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Abstract. The Relational to RDF Mapping Language (R2RML) be-
came a W3C Recommendation a decade ago. Despite its wide adoption,
its potential applicability beyond relational databases was swiftly ex-
plored. As a result, several extensions and new mapping languages were
proposed. They tackled not only more heterogeneous data sources, but
also a wider range of limitations that surfaced as R2RML was applied
in real-world use cases. Over the years, one of these languages, the RDF
Mapping Language (RML), has gathered a large community of contrib-
utors, users, and compliant tools. However, so far, there has been no
well-defined set of features for the mapping language, nor was there a
consensus-marking ontology. Consequently, it has become challenging for
non-experts to fully comprehend and utilize the full range of the lan-
guage’s capabilities. After three years of work, the W3C Community
Group on Knowledge Graph Construction proposes a new specification
for RML. This paper presents the new modular RML ontology and the
accompanying SHACL shapes that complement the specification. We
discuss the motivations and challenges that emerged when extending
R2RML, the methodology we followed to design the new ontology while
ensuring its backward compatibility with R2RML, and the novel fea-
tures which increase its expressiveness. The new ontology consolidates
the potential of RML, empowers practitioners to define mapping rules for
constructing RDF graphs that were previously unattainable, and allows
developers to implement systems in adherence with [R2]RML.
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1 Introduction

In 2012, the Relational to RDF Mapping Language (R2RML) [43] was released
as a W3C Recommendation. The R2RML ontology [8] provides a vocabulary
to describe how an RDF graph should be generated from data in a relational
databases (RDB). Although R2RML gained wide adoption, its potential appli-
cability beyond RDBs quickly appeared as a salient need [53,67,80,91].

Targeting the generation of RDF from heterogeneous data sources other than
RDBs, several extensions [91,53,80] preserving R2RML’s core structure were pro-
posed. As R2RML and the growing number of extensions were applied in a wider
range of use cases, more limitations became evident [31,80]. Consequently, these
languages were further extended with different features, e.g., the description of
input data sources or output RDF (sub)graphs [80,99], data transformations
[46,51,70,73], support for RDF-star [52,94], etc. Over the years, the RDF Map-
ping Language (RML) has gathered a large community of contributors and users,
and a plethora of systems [32,98] and benchmarks [37,39,63].

Until recently, there was no well-defined, agreed-upon set of features for the
RML mapping language, nor was there a consensus-marking ontology covering
the whole set of features. Consequently, it has become challenging for non-experts
to fully comprehend this landscape and utilize all capabilities without investing
a substantial research effort. Therefore, the W3C Community Group on Knowl-
edge Graph Construction [3], with more than 160 members, has convened every
two weeks to review the RML specification over the past three years.

In this paper, we present the new modular RML ontology and the accom-
panying SHACL shapes [65] that complement the specification. We discuss the
motivations and challenges that emerged by extending R2RML, the methodology
we followed to design the new ontology while ensuring its backward compatibility
with R2RML, and the novel features which increase its expressiveness. The new
RML ontology and specification is the result of an attempt to (i) address multiple
use cases from the community [36] (ii) streamline and integrate various features
proposed to support these use cases, and (iii) adopt agreed-upon design practices
that make it possible to come up with a coherent, integrated whole consisting
of a core ontology [22] and multiple feature-specific modules [20,23,24,26]. The
presented ontology consolidates the potential of RML enabling the definition of
mapping rules for constructing RDF graphs that were previously unattainable,
and the development of systems in adherence with both R2RML and RML.

This paper is organized as follows: In Section 2, we present the relevant con-
cepts of R2RML and RML. In Section 3, we outline the motivations that drive
this work and the challenges we tackle. In Section 4, we describe the methodology
employed to redesign the RML ontology while maintaining backward compat-
ibility, and in Section 5 the modules introduced with the various features. In
Section 6, we present the early adoption and potential impact, followed by re-
lated work in Section 7. We conclude the paper with a summary of the presented
contributions and future steps in Section 8.
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2 Background: R2RML

R2RML mapping rules (Listing 2) are grouped within rr:TriplesMap (line 1),
which contain one rr:LogicalTable, one rr:SubjectMap and zero to multiple
rr:PredicateObjectMap. The rr:LogicalTable (lines 2-3) describes the input
RDB, while rr:SubjectMap (lines 4-5) specifies how the subjects of the triples
are created. A rr:PredicateObjectMap (lines 6-9) generates the predicate-
object pairs with one or more rr:PredicateMap (line 7) and one or more
rr:ObjectMap (lines 8-9). Zero or more rr:GraphMap, which indicate how to gen-
erate named graphs, can be assigned to both rr:SubjectMap and rr:Predicate-
ObjectMap. It is also possible to join rr:LogicalTables replacing rr:ObjectMap
by rr:RefObjectMap, which uses the subject of another Triples Map indicated
in rr:parentTriplesMap as the object of the triple. This join may have a con-
dition to be performed, which is indicated using rr:joinCondition, rr:child,
and rr:parent. Subject Map, Predicate Map, Object Map, and Graph Map are
subclasses of rr:TermMap, which define how to generate RDF terms. Term Maps
can be (i) constant-valued, i.e., always generating the same RDF term (line 7);
(ii) column-valued, i.e., the RDF terms are directly obtained from cells of a
column in the RDB (line 9); or (iii) template-valued, i.e., the RDF terms are
composed from the data in columns and constant strings (line 5).

