toxic 
events.

TEKG helps determine biological processes or pathways 
influenced by a disease. In Fig. 9, Zone b (dotted line) 
addresses the competency question: “What biological pro-

cesses or pathways are impacted by a specific disease?” Here, 
NAFLD is linked to various pathways, including the “fatty 
acid biosynthetic process” and GO-CAM models, showing 
TEKG’s ability to identify affected biological processes. Zone 
c (dashed line) focuses on the question: “Which gene or pro-
tein’s functionality is hindered by a toxic process?” It depicts 
accessing gene products related to biological processes, such 
as acetyl-CoA carboxylase 1, involved in lipid metabolism. 
This gene represents a potential target for follow-up in vitro
studies. [79–81].

Direct and indirect links are displayed interactively within 
the TOXIN KG environment, categorizing compounds affect-
ing the same pathways based on in vivo data. For instance, 
“increased ALP” is common among eight ingredients, such 
as Basic Red 51 and phenoxyethanol (Table 2). Ontodia 
allows the grouping of these ingredients for further inves-
tigation, advancing SARs for liver toxicity [82–85]. The 
examples focusing on liver toxicity and related parame-
ters can extend to other organs by broadening the search
filters.
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Figure 8.  Relationships and features in TOXIN KG and TEKG for Basic Red 51, linking observations from OECD 408 tests to toxicological entities through 
direct and indirect relationships.

Figure 9. TEKG applications visualized through Ontodia, showcasing linked data to address competency questions on toxic processes, biological 
pathways, and compromised gene or protein functionality. 

Related work
In toxicology, TOXIN KG has been instrumental in devel-
oping an NGRA case study to thoroughly evaluate the liver 
toxicity of the hair dye HC Yellow No. 13 (HCY13). His-
torical in vivo data within TOXIN KG flagged HCY13 for 
its hepatotoxic potential (Table 2), while the in silico tools, 
including the OECD QSAR Toolbox and HESS toxicologi-
cal profiler, identified a structural alert associated with fat 
accumulation (steatosis). Subsequent targeted in vitro tests 
with human hepatic-like cells assessed lipid metabolism-
related markers and triglyceride accumulation, and a phys-
iologically based pharmacokinetic model estimated internal 
liver concentrations of HCY13. These combined results con-
firmed that 2.5% HCY13 would not trigger liver steato-
sis under the assumed use conditions. Such case studies 
advance animal-free toxicity assessments and contribute to 

developing NGRA methodology. A detailed manuscript elab-
orating on these findings and methods is currently being
prepared.

For KG generation, we adopted R2RML to transform 
CSV files into RDF using SQL, leveraging built-in SQL func-
tions for data manipulation. At the time of writing, the RDF 
Mapping Language (RML) community, which proposes a 
“superset” of R2RML to transform any data into RDF, has 
started consolidating their efforts [86]. Although RML is still 
evolving and not yet a standard, tools like RMLWrapper 
(https://rml.io/tools/) and Morph-KGC (https://github.com/
morph-kgc/morph-kgc) add complexity by requiring addi-
tional languages, such as Python. Given that R2RML meets 
our current needs, we chose to rely on this standard. Once 
RML is more stable, we may transition to an RML processor 
like BURP [87].
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Future directions
By integrating advanced AI-based tools and methodologies 
within TOXIN KG, we aim further to enhance data accuracy, 
completeness, and reliability, thereby supporting more robust 
and comprehensive toxicological assessments. At the start of 
the project in 2020, advanced AI tools like ChatGPT were yet 
to be available to replace manual text processes for data gath-
ering, structuring, and input. As the field has rapidly evolved, 
several AI-based tools and methods are proposed for future 
implementation to enhance TOXIN KG’s capabilities. These 
include developing a pipeline using NLP and LLMs to auto-
mate data gathering from the EU health page, improving data 
capture efficiency and consistency, and addressing the manual 
effort needed due to the lack of harmonized naming systems 
[88].

The TOXIN Report Analyzer (under development)
employs ChatGPT-4 to extract text from SCCS opinions and 
convert them into easy-to-understand tables. This process 
relies on incorporating precise prompts (specific instructions 
given to the AI model), guided by domain experts and guide-
line profiling, to ensure data accuracy and completeness, 
aligning with OECD guidelines. While AI aids in streamlin-
ing the process, domain experts will continue to review and 
correct the AI-generated tables to ensure accuracy [15, 89].

Automated consistency checks will also be implemented 
to improve data accuracy and completeness. AI tools will 
perform these checks at both the data extraction and input 
stages. Machine learning models will recognize patterns, val-
idate data entries, and improve through expert corrections. 
Additionally, ontology-based tools will ensure semantic con-
sistency by verifying that the data adhere to the structured 
format defined by the TXPO [90, 91].

