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Chapter 1

Knowledge Management in the
Context of Toxicity Testing
Audrey Sanctorum, Jan Maushagen, Sara Sepehri, Guillaume
Vrijens, Joery De Kock, Tamara Vanhaecke, Olga De Troyer and
Christophe Debruyne

Abstract

The chapter presents the knowledge management system, developed in
the context of an interdisciplinary project called TOXIN, for the toxicity testing
domain to facilitate the hazard assessment of new chemical compounds.
Tools have been developed to capture existing knowledge captured in Safety
Evaluation Opinions documents issued by the Scientific Committee on Consumer
Safety in a knowledge graph, to enrich this knowledge with knowledge from
other sources, and to access this knowledge efficiently. Ontologies and semantic
technology are used to build the toxicological knowledge graph and its tools. The
developed knowledge management system is based on the processes for creating,
maintaining, and exploiting knowledge graphs defined in the Abstract Reference
Architecture. The chapter discusses the approach followed for developing the
knowledge management system, and the tools developed to support the different
processes of the Abstract Reference Architecture. These tools include end-user
tools, as well as more advanced tools for information technology experts.

Keywords: knowledge graph construction, knowledge consumption, knowledge
graph enrichment, knowledge graph engineering, data lifting, quality assurance,
domain ontology development, end-user development, toxicity testing, jigsaw
metaphor
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Acronyms

ALP Alkaline phosphatase
ARA Abstract Reference Architecture
CAS Chemical Abstracts Service
CTD Comparative Toxicogenomics Database
CVS Comma-Separated Values
EU European Union
GLP Good Laboratory Practice (GLP)
GO Gene Ontology
GO-CAM Gene Ontology Causal Activity Modeling
HESS Hazard Evaluation Support System
INCI International Nomenclature Cosmetic Ingredients
IRI Internationalized Resource Identifier
IT Information Technology
MDE Model-Driven Engineering
NLP Natural Language Processing
OECD Organisation for Economic Co-operation and

Development
OGG Ontology of Genes and Genomes
OMG Object Management Group
OWL Web Ontology Language
R2RML Relational Database to RDF Mapping Language
R2RML-F Extension of R2RML
RDF Resource Description Framework
RDFS Resource Description Framework Schema
RML RDF Mapping Language
SCCS Scientific Committee on Consumer Safety
SHACL Shapes Constraint Language
SM Subject Matter
SMILES Simplified Molecular-Input Line-Entry

Specification
SPARQL Standard query language and protocol for RDF

triplestores
SQL Structured Query Language
TOXIN Non-Animal Methodologies for Toxicity Testing of

Chemical Compounds
TXPO ToXic Process Ontology
UI User Interface
W3C World Wide Web Consortium
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Introduction

1. Introduction

Toxicology is a field of science investigating the potentially harmful effects
of chemical compounds on living organisms, including humans. An important
part of toxicology is the field of toxicity testing, also known as safety assessment,
which focuses on investigating the degree of risk associated with chemical
substances [3]. Historically, animal testing has formed the basis for safety
assessment. Yet, scientific considerations and ethical constraints have driven a
worldwide shift towards using animal-free methods for this purpose. This has
been enforced by an EU directive N°1223/2009 imposing a full ban on animal
testing in the cosmetics field, but also across other sectors; for instance, there is a
tendency to address animal-free methods for safety evaluation in pharmaceutical,
food, and biocide industries. This has resulted in efforts to develop animal-free
methods for evaluating the safety of chemicals, incorporating cell culturing
and computational approaches. In general, there are three main toxicity testing
methods:

1. In vivo toxicity testing involves exposing living animals to a substance to
observe its effects on their health and behaviour.

2. In vitro toxicity testing involves conducting experiments on cells or tissues
taken from a living organism. This method allows for more controlled
conditions, as it eliminates the influence of other body systems on the
effects of the substance being tested.

3. In silico toxicity testing involves using computer models to simulate the
effects of a substance on a living organism and how a living organism
interacts with a substance. This method relies on mathematical and
statistical models and data from in vivo and in vitro studies to predict the
toxic effects of a substance.

Although in vitro and in silico testing methods have made advances, in
general, different types of methods are combined [26]. For instance, the in vitro
approach can be complemented with computational approaches to gather,
disclose (i.e., make available in a suitable form) and maintain (i.e., keep up
to date) available toxicological information of chemical compounds to avoid
redundant testing and/or to predict adverse effects of chemical compounds
based on similarity. A wealth of data is available in the toxicological domain, but
the available data is in a heterogeneous and varied format, including a diverse
range of toxicological and risk assessment reports, regulatory standards, and
guidelines. Manual searching through the different documents, reports, and
data sources is current practice when information is required. This is a time-
consuming process, and, in addition, aggregating knowledge and subsequently
searching, analysing, and inferring implicit information from the integrated data
is hard. Therefore, one challenge in this context is to provide tools for the efficient
access, processing, and analysis of relevant data from the toxicological domain.
Developing such tools is one of the objectives of the interdisciplinary project
TOXIN1.