1 PERSON , MARK , DATE

2 Duplantis , 6.22, 02 -25 -2023

3 Guttormsen , 6.00, 03 -10 -2023

4 Vloon , 5.91, 02 -25 -2023

Listing 1: ATHLETES table.

1<#MarksTM > a rr:TriplesMap;

2rr:logicalTable [

3rr:tableName "ATHLETES" ];

4rr:subjectMap [

5rr:template ":{NAME}" ];

6rr:predicateObjectMap [

7rr:predicate :mark;

8rr:objectMap [

9rr:column "MARK" ] ] .

Listing 2: R2RML mapping rules.

According to the R2RML specification, an R2RML processor is a system
that, given a set of R2RML mapping rules and an input RDB, can construct
RDF graphs. Therefore, an R2RML processor should have an SQL connection
to the input RDB where the tables reside and a base IRI used to resolve the
relative IRIs produced by the R2RML mapping rules.

3 Motivation and Challenges

In this section, we discuss the limitations of generalizing R2RML to construct
RDF graphs from heterogeneous data sources and their impact on the ontol-
ogy. We also consider the required extensions for the ontology to construct RDF
graphs that were not possible before, e.g., RDF collections and containers or
RDF-star [60]. Based on these limitations, we group the challenges in the follow-
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ing high-level categories: data input and RDF output, schema and data trans-
formations, collections and containers, and RDF-star.

Data Input & RDF Output. In R2RML, the desired RDF graph is con-
structed from tables residing in only one RDB. R2RML recommends to hard-
code the connection to the RDB in the R2RML processor, hence, rules in a
mapping document cannot refer to multiple input RDBs.

To date, a wide range of data formats and structures is considered beyond
RDBs, such as CSV, XML, or JSON. These sources may be available locally or
via web APIs, statically, or streaming. Thus, a flexible approach for constructing
RDF graphs from a combination of these diverse inputs is desired [98]. The
R2RML ontology needs to be extended to also describe what the data source
is for each set of mapping rules, e.g., a NoSQL DB or a Web API, and what
the data format is, e.g., CSV, JSON or XML. In addition, a per row iteration
pattern is assumed for RDBs, but this may vary for other data formats.

RML [53] proposed how to describe heterogeneous data assuming originally
that these data appear in local files and a literal value specifies the path to
the local file. In parallel, xR2RML [80] proposed how to extend R2RML for the
document-oriented MongoDB. A more concrete description of the data sources
and their access, e.g., RDBs, files, Web APIs, etc. was later proposed [54], re-
lying on well-known vocabularies to describe the data sources, e.g., DCAT [78],
VOID [28], or SPARQL-SD [102] and further extended [99] to also describe the
output RDF (sub)graphs. The description of NULL values [97], predetermined in
RDBs but not in other data sources, has not been addressed yet.

Schema & Data Transformations. Integrating heterogeneous data goes be-
yond schema-level transformations, as it usually involves additional data-level
transformations [71]. The R2RML ontology describes the schema transforma-
tions, i.e., the correspondences between the ontology and the data schema. It
delegates data transformations and joins to the storage layer, by using operators
in SQL queries. However, not all data formats can leverage similar operators, e.g.,
JSON does not have a formal specification to describe its data transformation,
nor do all formats’ operators cover the same data transformations, e.g., XPath
offers a different set of operators compared to SQL. Moreover, there are cases
in which such pre-processing is not possible, e.g., for streaming data. Thus, the
R2RML ontology needs to be extended to describe such data transformations.

RML+FnO [45], R2RML-F [51], its successor FunUL [70] or D-REPR [101]
are examples of the proposals providing support to data operations. However,
only RML+FnO describes the transformation functions declaratively. RML+FnO
has been well adopted in the community by being included in a number of
RML-compliant engines [90,62,63,30] and RML+FnO-specific translation en-
gines [89,69,68]. Nevertheless, a more precise definition to address ambiguities
and a simplification of introduced (complex) constructs is needed.

Collections & Containers. RDF containers represent open sets of RDF terms,
ordered (rdf:Sequence) or unordered (rdf:Bag, rdf:Alt). Their member terms
are denoted with the rdf: n properties9. RDF collections refer solely to type

9 n is a strictly positive natural number denoting the nth element in that container.
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rdf:List that represents a closed-ordered list of RDF terms. An RDF list is
built using cons-pairs; the first cons-pair of a list refers to an element of that
list with the rdf:first property, and the rdf:rest to the remainder list. All
list elements should be traversed via rdf:rest until the empty list rdf:nil.
Generating RDF collections and containers in R2RML, while possible, results in
a cumbersome and limited task. A container’s properties rdf: n are typically
generated only when a key in the form of a positive integer is yielded from the
data source. By contrast, there is no elegant way to model a list’s cons-pairs
with R2RML if the list is of arbitrary length.