In addition, a continuous feedback loop will be imple-
mented with regular usability studies involving domain 
experts to refine TOXIN KG. These studies will assess nav-
igation, ease of use, data accuracy, and efficiency across all 
interfaces. Experts will perform specific tasks using the dif-
ferent interfaces, with metrics like completion times, error 
rates, and user satisfaction measured. Postinteraction surveys 
and questionnaires will collect quantitative and qualitative 
feedback. Regular user feedback sessions will include struc-
tured interviews to discuss experiences, while analytics and 
user behavior tracking will identify patterns and difficulties, 
allowing continuous improvements to interface-based user 
feedback [92, 93].

Conclusion
In conclusion, TOXIN KG is a multifaceted tool and gate-
way designed for ease of use. It offers access to exist-
ing cosmic historical animal safety data. It captures and 
annexes the wealth of knowledge embedded in SCCS opin-
ions within a machine-processable graph format, obviating 
the need for intermediaries like gateways. This approach 
enables efficient in silico predictions and establishes a piv-
otal resource for exploring cosmetics-induced liver toxicity. 
Specifically, TOXIN KG helps identify and map biological 
pathways while elucidating the genes affected by toxic pro-
cesses, laying the foundation for a deeper understanding of the 
intricacies involved. This knowledge is instrumental in guiding 

subsequent targeted in vitro studies utilizing human-based 
NAMs, thus contributing to generating novel mechanistic 
data.

Acknowledgement
The authors would like to thank Morvarid Haji Mirarab for 
providing Figs 3 and 9.

Conflict of interest  None declared.

Funding
This work was financially supported by Onderzoeksraad 
Vrije Universiteit Brussel and Research Chair Mireille Aerens 
for the development of Alternatives to Animal Testing. The 
research of Audrey Sanctorum has been funded by an FWO 
Postdoc Fellowship (1276721N) of the Research Foundation 
Flanders.

Data Availability
The data underlying this article are available in the article and 
in its online supplementary material.

References
1. SCCS/1647/22. SCCS Notes of Guidance for the Testing of Cos-

metic Ingredients and their Safety Evaluation 12th revision, 2023.
2. Silva RJ, Tamburic S. A state-of-the-art review on the alternatives 

to animal testing for the safety assessment of cosmetics. Cosmetics
2022;9:90. https://doi.org/10.3390/cosmetics9050090

3. OECD. Overview of concepts and available guidance related 
to Integrated Approaches to Testing and Assessment (IATA). 
Environment, Health and Safety, Environment Directorate,
OECD (329). 2020.

4. Cronin MTD, Bajot F, Enoch SJ et al. The in chemico-in silico inter-
face: challenges for integrating experimental and computational 
chemistry to identify toxicity. Altern Lab Anim 2009;37:513–21. 
https://doi.org/10.1177/026119290903700508

5. NNLM. Data Curation. 2022. https://www.nnlm.gov/guides/data-
glossary/data-curation (24 October 2023, date last accessed).

6. Gustafson E, Debruyne C, De Troyer O et al. Screening of repeated 
dose toxicity data in safety evaluation reports of cosmetic ingre-
dients issued by the Scientific Committee on Consumer Safety 
between 2009 and 2019. Arch Toxicol 2020;94:3723–35. https://
doi.org/10.1007/s00204-020-02868-2

7. SCCS/1322/10. SCCS – Opinion on HC Yellow no 13. 2011. 
https://health.ec.europa.eu/scientific-committees/scientific-
committee-consumer-safety-sccs/sccs-opinions_en (13 November 
2024, date last accessed)

8. Microsoft Support. Excel Specifications and Limits. https://
support.microsoft.com/en-us/office/excel-specifications-and-
limits-1672b34d-7043-467e-8e27-269d656771c3 (11 October 
2024, date last accessed)

9. Das S, Cyganiak R, and Sundara S. R2RML: RDB to RDF Map-
ping Language. 2012. https://www.w3.org/TR/r2rml/ (11 October 
2024, date last accessed).

10. Debruyne C, and O’Sullivan D. R2RML-F: towards shar-ing and 
executing domain logic in R2RML mappings. In: LDOW@WWW
1593. Montreal, Canada, 12 April 2016. CEUR-WS.org, 2016. 
https://ceur-ws.org/Vol-1593/article-13.pdf (11 October 2024, 
date last accessed).

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baae121/7989333 by guest on 19 February 2025

https://doi.org/https://doi.org/10.3390/cosmetics9050090
https://doi.org/https://doi.org/10.1177/026119290903700508
https://www.nnlm.gov/guides/data-glossary/data-curation
https://www.nnlm.gov/guides/data-glossary/data-curation
https://doi.org/https://doi.org/10.1007/s00204-020-02868-2
https://doi.org/https://doi.org/10.1007/s00204-020-02868-2
https://health.ec.europa.eu/scientific-committees/scientific-committee-consumer-safety-sccs/sccs-opinions_en
https://health.ec.europa.eu/scientific-committees/scientific-committee-consumer-safety-sccs/sccs-opinions_en
https://support.microsoft.com/en-us/office/excel-specifications-and-limits-1672b34d-7043-467e-8e27-269d656771c3
https://support.microsoft.com/en-us/office/excel-specifications-and-limits-1672b34d-7043-467e-8e27-269d656771c3
https://support.microsoft.com/en-us/office/excel-specifications-and-limits-1672b34d-7043-467e-8e27-269d656771c3
https://www.w3.org/TR/r2rml/
https://ceur-ws.org/Vol-1593/article-13.pdf