TOXIN is developing a knowledge management system that gathers and
organizes information about in vivo tests described in documents issued by the

1 https://ivtd.research.vub.be/
irp-non-animal-methodologies-for-toxicity-testing-of-chemical-compouns-toxin-0
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Knowledge Management in the Context of Toxicity Testing

Scientific Committee on Consumer Safety2 about cosmetic ingredients listed
as annexed II, III, IV, V, and VI under Regulation EC No 1223/2009. Each such
document, called a Safety Evaluation Opinion, contains information about
experiments (also called tests) of a chemical compound on laboratory animals,
including information on the outcome of these tests, as well as the authors’
opinions about the compound’s toxicity. In TOXIN, semantic technology is
adopted to build this toxicological knowledge management system. By using
semantic technology, the information can be structured flexibly. This is because
semantic technology represents and stores information using a graph data
model, which is less rigid than the traditional relational model adopted in
relational databases. This means that information can be added to entities as
needed, avoiding complex data migration. Further, where the schema and
data are “tightly coupled” in traditional relational databases, the graph data
model in semantic databases are “schemaless”; the “schemas,” which are called
ontologies later on, are declared as facts themselves, and one can combine several
such ontologies. Semantic technology allows us to express the semantics of
the information, provides advanced querying mechanisms, and allows us to
integrate diverse data from multiple sources into a coherent and meaningful
knowledge graph. TOXIN’s knowledge management system aims to support the
non-animal hazard assessment3 of cosmetic ingredients within the TOXIN project
by providing as much knowledge as possible flexibly.

In this chapter, we present the approach followed for developing the knowl-
edge management system, as well as the tools developed for it. The different
tools support different processes for creating, maintaining, and exploiting
knowledge graphs introduced in [10] by following the Abstract Reference
Architecture (ARA). Two tools are provided for defining the knowledge graph
of the knowledge management system and filling it with data: an end-user tool,
based on the jigsaw metaphor, that allows the manual definition and filling of
a knowledge graph by our subject matter experts (i.e., toxicologists), and a tool
to automatically import toxicity data previously collected by the toxicologists
from Safety Evaluation Opinions in spreadsheets into the knowledge graph. We
also discuss integrating multiple other data sources from the field of toxicology
into the TOXIN knowledge system to facilitate hazard assessment of new
compounds by presenting the relationships integrating the different data sources
to the toxicologists. Next, we discuss how we currently tackle aspects of the
quality assurance of the knowledge graph. Furthermore, a search and query
tool has been developed allowing toxicologists to explore and search in the
knowledge graph. We also discuss how integrating the other data sources from
the toxicological field can be used to answer questions formulated in the context
of toxicity testing.

The chapter is organized as follows: Section 2 presents the background,
i.e., introducing the concept of a knowledge graph, as well as the concepts of
ontology and vocabulary. Next, the existing ARA framework for engineering
knowledge graphs is presented. In Section 3, related work is discussed. Section 4
presents our approach towards knowledge management, and TOXIN’s knowl-
edge management system and the various tools developed so far are explained
and demonstrated in Section 5. The paper ends with conclusions and future
work, which are presented in Section 6.

2 https://health.ec.europa.eu/scientific-committees/scientific-committee-consumer-safety-sccs en
3 Hazard assessment, i.e., evaluating the intrinsic property of a molecule inducing toxicity out of the
use context, is the first step of every safety assessment process.
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Background

2. Background

In this section, we provide the background of the work. We start by briefly
explaining the concepts of a knowledge graph, an ontology, and a vocabulary.
Thereafter, we present the ARA framework on which our knowledge manage-
ment system is based.

2.1 Knowledge Graph, Ontology, and Vocabulary

Knowledge graphs use the concept of a graph to describe knowledge of the
real world. In graphs, knowledge is represented with nodes and edges where
nodes represent entities for the real world and edges represent the relationships
between entities [20]. An edge between two entities is called a triple. A triple is
an ordered grouping of a subject, a predicate, and an object. A triple or set of
triples can be seen as a directed edge-labelled graph called a data graph. A data
graph may be identified by a name. Formally, such a named graph is represented
by a pair (n,G) where G is a data graph and n is the unique name (or “name”) of
the graph. One can also find the so-called default graph, which is the only graph
without a name.

Graphs can be gathered into a graph dataset. A graph dataset is not composed
of triples but rather by quadruples (or quads), as the name of the graph (if the
graph has a name) is added to the triples: < g, s, p, o > where g is the “name” of
the graph and < s, p, o > is the triple in the graph. Concretely, a knowledge graph
is any graph dataset or combination of graph datasets.

The Resource Description Framework (RDF) [36] is a W3C recommended
abstract graph data model that allows representing data graphs. A set of triples
expressed in RDF is called an RDF graph, which can be stored in a named graph.

An ontology can be (re)used or developed to specify which type of knowledge
is stored in the knowledge graph [19]. An ontology describes concepts in a
domain, the properties of the concepts, the relations between the concepts, and
the domain rules that apply to them. In other words, an ontology aims to model
a domain with as much precision as possible. In this way, the ontology can be
used as a model for the knowledge to be stored, and the knowledge stored can be
considered as an instantiation of the ontology [4, 19]. In this case, the knowledge
graph is called an ontology-based knowledge graph. Using one or more ontologies
to build a knowledge graph has the advantage of providing formal definitions
of the knowledge that can be stored, its meaning, and possible restrictions on
what can be stored. This not only provides an unambiguous description of
the knowledge, but it also allows humans, as well as computers, to process
the information and infer new knowledge. These ontologies are expressed
in ontology languages, of which the Web Ontology Language (OWL) [1] is
standardised by the W3C and supports complex reasoning tasks such as concept
satisfiability checking (i.e., can a concept have instances?).