Due to the need for RDF containers and collections in several projects [79],
e.g., both the Metadata Authority Description Schema [15] and W3C’s XHTML
Vocabulary [7] use RDF containers, and both OWL [103] and SHACL [72] use
RDF collections. The xR2RML [80] vocabulary supported the generation of
nested collections and containers within the same data source iteration (e.g.,
within one result among the results returned by the MongoDB database). Its
vocabulary also allowed to change the iterator within a term map and yield
nested collections and containers. By contrast, [50] provided terms for creat-
ing (nested) collections and containers from within an iteration (same row) and
across iterations (across rows) and provided a property for retaining empty col-
lections and containers. The ontology presented in [50] also provided directive
for generating collections or containers whose members may have different term
types, whereas [80]’s vocabulary provided support for one term type. The vo-
cabulary of both approaches did not provide support for named collections and
containers, nor the generation of these as subjects.
RDF-star. RDF-star [59] introduces the quoted triple term, which can be em-
bedded in the subject or object of another triple. Quoted triples may be asserted
(i.e., included in the graph) or not. RDF-star quickly gained popularity, leading
to its adoption by a wide range of systems [4] (e.g., Apache Jena [29], Oxi-
graph [82]) and the formation of the RDF-star Working Group [5].

The inception of RDF-star came after R2RML. Therefore, R2RML only con-
sidered the generation of RDF. The principal challenge is the generation of
quoted and asserted triples, which requires a dedicated extension. RML-star [52]
and R2RML-star [94] are extensions of R2RML to construct RDF-star graphs,
however, the latter comes with limitations and it is not backward compatible
with R2RML. Our ontology includes the RML-star extension to enable the gen-
eration of RDF-star graphs, remaining backward compatible with R2RML.

4 Methodology

We followed the Linked Open Terms (LOT) methodology [85] to redesign the
R2RML ontology, as well as to generalize and modularize it. The methodology
includes four major stages: Requirements Specification, Implementation, Publica-
tion, and Maintenance. We describe below how we follow these steps to develop
the RML ontology and the accompanying SHACL shapes.
Requirements. The requirements to build the RML ontology are mainly de-
rived from three sources: (i) the legacy of the R2RML ontology, (ii) the scientific
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publications which proposed different extensions [98,67], and (iii) the experience
of the community of R2RML and RML to build upon their limitations. The latter
has been gathered from GitHub issues [21] and summarized as mapping chal-
lenges [13]. The complete set of requirements for each module can be accessed
from the ontology portal [25]. These requirements cover both the base needs
and fine-grained features for generating triples with mapping rules. On the one
hand, how to generate subjects, predicate, objects, datatypes, language tags, and
named graphs in both a static (constant) and dynamic (from data sources) man-
ner (RML-Core). On the other hand, the description and access of input data
sources and target output data (RML-IO); RDF Collections and Containers to
create lists from diverse terms (RML-CC); data transformation functions with
their desired output and input parameters (RML-FNML); and quoting Triples
Maps to create asserted and non-asserted RDF-star triples (RML-star).

Implementation. We build the RML ontology based on the requirements in a
modular manner maintaining its backward compatibility with R2RML. We use
a GitHub organization [2] to summarize issues and coordinate asynchronously.

Modularity. The ontology is composed of 5 modules: RML-Core, RML-IO, RML-
CC, RML-FNML, and RML-star. We opt for a modular design to facilitate its
development and maintenance, as each module can be adjusted independently
without affecting the rest. This choice facilitates also its reuse and adoption, as
RML processors can implement specific modules instead of the entire ontology.

Modeling. The modeling of each module is carried out independently. A version is
drafted from the requirements and presented to the community. For this iteration
step, we draft the proposal using ontology diagrams that follow the Chowlk
notation [40], and some use cases with examples. Once it is agreed that the
model is accurate and meets the requirements, the ontology is encoded.

Encoding. We encode the ontology using OWL [34] and its application profile
using SHACL [72]. We deliberately choose to use both to distinguish between
the model, which is described in OWL, and the constraints described as SHACL
shapes. The latter allows to validate the mapping rules’ correctness, depending
on which modules are used. This way, RML processors can indicate which module
they support and verify the mapping rules’ compliance before executing them.

Backward compatibility. The new RML ontology is backwards compatible with
the previous [R2]RML ontologies [17]. We first gather all terms affected from the
RML-Core and RML-IO modules (the other modules only introduce new fea-
tures), and define correspondences between the past and new resources. We iden-
tify two kinds of correspondences: (i) equivalences if a resource is used in the same
manner and its semantics is not significantly changed (e.g., rr:SubjectMap is
equivalent to rml:SubjectMap); and (ii) replacements if a resource is superseded
by another one (e.g., rr:logicalTable is replaced by rml:logicalSource). A
summary of these correspondences is available online [18] as well as a semantic
version to enable automatic translation of mapping rules [17].