20 Sepehri et al.

11. Sanctorum A, Riggio J, Maushagen J et al. End-user engineer-
ing of ontology-based knowledge bases. Behaviour Inf Tech-
nol 2022;41:1811–29. https://doi.org/10.1080/0144929X.2022.
2092032

12. OECD. Test No. 408: Repeated Dose 90-Day Oral Toxicity 
Study in Rodents. 2018 (OECD Guidelines for the Testing of 
Chemicals, Section 4). https://www.oecd-ilibrary.org/environment/
test-no-408-repeated-dose-90-day-oral-toxicity-study-in-rodents_
9789264070707-en (28 September 2024, date last accessed).

13. Shen Y, Li Z, Wang X et al. DataType-aware knowledge 
graph representation learning in hyperbolic space. In: Inter-
national Conference on Information and Knowledge Manage-
ment, Proceedings Online, 1–5 November 2021. pp. 1630–39. 
Gold Coast, Queensland, Australia: ACM Digital Library,
2021.

14. Sanctorum A, Riggio J, Sepehri S et al. A jigsaw-based end-user 
tool for the development of ontology-based knowledge bases. 
In: Fogli D, Tetteroo D, Barricelli BR, Borsci S, Markopoulos 
P and Papadopoulos GA (eds), End-User Development IS-EUD 
Gewerbestrasse 11, Cham, Ch 6330. Lecture Notes in Com-
puter Science. Vol. 12724. Switzerland: Springer, Cham. 2021, pp. 
169–84.

15. Collier ZA, Gruss RJ, and Abrahams AS. How Good Are Large 
Language Models at Product Risk Assessment? Risk Analysis. 
https://onlinelibrary.wiley.com/doi/full/10.1111/risa.14351 (12 
November 2024, date last accessed)

16. Fu X, Wojak A, Neagu D et al. Data governance in predictive 
toxicology: a review. J Cheminform 2011;3:24. https://doi.org/10.
1186/1758-2946-3-24

17. Kumar BS, and Kumar BS. Introductory Chapter: Data Integrity 
and Data Governance. Data Integrity and Data Governance. 
https://www.intechopen.com/chapters/86485 (17 November 
2024, date last accessed).

18. Nikam NR, Patil PR, Vakhariya R et al. Data integrity: an 
overview. Int J Recent Sci Res 2020;11:38762–67.

19. Yamagata Y, Yamada H, Horii I. Current status and future perspec-
tive of computational toxicology in drug safety assessment under 
ontological intellection. J Toxicol Sci 2019;44:721–35. https://doi.
org/10.2131/jts.44.721

20. Staal YCM, Pennings JLA, Hessel EVS et al. Advanced toxico-
logical risk assessment by implementation of ontologies oper-
ationalized in computational models. Appl In Vitro Toxicol
2017;3:325–32. https://doi.org/10.1089/aivt.2017.0019

21. Boyles RR, Thessen AE, Waldrop A et al. Ontology-based data inte-
gration for advancing toxicological knowledge. Curr Opin Toxicol
2019;16:67–74. https://doi.org/10.1016/j.cotox.2019.05.005

22. Hardy B, Apic G, Carthew P et al. Toxicology ontology perspec-
tives. Altex 2012;29:139–56.

23. Bretones Cassoli B. Knowledge Graphs for Data And Knowl-
edge Management in Cyber-Physical Production Systems. 2022 
https://www.repo.uni-hannover.de/handle/123456789/12278 (17 
November 2024, date last accessed).

24. Mungall CJ, Torniai C, Gkoutos GV et al. Uberon, an inte-
grative multi-species anatomy ontology. Genome Biol 2012;
13:1–20.

25. Hastings J, De Matos P, Dekker A et al. The ChEBI refer-
ence database and ontology for biologically relevant chemistry: 
enhancements for 2013. Nucleic Acids Res 2012;41:D456. https://
doi.org/10.1093/nar/gks1146

26. Ashburner M, Ball CA, Blake JA et al. Gene ontology: tool for the 
unification of biology. Nature Genet 2000;25:25–29. https://doi.
org/10.1038/75556

27. Consortium TGO, Aleksander SA, Balhoff J et al. The gene ontol-
ogy knowledgebase in 2023. Genetics 2023;224:iyad031 https://
doi.org/10.1093/genetics/iyad031.