Not all knowledge graphs require expressive ontology languages, which
come at additional computational costs. Another way to represent the semantics
of the relationships within the data graph is using one or more vocabularies,
which is a name given to lightweight ontologies. These ontologies are either
built with a less expressive ontology language, or restrict the use of a complex
ontology language to those constructs deemed ”light-weight”. A vocabulary
can be used to define class hierarchies, relation hierarchies, and relationships
between classes. A vocabulary can be represented with RDF Schema (RDFS) [15].
RDFS is an extension of RDF. RDFS is meant to infer implicit information from
explicit information. For instance, if a graph contains < Garfield, is of type,Cat >

5
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Knowledge Graph

Upper Ontology
Domain

Ontology
Instan�ated 

Ontology

Figure 1.
Ontology-based knowledge graph structure based on the Model-Driven Engineering (MDE) approach (adapted
from [4])

and < Cat, is a subclass of ,Animal >, then an RDFS reasoner can infer that
< Garfield, is of type,Animal >. While already powerful and often used, it does
not support complex reasoning tasks such as checking whether classes (e.g., Cat)
can have instances or whether there are contradictions in the model or the data.

2.2 Ontology-Based Knowledge Graph

As explained in the previous subsection, an ontology-based knowledge graph
is a knowledge graph where one or more ontologies are used to define which
type of knowledge can be stored in the knowledge graph [19].

Note that sometimes, the instances of the concepts and relationships defined
in the ontology (i.e., the ”real” data) are also considered as part of the ontology,
removing the strict separation between model and data. However, we follow
the approach proposed by Chasseray et al. in [4], where the distinction between
model and ”data” is kept: a knowledge graph is composed of a domain ontology
and an instantiated ontology4. The domain ontology is used to specify the orga-
nizational structure of the knowledge graph, and as the name indicates, the
instantiated ontology is an instantiation of the domain ontology containing the
actual instances (i.e., data).

Furthermore, Chasseray et al. [4] combine ontologies with the OMG’s Model-
Driven Engineering (MDE) approach. MDE defines four modelling levels: data
level, model level, meta-model level, and meta-metamodel level [5]. Following
this MDE approach, three levels are considered for ontology modelling by
Chasseray et al.: an instantiated ontology (i.e., the data level) is defined by a
domain ontology (i.e., the model level), which is an instantiation of an upper
ontology (i.e., the meta-model level), which defines the concepts and relationships
needed to define domain ontologies. Note that the meta-metamodel level of
MDE is not used in this approach. We show this three-leveled structure for an
ontology-based knowledge graph in Figure 1.

2.3 Abstract Reference Architecture

In [10], the Abstract Reference Architecture (ARA) is introduced to define
the main processes and tasks required during the life cycle of knowledge
graphs. ARA consists of three layers: Knowledge Acquisition and Integration Layer,
Knowledge Storage Layer, and Knowledge Consumption Layer, which correspond
to the three major tasks related to using a knowledge graph in organisations:
construction, storage, and consumption. See Figure 2 for an illustration. Each of
these tasks consists of sub-tasks:

1. ARA distinguishes four sub-tasks in the Knowledge Acquisition and
Integration Layer: Schema Development, Data Lifting, Data Annotation, and

4 or a set of these when the knowledge graph is defined by more than one ontology
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Schema 
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Data Li�ing

Data Annota�on

Quality Assurance

Interpreta�on

Use

(1) Knowledge graph construc�on (3) Knowledge consump�on

(2) Knowledge storage

Figure 2.
The architecture of a knowledge graph project depicting the various processes and tasks in knowledge graph
engineering, based on [10]

.

Quality Assurance. According to ARA, the first task is Schema Development
(i.e., the development of the domain ontology). Data Lifting transforms raw
data (e.g., stored in spreadsheets or classical databases) into semantic data.
Data Annotation deals with linking and enriching the data with other
relevant sources (e.g., other ontologies, knowledge graphs, vocabularies, or
even classical databases), resulting in interlinked and contextualised
semantic data. Quality assurance is about ensuring that the knowledge
graph is of good quality, as one must rely on accurate data5. In Figure 2, one
can see that the outcome of each of these activities informs the other. For
instance, when the schema evolves, the transformation and integration of
data into the knowledge graph may need to be updated.

2. The Knowledge Storage Layer deals with the storage of the knowledge
graph. Two main architectural options are mentioned in [10]: (1) reusing
existing data storage and providing mappings between the ontology and
the data schemes of the existing storage, and (2) using a graph-based data
store.

3. The Knowledge Consumption Layer provides tools for interested parties to
access the knowledge. Examples include search and querying tools.

3. Related Work

3.1 Existing Tools for Supporting Hazard Assessment

Because the aim of the TOXIN knowledge system is to support the hazard
assessment of new chemical compounds, we first discuss existing tools in this
context.

5 The difference between the two is that the former refers to mistakes (e.g., typos) and the latter to
domain axioms not being respected (e.g., an instance cannot be an element of two disjoint classes).