Evaluation. We evaluate the ontology with OOPS! [84] and check for inconsis-
tencies using the HermiT reasoner. If all issues are solved, a module is deployed.

Publication. All modules of the RML ontology are managed and deployed in-
dependently from a separate GitHub repository, and published using a W3ID
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Table 1: List of modules of the RML ontology.

Module Description Ontology

RML-Core Schema Transformations http://w3id.org/rml/core

RML-IO Source and Target http://w3id.org/rml/io

RML-CC Collections and Containers http://w3id.org/rml/cc

RML-FNML Data Transformations http://w3id.org/rml/fnml

RML-Star RDF-star http://w3id.org/rml/star

URL under the CC-BY 4.0 license. Each repository contains the ontology file,
its documentation (created using Widoco [56]), requirements, associated SHACL
shapes, and the module’s specification. We follow a unified strategy for the re-
sources’ IRIs. The RML ontology resources use a single prefix IRI to make it
convenient for users to convert their RML mappings to the new RML ontol-
ogy, while clearly stating which module each resource belongs to. We publish
the complete ontology at http://w3id.org/rml, and a summary of all modules
with links to all their related resources (i.e. SHACL shapes, issues, specifications,
etc.) is available at the ontology portal [25] and in Table 1.
Maintenance. To ensure that the ontology is updated with error corrections
and new updates during its life cycle, the GitHub issue tracker of each module
will be used to gather suggestions for additions, modifications, and deletions.
We discuss every major modification asynchronously and in the W3C KG Con-
struction Community Group meetings until they are agreed upon, which triggers
another round of implementation and publication, leading to new releases.

5 Artifacts: Ontologies and Shapes

The RML ontology consists of 5 modules: (i) RML-Core (Section 5.1) describes
the schema transformations, generalizes and refines the R2RML ontology, and
becomes the basis for all other modules; (ii) RML-IO (Section 5.2) describes
the input data and output RDF (sub)graphs; (iii) RML-CC (Section 5.3) de-
scribes how to construct RDF collections and containers; (iv) RML-FNML
(Section 5.4) describes data transformations; and (v) RML-star (Section 5.5)
describes how RDF-star can be generated. Fig. 1 shows an overview of all mod-
ules of the RML ontology and how they are connected. The modules build upon
the RML-Core, which, in turn, builds upon R2RML, but are independent among
one another. We illustrate each module by continuing the example in Section 2.

5.1 RML-Core: Schema Transformations

The RML-Core is the main module of the RML ontology, which generalizes
and refines the R2RML ontology; all the other modules build on top of it.
The RML-Core ontology consists of the same concepts as the R2RML ontol-
ogy (rml:TriplesMap, rml:TermMap, rml:SubjectMap, rml:PredicateMap,

http://w3id.org/rml/core
http://w3id.org/rml/io
http://w3id.org/rml/cc
http://w3id.org/rml/fnml
http://w3id.org/rml/star
http://w3id.org/rml
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rml:predicateObjectMap

rml:graphMap

rml:class rml:SubjectMap

rml:predicateMap

rml:PredicateObjectMap

rml:datatypeMap

rml:languageMap

rml:ObjectMap

rml:PredicateMap

rml:parentTriplesMap

rml:RefObjectMap

rml:parentMap

rml:ChildMap

rml:Join

rml:subjectMap

rml:logicalTarget

rml:GraphMap

rml:graphMap

rdfs:Class

rml:BlankNode

rml:IRI

rml:Literal

rml:termType

rml:logicalSource

rml:ExpressionMap

rml:template: string

rml:reference: string

rml:constant

rml:DatatypeMap

rml:LanguageMap

rml:NonAssertedTriplesMap

rml:quotedTriplesMap

rml:StarMap

rml:joinCondition

rml:returnMap

rml:TermMap

rml:gather
[rdf:list of TermMap]

rml:GatherMap

rml:allowEmptyListAndContainer: xsd:boolean

rdf:Seq

rdf:Alt

rdf:Bag

rdf:List

rml:strategy

rml:Strategy

rml:append

rdf:type

rml:cartessianProduct

rml:gatherAs

rml:ReturnMap

rml:functionMap

rml:input

rml:FunctionExecution

rml:FunctionMap

rml:inputValueMap

rml:parameterMap

rml:Input

rml:ParameterMap

Class

Data Property: datatype Reused Class

subClassOf

Object PropertyIndividual

RML-Core
rdf:type

RML-IO

RML-CC RML-FNML RML-star

rml:subjectMap

rml:TriplesMap

  rml: http://w3id.org/rml/
  rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#
  formats: https://www.w3.org/ns/formats/

rml:ParentMap

rml:ChildMap

rml:objectMap

rml:joinCondition

rml:objectMap

rml:objectMap

rml:source

rml:Source

rml:null: Literal

rml:query: Literal

rml:LogicalSource

rml:iterator: Literal 

rml:referenceFormulation

rml:ReferenceFormulation

rml:Encoding

rml:Compression

rml:serialization

rml:encoding

rml:Target

rml:target

rml:LogicalTarget

rml:compression

formats:Format

rml:CSVrml:XPath

rdf:type

rml:JSONPath

rml:XPathReferenceFormulation

rml:namespace

rml:Namespace

rml:namespacePrefix: string

rml: namespaceURL

rml:functionExecution

rml:AssertedTriplesMap

Fig. 1: RML ontology overview following the Chowlk diagram notation [40].

rml:ObjectMap, rml:PredicateObjectMap, and rml:ReferencingObjectMap),
but redefines them to distinguish them from the R2RML counterparts.