28. Yamamoto S, Sakai N, Nakamura H et al. Inoh: Ontology-
Based Highly Structured Database of Signal Transduction

Pathways. Database (Oxford). 2011. /pmc/articles/PMC3225078/ 
(29 September 2024, date last accessed)

29. He Yongqun, Liu Yue, and Zhao Bin. OGG: A Biological Ontology 
for Representing Genes and Genomes in Specific Organ-isms Inter-
national Conference on Biomedical Ontology (ICBO). In:  CEUR 
Workshop Proceedings 1327, 8–9 October 2014, 13–20. Houston, 
Texas, USA, 2014.

30. Schriml LM, Munro JB, Schor M et al. The human disease ontology 
2022 update. Nucleic Acids Res 2022;50:D1255. https://doi.org/
10.1093/nar/gkab1063

31. Yamagata Y, Yamada H. Ontological approach to the knowledge 
systematization of a toxic process and toxic course representation 
framework for early drug risk management. Sci Rep 2020;10:1–14. 
https://doi.org/10.1038/s41598-020-71370-7

32. Bateman A, Martin MJ, Orchard S et al. UniProt: the universal pro-
tein knowledgebase in 2023. Nucleic Acids Res 2023;51:D523–31.

33. Kanehisa M, Furumichi M, Sato Y et al. KEGG for taxonomy-
based analysis of pathways and genomes. Nucleic Acids Res
2023;51:D587–92. https://doi.org/10.1093/nar/gkac963

34. Kanehisa M. Toward understanding the origin and evolution of 
cellular organisms. Protein Sci 2019;28:1947–51. https://doi.org/
10.1002/pro.3715

35. Kanehisa M, Goto S, Kawashima S et al. The KEGG databases at 
GenomeNet. Nucleic Acids Res 2002;30:42–46. https://doi.org/10.
1093/nar/30.1.42

36. Kanehisa M, Goto S. Kyoto encyclopedia of genes and genomes. 
Nucleic Acids Res 2000;28:27–30. https://doi.org/10.1093/nar/28.
1.27

37. Gillespie M, Jassal B, Stephan R et al. The reactome path-
way knowledgebase 2022. Nucleic Acids Res 2022;50:D687–92. 
https://doi.org/10.1093/nar/gkab1028

38. Debruyne C, Munnelly G, Kilgallon L et al. Creating a knowl-
edge graph for Ireland’s lost history: knowledge engineering 
and curation in the beyond 2022 Project. J Comput Cult Herit
2022;15:1 - 25/25. https://doi.org/10.1145/3474829.

39. Sanctorum A, Maushagen J, Sepehri S et al. Knowledge Manage-
ment in the Context of Toxicity Testing. From Theory of Knowl-
edge Management to Practice. 2023. https://www.intechopen.com/
chapters/1147484 (3 September 2024, date last accessed)

40. Weininger D. SMILES, a chemical language and information 
system: 1: introduction to methodology and encoding rules. J 
Chem Inf Comput Sci 1988;28:31–36. https://doi.org/10.1021/
ci00057a005

41. Born J, Markert G, Janakarajan N et al. Chemical representa-
tion learning for toxicity prediction. Digit Discov 2023;2:674–91. 
https://doi.org/10.1039/D2DD00099G

42. O’Boyle NM. Towards a Universal SMILES representation – a 
standard method to generate canonical SMILES based on the 
InChI. J Cheminform 2012;4:1–14.

43. Klimisch H-J, Andreae M, Tillmann U. A systematic approach for 
evaluating the quality of experimental toxicological and ecotoxi-
cological data. Regul Toxicol Pharmacol 1997;25:1–5. https://doi.
org/10.1006/rtph.1996.1076

44. Schneider K, Schwarz M, Burkholder I et al. “ToxRTool”, a new 
tool to assess the reliability of toxicological data. Toxicol Lett
2009;189:138–44. https://doi.org/10.1016/j.toxlet.2009.05.013

45. Segal D, Makris SL, Kraft AD et al. Evaluation of the ToxRTool’s 
ability to rate the reliability of toxicological data for human health 
hazard assessments. Regul Toxicol Pharmacol 2015;72:94–101. 
https://doi.org/10.1016/j.yrtph.2015.03.005

46. Johnson C, Anger LT, Benigni R et al. Evaluating confidence in 
toxicity assessments based on experimental data and in silico 
predictions. Comput Toxicol 2022;21:100204.

47. Dimitrov SD, Diderich R, Sobanski T et al. QSAR toolbox – 
workflow and major functionalities. SAR QSAR Environ Res
2016;27:203–19. https://doi.org/10.1080/1062936X.2015.
1136680