7



i
i

“output” — 2023/7/4 — 8:31 — page 8 — #8 i
i

i
i

i
i

Knowledge Management in the Context of Toxicity Testing

There are several approaches to hazard assessment, and various tools have
been developed to support this process. One such tool is the OECD QSAR
Toolbox [11], which is a software application that aims to classify chemicals based
on their structural characteristics and potential toxic mechanisms of interaction.
In this way, this toolbox can provide some support for hazard assessment and
risk assessment.

COSMOS NG [38] is another tool and provides a database of toxicity opinions
about several chemicals that can be used for hazard assessment. COSMOS NG
also provides in silico tools for analysing toxicity data and performing analyses
such as category formation. Compared to TOXIN, the datasets used are different,
but even for the common ingredients, only oral exposure studies are included
in COSMOS NG and used for in silico predictions, such as DNA binding or
physicochemical properties. TOXIN is currently based on existing in vivo-based
hazard assessment with extra input from in silico testing (from the OECD QSAR
toolbox). Therefore, it can be used to interpret interspecies differences (human in
vitro versus laboratory animals in vivo) and to analyse how liver effects in vivo
are related to the function or the structure of the ingredients.

VEGA HUB6 includes several in silico tools for hazard and risk assess-
ment. The VEGA software, which can be downloaded, can be used for hazard
assessment using different models. It predicts several toxicity endpoints, such
as liver toxicity, skin sensitisation, carcinogenicity, and endocrine disruptors.
Another software available on VEGA HUB is Vermeer Cosmolife, which has
the particularity to incorporate the context of use (called exposure scenario in
toxicology) and, therefore, can be used for risk assessment.

There are other web applications available providing information for a more
accurate and animal-free hazard assessment with a focus on one single endpoint,
e.g., Vienna Livertox workspace7, or on multiple endpoints, e.g., SApredictor8

and ICE9.
In a broader context, there is a growing interest in developing standardised

vocabularies and ontologies that can be used to represent data about different
toxicology tests efficiently [17]. The OpenTox initiative [30] aims to provide a
framework for integrating and analysing diverse data sources using an ontology
to improve the predictability of toxicology models and support decision-making
in chemical safety assessment.

Tox21 [32] is a research program that seeks to identify new mechanisms of
chemical activity in cells and use this information to prioritise untested chemicals
for further evaluation and to develop more accurate predictive models of human
response to toxic substances. One purpose is to provide a screening tool that
would quickly identify potential hazards amongst a long list of potentially toxic
compounds.

The work conducted in TOXIN has similarities with the previously men-
tioned initiatives. However, it is different in the sense that the main aim of our
knowledge management system is to have a tool that can support toxicologists
in the in vitro toxicity testing of cosmetic compounds by providing reliable and
accurate existing information relevant for hazard assessment. In this way, it is
more limited in its scope than the work conducted in Tox21. The OECD toolbox
is used in TOXIN in the querying tool to provide a Hazard Evaluation Support

6 https://www.vegahub.eu/portfolio-types/in-silico-models/
7 https://livertox.univie.ac.at/
8 http://www.sapredictor.cn/index.php
9 https://ice.ntp.niehs.nih.gov/
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System (HESS) for repeated dose toxicity studies using toxicological categories
within the applicability domain of the tool. The in silico HESS predictions add
value to the hazard assessment by pointing to or against a specific type of toxicity
based on the structure of the chemicals.

3.2 Related Work on Linking Data Related to Toxicology

Numerous studies focused on linking data related to toxicology: [39] focuses
on a comprehensive map of disease-symptom relations, [29] presents a method
for representing the organisation of human cellular processes in a network
and mapping diseases onto this network, and [25] provides an overview of
existing work on integrating genes, pathways, and phenotypes to understand the
effects of gene mutations better. While these studies are valuable contributions
to the toxicology domain, they are specific. Moreover, their approaches may
not necessarily apply to the broader task of integrating different available data
sources.

4. Approach

As already explained in the introduction, our approach to knowledge
management and the tools developed for it are based on the Abstract Reference
Architecture (ARA).

Figure 3 provides an overview of the tasks defined for our knowledge man-
agement system. As described by ARA, the process starts with the Knowledge
Graph Construction process that consists of four tasks: Ontology Development,
Data Lifting, Data Annotation & Enrichment, and Quality Assurance.

Figure 3.
TOXIN’s knowledge Management approach adapted from [27]

Ontology Development is concerned with developing the knowledge graph’s
schema, which is done by means of an ontology, created with an ontology lan-
guage. As already indicated, we follow [19] and [4] in the sense that a knowledge
graph is the combination of a schema (i.e., an ontology) and an instantiation of
that ontology (i.e., the data).

9
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The term data lifting is used in ARA to denote the activities related to pop-
ulating the knowledge graph. We have foreseen different ways to populate the
knowledge graph in our knowledge management system. Subject matter experts
can enter data manually. However, importing data from non-RDF sources, i.e.,
from spreadsheets, is also possible.