RML-Core refines the R2RML ontology by introducing the concept of Ex-
pression Map rml:ExpressionMap (Listing 4, lines 6 & 9). An Expression Map
is a mapping construct that can be evaluated on a data source to generate val-
ues during the mapping process, the so-called expression values. The R2RML
specification allowed such mapping constructs (template-based, column-based
or constant-based) which can only be applied to subject, predicate, object and
named graph terms. In RML, the Expression Map can be a template expres-
sion specified with the property rml:template, a reference expression specified
with the property rml:reference, or a constant expression, specified with the
property rml:constant. A Term Map becomes a subclass of Expression Map.

With the introduction of the Expression Map, the language, term type, par-
ent and child properties can be specified using any Expression Map, and not only
a predefined type of expression. To achieve this, the following concepts are intro-
duced as subclasses of the Expression Map: (i) rml:LanguageMap, whose short-
cut rml:language can be used if it is a constant-valued Expression Map; (ii)
rml:DatatypeMap, whose shortcut rml:datatype can be used if it is a constant-
valued Expression Map; (iii) rml:ParentMap, whose shortcut rml:parent can be
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used if it is a reference-valued Expression Map; and (iv) rml:ChildMap, whose
shortcut rml:child can be used if it is a constant-valued Expression Map.

Listing 4 shows an example of a basic mapping to create RDF triples from
the JSON file in Listing 3, and whose Logical Source is defined in Listing 5.

1 [ { "NAME": "Duplantis",

2 "RANK": "1",

3 "MARK": "6.22" ,

4 "DATE": 02-25-2023} ,

5 { "NAME": "Guttormsen",

6 "RANK": "2",

7 "MARK": "6.00" ,

8 "DATE": 03-10-2023} ,

9 { "NAME": "Vloon",

10 "RANK": "3",

11 "MARK": "5.91" ,

12 "DATE": 02 -25 -2023} ]

Listing 3: Input JSON file with ranks and their specific date for athletes.

1 <#RankTriplesMap > a rml:TriplesMap;

2 rml:logicalSource <#JSONSource >;

3 rml:subjectMap <#RankSubjectMap >;

4 rml:predicateObjectMap [ a rml:PredicateObjectMap;

5 rml:predicate ex:rank;

6 rml:objectMap [ a rml:ObjectMap , rml:ExpressionMap;

7 rml:reference "$.RANK"; ] ] .

8
9 <#RankSubjectMap > a rml:SubjectMap , rml:ExpressionMap;

10 rml:template "{$.NAME}" .

Listing 4: RML-Core example to generate a subject from a template, a
predicate from a constant, and an object from a reference expression.

5.2 RML-IO: Source and Target

RML-IO complements RML-Core describing the input data sources and how
they can be retrieved. To achieve this, RML-IO defines the Logical Source (with
rml:LogicalSource) for describing the input data, and the Source (rml:Source)
for accessing the data. The Logical Source specifies the grammar to refer to the
input data via the Reference Formulation (rml:ReferenceFormulation). For
instance, in Listing 5, the Reference Formulation is JSONPath (Line 4). RML-IO
refers to a set of predefined Reference Formulations (JSONPath, XPath, etc.)
but others can be considered as well. Besides the Reference Formulation, the
Logical Source also defines how to iterate over the data source through the iter-
ation pattern with the property rml:iteration (Line 5). In a Triples Map, the
property rml:logicalSource specifies the Logical Source to use and should be
specified once. The Source specifies how a data source is accessed by leveraging
existing specifications; and indicates when values should be considered NULL
(rml:null) and a query if needed (rml:query) e.g., SQL or SPARQL query. In
a Logical Source, the property rml:source refers to exactly one Source.
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Similarly, RML-IO includes the Logical Target (rml:LogicalTarget) and
the Target (rml:Target) to define how the output RDF is exported. A Logical
Target includes the properties rml:serialization to indicate in which RDF
serialisation the output should be encoded, and rml:target to refer to exactly
one Target. The Logical Target can be optionally specified in any Term Map
e.g., Subject or Graph Map. The Target is similar to the Source, indicating how
the output target can be accessed, and has 2 properties: (i) rml:compression
to specify if the RDF output will be compressed and, if so, how e.g., GZip, and
(ii) rml:encoding to define the encoding e.g., UTF-8.