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baae121/7989333 by guest on 19 February 2025

https://doi.org/https://doi.org/10.1080/0144929X.2022.2092032
https://doi.org/https://doi.org/10.1080/0144929X.2022.2092032
https://www.oecd-ilibrary.org/environment/test-no-408-repeated-dose-90-day-oral-toxicity-study-in-rodents_9789264070707-en
https://www.oecd-ilibrary.org/environment/test-no-408-repeated-dose-90-day-oral-toxicity-study-in-rodents_9789264070707-en
https://www.oecd-ilibrary.org/environment/test-no-408-repeated-dose-90-day-oral-toxicity-study-in-rodents_9789264070707-en
https://onlinelibrary.wiley.com/doi/full/10.1111/risa.14351
https://doi.org/https://doi.org/10.1186/1758-2946-3-24
https://doi.org/https://doi.org/10.1186/1758-2946-3-24
https://www.intechopen.com/chapters/86485
https://doi.org/https://doi.org/10.2131/jts.44.721
https://doi.org/https://doi.org/10.2131/jts.44.721
https://doi.org/https://doi.org/10.1089/aivt.2017.0019
https://doi.org/https://doi.org/10.1016/j.cotox.2019.05.005
https://www.repo.uni-hannover.de/handle/123456789/12278
https://doi.org/https://doi.org/10.1093/nar/gks1146
https://doi.org/https://doi.org/10.1093/nar/gks1146
https://doi.org/https://doi.org/10.1038/75556
https://doi.org/https://doi.org/10.1038/75556
https://doi.org/https://doi.org/10.1093/genetics/iyad031
https://doi.org/https://doi.org/10.1093/genetics/iyad031
https://pmc/articles/PMC3225078/
https://doi.org/https://doi.org/10.1093/nar/gkab1063
https://doi.org/https://doi.org/10.1093/nar/gkab1063
https://doi.org/https://doi.org/10.1038/s41598-020-71370-7
https://doi.org/https://doi.org/10.1093/nar/gkac963
https://doi.org/https://doi.org/10.1002/pro.3715
https://doi.org/https://doi.org/10.1002/pro.3715
https://doi.org/https://doi.org/10.1093/nar/30.1.42
https://doi.org/https://doi.org/10.1093/nar/30.1.42
https://doi.org/https://doi.org/10.1093/nar/28.1.27
https://doi.org/https://doi.org/10.1093/nar/28.1.27
https://doi.org/https://doi.org/10.1093/nar/gkab1028
https://doi.org/https://doi.org/10.1145/3474829
https://www.intechopen.com/chapters/1147484
https://www.intechopen.com/chapters/1147484
https://doi.org/https://doi.org/10.1021/ci00057a005
https://doi.org/https://doi.org/10.1021/ci00057a005
https://doi.org/https://doi.org/10.1039/D2DD00099G
https://doi.org/https://doi.org/10.1006/rtph.1996.1076
https://doi.org/https://doi.org/10.1006/rtph.1996.1076
https://doi.org/https://doi.org/10.1016/j.toxlet.2009.05.013
https://doi.org/https://doi.org/10.1016/j.yrtph.2015.03.005
https://doi.org/https://doi.org/10.1080/1062936X.2015.1136680
https://doi.org/https://doi.org/10.1080/1062936X.2015.1136680


The TOXIN knowledge graph 21

48. Toropov AA, Toropova AP. QSPR/QSAR: state-of-art, weird-
ness, the future. Molecules 2020;25:1292. https://doi.org/10.3390/
molecules25061292

49. OECD, ECHA, Laboratory of Mathematical Chemistry. Profil-
ers ⬣ QSAR Toolbox. 2024. https://qsartoolbox.org/resources/
profilers/ (6 September 2024, date last accessed).

50. Safety Assessment Division CMCNI of T and E. Hazard Evaluation 
Support System Integrated Platform (HESS). 2023. https://www.
nite.go.jp/en/chem/qsar/hess-e.html (6 September 2024, date last 
accessed).

51. More SJ, Bampidis V, Benford D et al. Guidance on the use of 
the threshold of toxicological concern approach in food safety 
assessment. EFSA J 2019;17:e05708.

52. Cramer GM, Ford RA, Hall RL. Estimation of toxic hazard—a 
decision tree approach. Food Cosmet Toxicol 1976;16:255–76. 
https://doi.org/10.1016/S0015-6264(76)80522-6

53. Munro IC, Ford RA, Kennepohl E et al. Thresholds of toxicological 
concern based on structure-activity relationships. Drug Metab Rev
1996;28:209–17. https://doi.org/10.3109/03602539608994000

54. OECD, ECHA, Laboratory of Mathematical Chemistry. Applica-
tion manual of OECD QSAR Toolbox v.4 (F1 help). 2017.

55. Aljallal MA, Price NR, Chaudhry Q. Assessment of performance 
of the profilers provided in the OECD QSAR toolbox for cate-
gory formation of chemicals [Internet], nature portfolio. Sci Rep
2024;14:18330. https://doi.org/10.1038/s41598-024-69157-1

56. Sakuratani Y, Zhang HQ, Nishikawa S et al. Hazard Eval-
uation Support System (HESS) for predicting repeated dose 
toxicity using toxicological categories. SAR QSAR Environ 
Res 2013;24:351–63. https://doi.org/10.1080/1062936X.2013.
773375

57. Vinken M, Pauwels M, Ates G et al. Screening of repeated dose 
toxicity data present in SCC(NF)P/SCCS safety evaluations of cos-
metic ingredients. Arch Toxicol 2012;86:405–12. https://doi.org/
10.1007/s00204-011-0769-z