In ARA, Data Annotation comprises the activities of linking concepts and
data with other relevant sources (e.g., other ontologies, knowledge graphs,
vocabularies, or even classical databases), resulting in interlinked semantic data.
We have called this task ”Data Annotation & Enrichment” to better emphasise
that data annotation also includes linking the data to existing sources. Some data
annotation activities can be done manually by subject matter experts, but linking
for the purpose of enrichment can be more complicated and may need the help
of IT experts, although tools can also be developed for (semi-) automatic data
annotation & enrichment.

Quality assurance is about ensuring that no mistakes are introduced into the
knowledge graph and its ontology. This is a complex issue. In general, it concerns
two aspects [34]: (1) the question of whether the knowledge graph has been built
correctly, i.e., according to the requirements, and (2) the question of whether the
right knowledge graph has been built, i.e., does the ontology correctly reflects the
domain and does it contain correct data? Some quality control can be performed
by subject matter experts, more technical aspects can be controlled by IT experts
but manual quality control is time-intensive. Tools could be helpful in this
respect.

The Knowledge Storage process deals with the storage of the knowledge
graph. In this process, we decide how to store and service the data to the various
applications built on top of this knowledge graph. Since we build a knowledge
graph with semantic technologies (i.e., RDF as the graph data model and
Semantic Web ontology languages), we use a triplestore. A triplestore is a name
commonly given to RDF graph databases.

The Knowledge Consumption provides query, search & exploration function-
ality.

For the tools, we have followed an end-user approach as much as possi-
ble [27]. This is done because the direct use of semantic technology is often
complicated for subject matter experts who are not technologically skilled. IT
experts can be called in, but for specialised domains, such as the toxicology
domain, it may take a long time before IT experts have familiarised themselves
with the domain. In addition, an IT expert needs to stay available for the
complete lifetime of the knowledge management system as knowledge systems
tend to evolve over time, e.g., new properties, relationships and concepts may
be needed, and new data must be added. Furthermore, during the Knowledge
Consumption process, the assistance of IT experts may be needed, e.g., for the
formulation of (new) queries or for the development of (new) reasoning support.
To avoid being largely or completely dependent on IT experts, we developed
end-user tools where possible. This means that subject matter experts who are
not skilled in Computer Science (in our case, toxicologists) should be able to
use these tools with some minimal training. Ideally, all tasks in ARA should
be accessible to subject matter experts; however, this seems not feasible for
some tasks. In particular, automatic Data Lifting, automatic Data Annotation
& Enrichment, Quality Assurance, and Knowledge Storage may require the
assistance of IT experts. For the ontology development and the manual data
input, we used the jigsaw metaphor [13]. The purpose of using this metaphor
was to hide the technicalities of the semantic technology.

10
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In Figure 3, three different icons are used to indicate who can perform the
tasks. If a subject matter (SM) expert can perform the task, the SM-expert icon
is used, for instance, an SM expert can query the knowledge storage. The IT-
expert icon indicates that an IT-expert should perform the task or at least be
involved. The service icon is used to indicate that a (part of a) task can be done
automatically. For instance, Data Lifting, Data Annotation & Enrichment and
Quality Assurance have all three icons meaning that these tasks can be partially
done by subject matter experts, partially by IT-experts, and partially automated.

5. TOXIN’s Knowledge Management System

We present the tools developed for the knowledge management system of
TOXIN in this section. Recall that the ultimate goal of this knowledge man-
agement system is to support toxicologists in the hazard assessment of new
compounds through in vitro tests by bringing together multiple sources of
toxicological information into a knowledge graph and allowing them to query
and search the graph.

The first aim was to gather information about in vivo tests, described in
documents dossiers, called Safety Evaluation Opinions, issued by the Scien-
tific Committee on Consumer Safety (SCCS) about cosmetic ingredients in a
knowledge graph. Each dossier contains information about experiments (also
called tests) of a compound on laboratory animals. The information includes the
quantity of the compound tested, how it was inoculated, the species on which the
compound was tested, and so on. The dossiers also include information on the
outcome of these tests, as well as the authors’ opinions about the compound’s
toxicity. The data contained in these dossiers are stored in an ontology-based
knowledge graph to provide more efficient access to this data for toxicologists.

The second aim is to enrich this knowledge graph with information from
other relevant sources in the toxicology domain.

Because the development of the knowledge management system is based on
ARA, we describe the tool support for the different tasks in ARA described in
Section 4.

5.1 Ontology Development Support

While ontology development is one of the tasks within our approach, we
want to emphasise that the purpose of this step is not to allow toxicologists to
create a full-fledged domain ontology but to set up an ontology-based knowledge
graph, where the role of the ontology is to define the organisational structure
of the knowledge graph. The ontology that needs to be developed corresponds
more with a vocabulary rather than a highly axiomatised ontology. Therefore,
the expressiveness of the developed tool is kept limited with the aim to curb the
learning curve for the toxicologists.

The tool developed for defining a domain ontology is a web-based application
built on top of Apache Jena. The jigsaw metaphor [13], used in the tool to hide
the technicalities of the semantic technology used, is implemented via the Google
Blockly JavaScript library. The tool is not limited to the toxicology domain but
can also be used for other domains to define the ontology for an ontology-based
knowledge graph. It is described in detail in [27, 28]. Here, we provide a short
description to show the reader how the tool is used to develop the ontology of
TOXIN’s knowledge management system.