Both Source and Target consider the re-use of existing vocabularies to incor-
porate additional features to access data, such as DCAT [78], SPARQL-SD [102],
VoID [28], D2RQ [42], and CSVW [96]. Listing 5 shows an example of an RML
mapping that describes a JSON file (Listing 3) with a Logical Source (lines 1-5).
A Logical Target is also used to export the resulting triples to a Turtle file with
GZip compression (lines 7-12). Since the Logical Target is specified within the
subject (line 18), all triples with that subject are exported to this target.

1 <#JSONSource > a rml:LogicalSource;

2 rml:source [ a rml:Source , dcat:Distribution;

3 dcat:accessURL <file :// ranks.json > ];

4 rml:referenceFormulation rml:JSONPath;

5 rml:iterator "$.[*]"; .

6
7 <#FileTarget > a rml:LogicalTarget;

8 rml:target [ a rml:Target , void:Dataset;

9 void:dataDump <file :/// data/dump.ttl.gz >;

10 rml:compression comp:gzip;

11 rml:encoding enc:UTF -8 ];

12 rml:serialization formats:Turtle; .

13
14 <#RankTriplesMap > a rml:TriplesMap;

15 rml:logicalSource <#JSONSource >;

16 rml:subjectMap <#RankSubjectMap > .

17
18 <#RankSubjectMap > rml:logicalTarget <#FileTarget > .

Listing 5: Input data from the ranked.json file is described with DCAT. An
output file in Turtle serialization with GZip compression is described with VoID.

5.3 RML-CC: Collections and Containers

As the RML Collections and Containers module is fundamentally new, the
Community Group formulated a set of functional requirements that the RML
Containers and Collections specification should meet: One should be able to:
(i) collect values from one or more Term Maps, including multi-valued Term
Maps; (ii) have control over the generation of empty collections and containers;
(iii) generate nested collections and containers; (iv) group different term types;
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(v) use a generated collection or container as a subject; and (vi) assign an IRI
or blank node identifier to a collection or container. Based on these require-
ments, the RML-CC module was introduced which consists of a new concept,
the Gather Map rml:GatherMap, two mandatory properties (rml:gather and
rml:gatherAs) and two optional properties. Even though the module is limited
with respect to its ontology terms, significant effort is expected for the RML
processors to support it. Thus, we decided on keeping it as a separate module.

We specified the Gather Map (rml:GatherMap) as a Term Map with 2
mandatory properties: (i) rml:gather to specify the list of Term Maps used
for the generation of a collection or container, and (ii) rml:gatherAs to indi-
cate what is generated (one of the rdf:List, rdf:Bag, rdf:Seq, and rdf:Alt).
The rml:gather contains any type of Term Map including Referencing Term
Maps (to use the subjects generated by another Triples Map) which are treated
as multi-valued Term Maps. Other properties were defined with default val-
ues to facilitate the use of this extension: rml:allowEmptyListAndContainer
and rml:strategy. By default, a Gather Map shall not yield empty contain-
ers and collections; the predicate rml:allowEmptyListAndContainer must be
set to true to preserve them10. Also, by default, the values of multiple multi-
valued Term Maps will be appended from left to right; rml:append is the de-
fault rml:strategy. Alternatively, the rml:cartesianProduct strategy that
instructs to carry out a Cartesian product between the terms generated by each
Term Map. The rml:strategy renders the vocabulary extensible; RML im-
plementations may propose their own strategies for generating collections and
containers from a list of multi-valued term maps.

Listing 6 demonstrates the support for 4 of the aforementioned requirements:
the collection of values from a multi-valued Term Map, the generation of a named
collection, and the collection as a subject. It generates a subject that will be re-
lated to a list via ex:contains. The values of that list are collected from a
multi-valued Term Map generating IRIs from the names and generates the fol-
lowing RDF: :Ranking23 ex:contains (:Duplantis :Guttormsen :Vloon).

1 <#RankingListTM > a rml:TriplesMap;

2 rml:logicalSource <#JSONSource >;

3 rml:subjectMap [ rml:constant :Ranking23 ];

4 rml:predicateObjectMap [

5 rml:predicate ex:contains;

6 rml:objectMap [

7 rml:gather (

8 [ rml:template "{$.*. NAME}"; rml:termType rml:IRI ] );

9 rml:gatherAs rdf:List; ] ] .

Listing 6: The use of a Gather Map to generate a list of terms. The RDF
collection :Ranking23 will be generated using the name data reference.

If a Gather Map is an empty Expression Map, a new blank node is created
for the head node of each generated collection or container (the first cons-pair

10 E.g., an empty list could explicitly represent that the number 1 has no prime factors.
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in the case of a collection). Conversely, when providing a template, constant or
reference, the head node is assigned the generated IRI or blank node identifier. If
unchecked, this may lead to the generation of collections or containers that share
the same head node, which we refer to as ill-formed. Therefore, the specification
details the behavior that a processor must adopt: when a gather map creates a
named collection or container, it must first check whether a named collection or
container with the same head node IRI or blank node identifier already exists,
and if so, it must append the terms to the existing one.