58. Pognan F, Beilmann M, Boonen HCM et al. The evolving role of 
investigative toxicology in the pharmaceutical industry. Nat Rev 
Drug Discov 2023;22:317–35. https://doi.org/10.1038/s41573-
022-00633-x

59. Van Norman GA. Limitations of animal studies for predict-
ing toxicity in clinical trials: is it time to rethink our current 
approach? JACC Basic Transl Sci 2019;4:845. https://doi.org/10.
1016/j.jacbts.2019.10.008

60. Akhtar A. The flaws and human harms of animal experimenta-
tion. Cam Q Healthc Ethics 2015;24:407. https://doi.org/10.1017/
S0963180115000079

61. Timón-Reina S, Rincón M, and Martínez-Tomás R. An overview of 
graph databases and their applications in the biomedical domain. 
Database 2021;2021:26.

62. Mouromtsev D, Pavlov D, Emelyanov Y et al. The simple web-
based tool for visualization and sharing of semantic data and 
ontologies. International Workshop on the Semantic Web.

63. Komninos A. Interaction Design Foundation. An Introduction 
to Usability | IxDF. 2020. https://www.interaction-design.org/
literature/article/an-introduction-to-usability (21 September 2024, 
date last accessed).

64. Quesenbery W. What does usability mean: looking beyond ‘Ease 
of Use’ – Whitney interactive design. In: Proceedings of the 
48th Annual Conference, Society for Technical Communication
Chicago 13-16 May 2001, 2001.

65. Boyce M, Favela KA, Bonzo JA et al. Identifying xenobiotic 
metabolites with in silico prediction tools and LCMS suspect 
screening analysis. Front Toxicol 2023;5:1051483. https://doi.org/
10.3389/ftox.2023.1051483

66. Boyce M, Meyer B, Grulke C et al. Comparing the performance 
and coverage of selected in silico (liver) metabolism tools relative 
to reported studies in the literature to inform analogue selection 
in read-across: a case study. Comput Toxicol 2022;21:100208. 
https://doi.org/10.1016/j.comtox.2021.100208

67. Euzenat J, and Shvaiko P. Matching strategies. In: Ontology Match-
ing. Berlin, Heidelberg: Springer, 117–150.

68. Probst D, Reymond JL. SmilesDrawer: parsing and drawing 
SMILES-encoded molecular structures using client-side JavaScript. 
J Chem Inf Model 2018;58:1–7. https://doi.org/10.1021/acs.jcim.
7b00425

69. Lin TS, Coley CW, Mochigase H et al. BigSMILES: a structurally-
based line notation for describing macromolecules. ACS Cent Sci
2019;5:1523–31. https://doi.org/10.1021/acscentsci.9b00476

70. Lin TS, Rebello NJ, Lee GH et al. Canonicalizing BigSMILES 
for polymers with defined backbones. ACS Polymers Au
2022;2:486–500. https://doi.org/10.1021/acspolymersau.2c00009

71. Ryan C, Grant R, Carragáin E et al. Linked data authority records 
for Irish place names. Int J Digit Libr 2015;15:73–85. https://doi.
org/10.1007/s00799-014-0129-8

72. Yang S, Teng M, Dong X et al. LLM-based SPARQL generation 
with selected schema from large scale knowledge base: 304–16.

73. Romano JD, Hao Y, Moore JH et al. Automating predictive tox-
icology using ComptoxAI. Chem Res Toxicol 2022;35:1370–82. 
https://doi.org/10.1021/acs.chemrestox.2c00074

74. Walker VR, Schmitt CP, Wolfe MS et al. Evaluation of a semi-
automated data extraction tool for public health literature-based 
reviews: Dextr. Environ Int 2022;159:107025. https://doi.org/10.
1016/j.envint.2021.107025

75. Xu Y, Liu X, Cao X et al. Artificial intelligence: a power-
ful paradigm for scientific research. Innovation 2021;2:100179. 
https://doi.org/10.1016/j.xinn.2021.100179

76. Basile AO, Yahi A, Tatonetti NP. Artificial intelligence for drug toxi-
city and safety. Trends Pharmacol Sci 2019;40:624. https://doi.org/
10.1016/j.tips.2019.07.005

77. Grüninger M, and Fox MS. The role of competency ques-
tions in enterprise engineering. In: Asbjørn Rolstadås (ed.), 
Benchmarking — Theory and Practice. IFIP Advances in Informa-
tion and Communication Technology ((IFIPAICT)). Boston, MA: 
Springer, 1995, 22–31. https://doi.org/10.1007/978-0-387-3484
7-6_3

78. Vrande ̌ci´vrande ̌ci´c D. Ontology evaluation. In: Staab Steffen, 
Studer Rudi (eds), Handbook on Ontologies International Hand-
books on Information Systems. Springer, 2009, 293–313.