11
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A predefined jigsaw block is provided to allow toxicologists to define the
domain concepts in the ontology by themselves. In this way, toxicologists can
easily define the domain concepts for which they will maintain information in
the knowledge graph. An example of such a domain concept is “Repeated Dose
Toxicity”, which is used extensively in Safety Evaluation Opinions. Figure 4
shows the web page for defining this domain concept. On the left-hand side
of the page, one can see the predefined jigsaw block (i.e., top-level blue block
“Domain Concept”) that allows specifying the domain concept. Properties can
be added by dragging and dropping the empty Property block from the Custom
Properties tab in the menu at the left and filling the slots. Properties have a name,
a value type, and an optional default value. In the example, the first property of
the domain concept is named “OECD test nr” with value type “number” and no
default value. Note that we also have the Default Properties tab in the left sidebar
menu, which provides predefined blocks for recurring properties, such as the
property “year”. Re-using these recurring property blocks will improve the
consistency of the ontology (as the recurring properties will always be defined
in the same way) and speed up the specification process.

Figure 4.
Screenshot of the domain concept definition page

A domain concept can be composed of other domain concepts. In Figure 4, we
see that the toxicologist specified that the Repeated Dose Toxicity concept is further
composed of the endpoints of repeated dose toxicity, the test method of repeated dose
toxicity and the reliability of test repeated dose toxicity concept. This is shown in the
blue Domain Concept block under the “Composed of” field. The “Composed
of” dropdown allows adding other composing concepts. The dropdown “Is
subconcept of” is used to indicate that a concept is a sub-concept of another
concept. This can be used to introduce hierarchies between concepts.

The ontology development process generally goes as follows (see Figure 5).
The toxicologists use general jigsaw blocks to create the domain ontology, i.e., to
define the domain concepts and their relationships needed for the knowledge
graph. For each defined domain concept, a domain-specific jigsaw block will
be generated. These generated jigsaw blocks can then, in turn, be used later on

12
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by toxicologists to compose and fill the knowledge graph (explained in the next
section (Section 5.2.1)). On the right in Figure 4, a preview of the generated jigsaw
block for the domain concept defined on the left is given. In this case, the jigsaw
block contains three puzzle connectors on the right side, one for each composing
concept, and five slots, one for each property.

Figure 5.
Ontology Development Process Using the Jigsaw Metaphor (taken from [27])

5.2 Data Lifting Support

The current purpose of the Data Lifting task of the TOXIN knowledge
management system is to capture, in the knowledge graph, information about
in vivo tests described in Safety Evaluation Opinions issued by the Scientific
Committee on Consumer Safety (SCCS) about cosmetic ingredients.

5.2.1 Manual Data Lifting

The first way to do this is by manually entering the information while
reading a Safety Evaluation Opinion. For this, a toxicologist can use the domain-
specific jigsaw blocks generated for the different domain concepts defined in
the ontology. For example, when a toxicologist wants to enter the information
from a particular Safety Evaluation Opinion document, they use the domain-
specific jigsaw blocks created during the Ontology Development Process for
Safety Evaluation Opinions (described in the previous section) to compose
a so-called dossier (representing the opinion). They do so by connecting the
relevant puzzle blocks and filling in the value fields in the blocks (see Figure 6
for a (partial) example dossier). The jigsaw blocks can only be composed in a
restricted way (i.e., as defined in the ontology) and validation for data fields is
provided. Figure 6, for example, shows how a toxicologist filled in the dossier on
“Tetrabromophenol Blue” by adding the report block “Repeated Dose Toxicity”
block (created as shown in Figure 4) and connecting it with other domain
concepts to complete the report. After that, the toxicologist filled in the different
property values corresponding to the information found in the safety evaluation
opinion10.

In order to save time during the manual entering of data and also to ensure
that similar data is always entered in the same way, the tool allows the user to
save block structures so that they can be reused in multiple dossiers as is. For
example, the “Repeated Dose Toxicity” block shown in Figure 6 could be saved as
a block structure. Then this block and all its sub-components (i.e., blocks attached
to its right) will appear in the tab “saved block structures” depicted in Figure 7.

10 https://health.ec.europa.eu/system/files/2021-08/sccs o 232 0.pdf
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Figure 6.
Jigsaw Block composed for the dossier ”Tetrabromophenol Blue”

These saved block structures can be dragged and dropped as a whole, which
saves time when composing another dossier.

5.2.2 Automatic Data Lifting

In the past, the toxicologists of the TOXIN project used spreadsheets to
structure and store information from Safety Evaluation Opinions. Because
a considerable amount of time was spent on creating these spreadsheets, it
was decided to develop a tool to import the data into the knowledge graph
automatically.

We have used R2RML to transform the spreadsheets into RDF. R2RML is
a W3C Recommendation for transforming relational data into RDF. Although
spreadsheets are not relational databases, once stored as comma separated values
(CSV) files, they can be considered as containing relational data (i.e., rows with
attributes). R2RML engines (and dialects) such as RML [12] and R2RML-F [9]
provide support for CSV files. We have chosen to adopt R2RML-F as this
particular engine loads the CSV files into an in-memory relational database,
which allows manipulating the data in the records with SQL prior to generating
RDF.