5.4 RML-FNML: Data Transformations

The RML-FNML module enables the declarative evaluation of data transforma-
tion functions defined using the Function Ontology (FnO) [46] in RML. Thus,
the data transformation functions in RML are independent of specific processors.
Functions and Executions are described with FnO, while FNML declares the
evaluation of FnO functions in terms of specific data sources. The evaluation of
a function is defined through a Function Execution (rml:FunctionExecution),
where a Function Map (rml:FunctionMap) defines the function. The input val-
ues’ definitions are provided through Term Maps using Inputs (rml:Input),
which in turn include Parameter Maps (rml:ParameterMap) referring to Func-
tion Parameters defined by FnO. The Function Execution’s output is declared
using a Return Map (rml:ReturnMap) and referred to by the rml:return prop-
erty, enabling the reference to a specific output of a function’s multiple outputs.

1 <#RankTriplesMap > a rml:TriplesMap;

2 rml:logicalSource <#JSONSource >;

3 rml:subjectMap <#RankSubjectMap >;

4 rml:predicateObjectMap [

5 rml:predicate ex:date;

6 rml:objectMap [

7 rml:functionExecution <#Execution >;

8 rml:return ex:dateOut ] ] .

9
10 <#Execution > a rml:FunctionExecution;

11 rml:function ex:parseDate;

12 rml:input [ a rml:Input;

13 rml:parameter ex:valueParam;

14 rml:inputValueMap [ rml:reference "$.DATE" ] ] ,

15 [ a rml:Input;

16 rml:parameter ex:dateFormatParam;

17 rml:inputValueMap [ rml:constant "MM -DD -YYYY" ] ] .

Listing 7: The function ex:parseDate parses the referenced DATE value using
the "MM-DD-YYYY" pattern, and returns a parsed date.

Listing 7 shows the use date formatting function. Within an Object Map, the
Function Execution (Line 7) and type of Return (Line 8) are defined. The Func-
tion Execution describes which Function is used (Line 11) and its two Inputs:
the data reference (Lines 12-14) and the output date format (Lines 15-17).
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5.5 RML-star

The building block of RML-star [52] is the Star Map (rml:StarMap). A Star Map
can be defined in a Subject or an Object Map, generating quoted triples in the
homonymous positions of the output triples. The Triples Map generating quoted
triples is connected to a Star Map via the object property rml:quotedTriplesMap.
Quoted Triple Maps specify whether they are asserted (rml:AssertedTriplesMap)
or non-asserted (rml:NonAssertedTriplesMap). Listing 8 uses anAsserted Triples
Map (lines 1-5) to generate triples of the mark of some athletes, annotated using
a Star Map with the date on which the marks were accomplished (lines 7-11).

1 <#QuotedRankTM > a rml:AssertedTriplesMap;

2 rml:logicalSource <#JSONSource >;

3 rml:subjectMap <#RankSubjectMap >;

4 rml:predicateObjectMap [ rml:predicate :mark;

5 rml:objectMap [ rml:reference "$.MARK"; ] ] .

6
7 <#DateTM > a rml:TriplesMap;

8 rml:logicalSource <#JSONSource > ;

9 rml:subjectMap [ rml:quotedTriplesMap <#RankTriplesMap > ] ;

10 rml:predicateObjectMap [ rml:predicate :date;

11 rml:objectMap [ rml:reference "$.DATE"; ] ] .

Listing 8: The <#QuotedRankTM> generates asserted triples that are also
quoted by rml:quotedTriplesMap property from <#DateTM> .

6 Early Adoption and Potential Impact

Over the years, the RML mapping language has gathered a large community of
contributors and users, a plethora of systems were developed [32,98], benchmarks
were proposed [37,39,63], and tutorials were performed [9,10,11,12,16,100].

During the last decade, many initiatives have used the different extensions
of R2RML which contributed to the modular RML ontology to construct RDF
graphs from heterogeneous data for e.g., COVID-19-related data [81,88,93], bio-
diversity [66,83,27], streaming data analysis and visualisation [44,49], social net-
works’ data portability [48], social media archiving [77], supply chain data in-
tegration [47], public procurement [92], agriculture [35], federated advertise-
ment profiles [76]. These extensions were also incorporated in services, e.g.,
Chimera [57], Data2Services [14], InterpretME [41], and even the Google En-
terprise Knowledge Graph to construct and reconcile RDF [6].

As the modules of the RML ontology take shape, an increasing number of
systems embrace its latest version. The RMLMapper [62], which was so far the
RML reference implementation, currently supports the RML-Core and RML-
IO modules. The SDM-RDFizer [63,64] and Morph-KGC [30], two broadly-used
RML processors, already integrate the generation of RDF-star with the RML-
star module in their systems. Additionally, Morph-KGC also supports transfor-
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mation functions using the RML-FNML module. The adoption of RML was fa-
cilitated by YARRRML [61], a human-friendly serialization of RML. Yatter [38]
is a YARRRML translator that already translates this serialization to the RML-
Core, RML-star, RML-IO and RML-FNML modules. The increasing number of
systems that support different modules illustrate the benefits of the modular ap-
proach of the RML ontology: each system implements a set of modules, without
the necessity of offering support for the complete ontology, while different use
cases can choose a system based on their modules’ support.