79. Tamura YO, Sugama J, Iwasaki S et al. Selective acetyl-CoA 
carboxylase 1 inhibitor improves hepatic steatosis and hepatic 
fibrosis in a pre-clinical NASH model. J Pharmacol Exp Ther
2021;379:280–89. https://doi.org/10.1124/jpet.121.000786

80. Gnoni A, Di Chiara Stanca B, Giannotti L et al. Quercetin reduces 
lipid accumulation in a cell model of NAFLD by inhibiting de 
novo fatty acid synthesis through the acetyl-CoA carboxylase 
1/AMPK/PP2A axis. Int J Mol Sci 2022;23:1044. https://doi.org/
10.3390/ijms23031044

81. Prins GH, Luangmonkong T, Oosterhuis D et al. A pathophysio-
logical model of non-alcoholic fatty liver disease using precision-
cut liver slices. Nutrients 2019;11:507. https://doi.org/10.3390/
nu11030507

82. Wohlleben W, Mehling A, Landsiedel R. Lessons learned from the 
grouping of chemicals to assess risks to human health. Angew 
Chem Int Ed 2023;62:e202210651. https://doi.org/10.1002/anie.
202210651

83. Knudsen TB. Ontologies as the Basis for in Silico Recon-
struction of Tissue Dynamics. 2023. https://epa.figshare.com/
articles/presentation/Ontologies_as_the_basis_for_in_silico_
reconstruction_of_tissue_dynamics/24201369?file=42472152 (23 
September 2024, date last accessed).

84. Pawar G, Madden JC, Ebbrell D et al. In silico toxicology data 
resources to support read-across and (Q)SAR. Front Pharmacol
2019;10:449547.

85. Cronin MTD, Belfield SJ, Briggs KA et al. Making in silico 
predictive models for toxicology FAIR. Regul Toxicol Phar-
macol 2023;140:105385. https://doi.org/10.1016/j.yrtph.2023.
105385

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baae121/7989333 by guest on 19 February 2025

https://doi.org/https://doi.org/10.3390/molecules25061292
https://doi.org/https://doi.org/10.3390/molecules25061292
https://qsartoolbox.org/resources/profilers/
https://qsartoolbox.org/resources/profilers/
https://www.nite.go.jp/en/chem/qsar/hess-e.html
https://www.nite.go.jp/en/chem/qsar/hess-e.html
https://doi.org/https://doi.org/10.1016/S0015-6264(76)80522-6
https://doi.org/https://doi.org/10.3109/03602539608994000
https://doi.org/https://doi.org/10.1038/s41598-024-69157-1
https://doi.org/https://doi.org/10.1080/1062936X.2013.773375
https://doi.org/https://doi.org/10.1080/1062936X.2013.773375
https://doi.org/https://doi.org/10.1007/s00204-011-0769-z
https://doi.org/https://doi.org/10.1007/s00204-011-0769-z
https://doi.org/https://doi.org/10.1038/s41573-022-00633-x
https://doi.org/https://doi.org/10.1038/s41573-022-00633-x
https://doi.org/https://doi.org/10.1016/j.jacbts.2019.10.008
https://doi.org/https://doi.org/10.1016/j.jacbts.2019.10.008
https://doi.org/https://doi.org/10.1017/S0963180115000079
https://doi.org/https://doi.org/10.1017/S0963180115000079
https://www.interaction-design.org/literature/article/an-introduction-to-usability
https://www.interaction-design.org/literature/article/an-introduction-to-usability
https://doi.org/https://doi.org/10.3389/ftox.2023.1051483
https://doi.org/https://doi.org/10.3389/ftox.2023.1051483
https://doi.org/https://doi.org/10.1016/j.comtox.2021.100208
https://doi.org/https://doi.org/10.1021/acs.jcim.7b00425
https://doi.org/https://doi.org/10.1021/acs.jcim.7b00425
https://doi.org/https://doi.org/10.1021/acscentsci.9b00476
https://doi.org/https://doi.org/10.1021/acspolymersau.2c00009
https://doi.org/https://doi.org/10.1007/s00799-014-0129-8
https://doi.org/https://doi.org/10.1007/s00799-014-0129-8
https://doi.org/https://doi.org/10.1021/acs.chemrestox.2c00074
https://doi.org/https://doi.org/10.1016/j.envint.2021.107025
https://doi.org/https://doi.org/10.1016/j.envint.2021.107025
https://doi.org/https://doi.org/10.1016/j.xinn.2021.100179
https://doi.org/https://doi.org/10.1016/j.tips.2019.07.005
https://doi.org/https://doi.org/10.1016/j.tips.2019.07.005
https://doi.org/https://doi.org/10.1007/978-0-387-34847-6_3
https://doi.org/https://doi.org/10.1007/978-0-387-34847-6_3
https://doi.org/https://doi.org/10.1124/jpet.121.000786
https://doi.org/https://doi.org/10.3390/ijms23031044
https://doi.org/https://doi.org/10.3390/ijms23031044
https://doi.org/https://doi.org/10.3390/nu11030507
https://doi.org/https://doi.org/10.3390/nu11030507
https://doi.org/https://doi.org/10.1002/anie.202210651
https://doi.org/https://doi.org/10.1002/anie.202210651
https://epa.figshare.com/articles/presentation/Ontologies_as_the_basis_for_in_silico_reconstruction_of_tissue_dynamics/24201369?file=42472152
https://epa.figshare.com/articles/presentation/Ontologies_as_the_basis_for_in_silico_reconstruction_of_tissue_dynamics/24201369?file=42472152
https://epa.figshare.com/articles/presentation/Ontologies_as_the_basis_for_in_silico_reconstruction_of_tissue_dynamics/24201369?file=42472152
https://doi.org/https://doi.org/10.1016/j.yrtph.2023.105385
https://doi.org/https://doi.org/10.1016/j.yrtph.2023.105385