The only requirement is that the CSV files are well-formed (e.g., the first row
contains the names of attributes and no duplicates are allowed). This requirement
is ensured by the people curating the spreadsheets. The advantage of using
R2RML is that when new spreadsheets need to be transformed into RDF, one
only needs to specify new R2RML mappings (which can be done by an IT
expert). So far, data from 93 scientific opinions dealing with 88 different cosmetic
ingredients, published between 2009 and 2019 by SCCS, were imported this way.
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Figure 7.
Screenshot of the dossier creation page’s saved block structure tab

5.3 Data Annotation & Enrichment Support

The current purpose of the task is to facilitate access to relevant toxicological
data and provide answers to specific questions that the toxicologists formu-
lated (see below). In a later stage, the annotations and enrichment could be used
for AI-based reasoning.

First, simple manual data annotation is possible while defining the ontology
and entering data. For a dossier, a link to the Safety Evaluation Opinion file
for which the dossier is created should be given. For a domain concept, an IRI
referring to a relevant source can be provided (see Figure 8). When references to
other ontologies or RDF datasets are provided, users effectively create Linked
Data11.

Furthermore, a method for integrating multiple toxicological data sources
and linking them with the TOXIN knowledge graph has been developed and
applied [35]. The method starts with identifying the desired capabilities of the
enriched knowledge management system by means of so-called Competency
Questions [14]. Currently, the following competency questions have been
formulated:

1. Knowing some adverse effects observed in a subject, what diseases or toxic
processes may affect this subject?

2. Which biological processes or pathways are affected by a certain disease?

3. The functioning of what gene or protein is impaired by some toxic process?

These questions helped to select the potential sources for the enrichment.
In collaboration with the toxicologists, the following sources were selected:
TXPO [37], OGG [18], Uniprot [6], Reactome [23], Kegg [21], and CTD [8]. We

11 Linked Data is an initiative in which one published RDF data according to specific best practices
that result in interconnected data stored on different servers; a Web of data.
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Figure 8.
Web page for domain concept creation and modification showing IRI’s to related sources

furthermore identified the Gene Ontology (GO) [2] and Gene Ontology Causal
Activity Modeling (GO-CAM) [31]. GO is a comprehensive and structured data
source that classifies and describes genes and gene products based on their
biological functions, cellular locations, and molecular activities. GO is a resource
that many of the other initiatives reference in their data.

The ToXic Process Ontology (TXPO) is an ontology designed to represent
causal relationships between toxic processes. Its purpose is to clarify the
toxicological mechanisms from latent to toxic manifestations in order to help in
drug development. Similar to TOXIN, their current focus is on the liver, as liver
toxicity is the most frequent cause of the withdrawal of a new drug after testing.

TXPO contains a set of human genes that are imported from the Ontology
of Genes and Genomes (OGG). This ontology focuses on offering classes and
relationships to represent genes and genomes in different organisms. TXPO
only imports the genes related to human organisms. TXPO also contains entities
and relationships from the Gene Ontology (GO) [2]. The goal of this ontology
is to represent the functions of genes. To create relationships between a toxic
process and the genes or proteins affected by this process, GO is the perfect
intermediate. Some links already exist in TXPO between a toxic process and the
natural processes that it affects. For this, GO annotations are used that represent
the link between a GO term, i.e., a biological role and a gene product (gene or
protein) that assumes this role in the organism. Each annotation is associated
with a proof, which has a weight representing the confidence in the annotation.
We considered the integration of annotations from two sources: OGG and from
the gene ontology resource12. This resource regroups annotations made for a
large variety of species and from several different sources. We chose to integrate
only human gene products from UniProt.

12 http://geneontology.org
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GO-CAM is developed by the GO community and is a modelling approach
that builds upon GO. GO-CAM introduces models to connect GO-annotations to
represent causal relationships between gene products and biological processes,
providing a more detailed and explicit representation of molecular events. The
GO-CAM approach allows for the representation of specific regulatory inter-
actions and signalling pathways, enabling researchers to analyse and interpret
biological data in a more precise and context-dependent manner. For example,
a GO-CAM model could show that the hyper-function of a biological process
positively regulates another process. These relationships allow toxicologists
to track a toxic effect from its starting point to all the other elements that are
indirectly affected. GO-CAM is thus an interesting resource to represent the
different relationships between biological processes.

Reactome and Kegg are two well-known pathways repositories. To integrate
pathways from both repositories, we used associations from the Comparative
Toxicogenomics Database (CTD). CTD combines biological data by manually
curating and linking information from published literature. It offers several files
containing the relationships between different biological entities, and for TOXIN,
we used the disease pathway association file.

To perform the integration of (parts of) the different sources, we defined an
upper structure, which is based on the TXPO ontology that has been developed
to be used as a structure to build ontology-based knowledge graphs. While
TXPO offers a set of classes and axioms, i.e., an ontology, we wanted to use the
identifiers of these classes as individuals. Luckily, using semantic technology
allows us to reuse these identifiers in a different ontology – our upper structure.