As an increasing number of systems support the RML ontology proposed in
this paper, several real-world use cases already adopted the ontology as well.
NORIA [95] extends RMLMapper in their MASSIF-RML [86] system, imple-
mented at Orange, to construct RDF graphs for anomaly detection and incident
management. InteGraph [74] uses RML to construct RDF graphs in the soil ecol-
ogy domain and CLARA [19] to construct RDF-star for educational modules,
both using Morph-KGC. At the European level, two governmental projects use
RML to integrate their data into RDF graphs. In the transport domain, the
European Railway Agency constructs RDF from the Register of Infrastructure
data, distributed in XML, using RML mapping rules [87] and taking advantage
of the RML-IO module. The Public Procurement Data Space [58] is an ongoing
project that integrates procurement data, distributed in various formats, from
all EU member states using the e-Procurement Ontology [1], and mapping rules
in RML with the RML-Core and RML-star modules on the roadmap.

The RML ontology and SHACL shapes are maintained by the W3C Knowl-
edge Graph Construction Community Group, and part of the larger International
Knowledge Graph Construction community. This community will continue to
maintain these resources and a call for systems to incorporate the new specifi-
cation and ontology will be launched. The aim is to have at least two reference
implementations for each module in RML systems by the end of 2023.

7 Related Work

A large amount of mapping languages have been proposed to enable the con-
struction of RDF graphs from different data sources. Apart from the RDF-based
languages that considerably influence the RML ontology (see Section 3), we high-
light here the popular alternatives that rely on the syntax of query (SPARQL-
Generate [75], SPARQL-Anything [33]), constraint (e.g., ShExML [55]) or data-
serialisation (e.g., D-REPR [101]) languages to construct RDF graphs.

SPARQL-Generate [75] leverages the expressive power of the SPARQL query
language and extends it with additional clauses to describe the input data. It
offers a relatable way to RML for handling the input data: it supports a wide
range of data sources, describes their access and defines an iterator and reference
formulations to describe input data. While SPARQL-Generate describes input
data and its access, it does not consider the specification of target formats as the
new RML ontology does. SPARQL-Generate supports collection and containers,
but they can only be placed as objects; embedded collections and containers are
not allowed. Last, despite developed over Apache Jena, which already supports
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RDF-star and SPARQL-star, the GENERATE clause proposed by SPARQL-
Generate, does not support RDF-star graph construction at the moment.

SPARQL-Anything [33] introduces Facade-X to override the SERVICE clause
as its input data description. It implements all SPARQL and SPARQL-star fea-
tures, including the generation of RDF-star graphs. However, the construction of
well-formed collections and containers with the CONSTRUCT clause is limited.
To overcome this, SPARQL-Anything proposes a bespoke function fx:bnode

that ensures that the same blank node identifiers are returned for the same
input. Hence, while blank nodes are addressed, the generation of lists remains
complex. Both SPARQL-Generate and SPARQL-Anything, offer limited support
for data transformations, as they are bounded to the ones already provided by
their corresponding implementations. While SPARQL allows custom functions,
these are implementation-dependent. The addition of new data transformations
declaratively, as the new RML ontology proposes, is not possible.

Despite the expressive power of these languages, the systems that implement
them need to provide a complete support for SPARQL and extend the language
with new clauses or modify the semantics of existing ones to support the con-
struction of RDF graphs. The modular approach presented for the RML ontology
allows having a set of basic features to be implemented by the systems, without
forcing support for all the language, and ensures the long-term sustainability, as
new modules of the ontology can be proposed without affecting current ones.

8 Conclusions and Future Steps

We present the RML ontology as a community-driven modular redesign of R2RML
and its extensions to generate RDF graphs from heterogeneous data sources. Our
work is driven by the limitations of R2RML and the extensions proposed over
the years. We presented our motivation for following a modular design, back-
wards compatible with R2RML. We discussed how each module was designed
accompanied by its SHACL shapes, addressing the identified challenges.

The quick adoption of the RML ontology by some of its most used systems,
and the number of initiatives and companies that have already incorporated
RML, creates a favorable ecosystem for the adoption of RML as the standard
for generating RDF graphs from heterogeneous data. The modular design allows
us to easily adjust the adequate module with future requirements following an
agile methodology. A thorough versioning system will be enabled to keep track
of the new versions and badges will be provided for systems to indicate which
modules and versions of these modules they support.

As future steps, the community is willing to initiate the process of turning
this resource into a W3C Recommendation. Hence, a Final Community Group
Report will be published with all the resources presented in this paper, so the SW
community can start providing feedback on the specifications to finally, draft a
W3C Working Group charter. From a technical perspective, we want to develop
further use cases to ensure a thorough validation of the new implementations.
Finally, test-cases for each module and validation with SHACL shapes will also
be further refined to provide an exhaustive validation resource.
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