22 Sepehri et al.

86. Iglesias-Molina A, Van Assche D, Arenas-Guerrero J et al. 
The RML ontology: a community-driven modular redesign 
after a decade of experience in mapping heterogeneous data 
to RDF. In: ISWC 2023, 22th International Semantic Web 
Confernece, 14266 Athens Greece, Greece Nov 2023, LNCS,
2023.

87. Debruyne C, and Van Assche D. The Conformance of an RML 
Processor Built from Scratch to Validate Specifications and Test 
Cases 5th International Workshop on Knowledge Graph Con-
struction co-located with 21th Extended Semantic Web Confer-
ence (ESWC 2024) 3718 of CEUR. In: Workshop Proceedings 
Heraklion, Greece, May 26-27 2024, 2024.

88. Devlin Jacob, Ming-Wei Chang, Kenton Lee and Kristina 
Toutanova. BERT: Pre-training of Deep Bidirectional Transform-
ers for Language Understanding. In: North American Chapter of 
the Association for Computational Linguistics (2019), Proceedings 
of NAACL-HLT 2019, Minneapolis, Minnesota, June 2 - June 7, 
2019, pp. 4171–4186. 2019.

89. Brown TB, Mann B, Ryder N et al. Language models are few-shot 
learners. 2020. https://arxiv.org/abs/2005.14165 (15 November 
2024, date last accessed).

90. Scalia G. Machine learning for scientific data analy-sis. In: Piroddi 
L (ed.), Special Topics in Information Technology, SpringerBriefs 
in Applied Sciences and Technology (BRIEF-SPOLIMI). Cham, 
Switzerland: Springer, 2022, 115–26.

91. Sendak M, Sirdeshmukh G, Ochoa T et al. Development and val-
idation of ML-DQA-a machine learning data quality assurance 
framework for healthcare ML-DQA for healthcare ML-DQA for 
healthcare. Proc Mach Learn Res 2022;182:1–19.

92. Hornbæk K. Current practice in measuring usability: chal-
lenges to usability studies and research. Int J Hum Com-
put Stud 2006;64:79–102. https://doi.org/10.1016/j.ijhcs.2005.
06.002

93. Bastien JMC. Usability testing: a review of some methodolog-
ical and technical aspects of the method. Int J Med Inform
2010;79:e18–23.

Database, 2025, 00, baae121, DOI: https://doi.org/10.1093/database/baae121, Original Article
© The Author(s) 2025. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), 
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baae121/7989333 by guest on 19 February 2025

https://arxiv.org/abs/2005.14165
https://doi.org/https://doi.org/10.1016/j.ijhcs.2005.06.002
https://doi.org/https://doi.org/10.1016/j.ijhcs.2005.06.002
https://creativecommons.org/licenses/by/4.0/

	The TOXIN knowledge graph: supporting animal-free risk assessment of cosmetics
	 Introduction
	 Methodology
	 Phase I—data curation and transformation to a machine-processable format
	 Data gathering
	 Data structuring and input
	 Data structuring
	 Data input


	 Data governance
	 Data accuracy
	 Data completeness
	 Data integrity
	 Data availability
	 Data authorization

	 Phase II—data exploitation
	 Leveraging the functionality of TOXIN KG by using Semantic Web technologies
	 Addition of SMILES to standardize chemical identification
	 Automatic Klimisch score attribution to evaluate the reliability of studies
	 Integration of OECD QSAR Toolbox profilers
	 Hazard Evaluation Support System
	 Extended Cramer toxic hazard classification
	 Documented and simulated metabolism profiler

	 Extended liver-specific filters for improved identification of hepatotoxicants
	 Enhancing data visualization and exploration via Ontodia



	 Results and discussion
	 Retrieving annexed cosmetic compound data with TOXIN KG
	 Automatic attribution of Klimisch scores to acute and repeated-dose toxicity studies
	 TOXIN KG identifies potential liver toxicants
	 TOXIN KG links observations to toxicological mechanisms through ontologies

	 Related work
	 Future directions
	 Conclusion
	Acknowledgement
	Conflict of interest
	Funding
	 Data Availability
	References