For the integration, we have chosen to maintain the original IRIs to uniquely
identify the resources they describe and maintain the authority of the original
sources. However, for the additional links and entities created for the integration,
we have designed our own named graphs to describe them. This choice allows us
to clearly distinguish between original resources and those added as part of the
integration. This architecture is illustrated in Figure 9.

the decision to retain the authoritative resources’ IRI whenever possible
allows access to additional information about entities in the knowledge graph
from the original data source. An example of this can be seen in Figure 10. On
the left of the figure, we can see three entities of the enriched knowledge graph
represented with Ontodia (see Section 5.6 for more details about Ontodia). When
the IRIs of these entities are visited, e.g., by clicking on them and loading the
resource in a Web browser, the resources on the right of the image appear. This
illustrates that we can access the source data through the IRI representing an
entity. In other words, not only are the resources conceptually integrated, we
even have ”integrated” systems thanks to the distributed graph data model
offered by RDF.

Concerning the linking of the TOXIN knowledge graph and the enriched
TXPO, two kinds of links can be made. Firstly, direct links can be made between
an effect observed in a dossier and the same effect present in the enriched TXPO.
Secondly, from the observations and the conclusions in a dossier, a domain
expert (who has the knowledge to infer the toxic effects from the observations)
can infer “indirect” links between the dossier and the toxic effects or diseases
that affect the test animal. There is no absolute knowledge about how to link
some observations and a toxic effect, and errors can occur. Therefore, the links
are stored in different named graphs. Each graph corresponds to an individual,
a group, or a particular knowledge responsible for defining the links that it
contains. In this way, it is possible to query only some of these links depending
on who made them and on what ground. This type of linking is a manual
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Figure 9.
Schema of TEKG with the relations between TOXIN KG and the enriched TXPO.

process. Another approach is to create these links automatically. For the direct
links, it is straightforward. The task is to infer the relations owl:sameAs between
the TOXIN knowledge graph and the enriched TXPO, and tools exist to find these
relations, such as Silk [33] and Alignment API [7]. Concerning the “indirect”
links, some rule-based mechanisms could be put in place. This is subject to future
work.

5.4 Quality Assurance Support

Currently, the support for quality assurance is limited in our tool to manual
quality checking and the validation of the structure of the data in the knowledge
graph by means of SHACL shapes. With SHACL [22], a W3C Recommendation,
one can validate RDF graphs, i.e., one can validate the structure of triples in a
Closed World Setting. SHACL provides a set of “core” constructs for declaring
rules (value- and data type checking, cardinality, value ranges, comparisons,. . .
which can be combined with a set of logical operators). Validating the knowledge
graph with SHACL is especially valuable in the case of the automatic import of
the spreadsheets’ data. A SHACL shape is a subset of an RDF graph, which can
be declared, and to which one can add constraints.

Because we cannot expect that toxicologists can formulate constraints in
SHACL, we looked for an approach by which the SHACL-shapes and constraints
can be generated. How this is achieved is explained in [27].

5.5 Knowledge Storage

While quite a few triplestores are available (both free, commercial, and free for
research purposes), we have adopted Apache Fuseki13 for managing the storage
of triples, named graphs, and SPARQL endpoints. The ontology is stored in one
named graph. The data which has been lifted are stored in another. Data that has

13 https://jena.apache.org/documentation/fuseki2/
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Figure 10.
Illustration of the possibility of accessing the external sources from which data was integrated through the IRIs.

been integrated from other sources with the enrichment scripts are also stored
in dedicated named graphs. This allows us to separate the ontology and the
data, and to ensure that data from various sources (and possibly with different
interpretations) are not mixed up.

5.6 Knowledge Consumption Support

Knowledge consumption concerns the access and use of the knowledge graph
by end users. The primary use of TOXIN’s knowledge graph is to provide liver-
specific toxicological information. For this purpose, a web tool has been devel-
oped that allows one to search TOXIN’s knowledge graph from two perspectives;
from the perspective of chemical compounds and from the perspective of health
effects.

In the first perspective, one can search the knowledge graph for dossiers (i.e.,
Safety Evaluation Opinions) about specific compounds by means of the CAS
number, INCI name, or SMILES string of the compound. For example, HC Yellow
n° 2 can be found using the INCI name “HC Yellow n° 2”, the CAS no 4926-55-
0, or the SMILES string “C1=CC=C(C(=C1)NCCO)[N+](=O)[O-]”. As a result,
a summary of information on the searched compound is given; an interface to
the OECD QSAR toolbox is provided to select information from this toolbox
for the compound, e.g., the Hazard Evaluation Support System (HESS) in silico
prediction; and a list of the dossiers (i.e., opinions) that deal with the compound.
The dossiers are grouped by the endpoints (acute toxicity, repeated dose toxicity,
skin sensitisation, mutagenicity, and carcinogenicity). Clicking on such a dossier
will show the information stored for the dossier, such as the OECD guideline
number, dose levels, and GLP-compliance. The UI for this perspective is shown
in Figure 11.

In the second perspective, the user can search for compounds with dossiers
mentioning a specific toxicological outcome by selecting a health endpoint.
For the moment, the endpoints acute toxicity, repeated dose toxicity, and
toxicokinetics are supported by the tool. As a result, in the “compound view”
all relevant dossiers ordered by compound are listed (see Figure 12 below); the
“Opinions view” lists the relevant dossiers (i.e., opinions) directly (similar to the
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Figure 11.
Partial screenshot of the search result of the chemical compound “HC Yellow n° 2”
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Figure 12.
Screenshot of the search by Health Effect: “Repeated Dose Toxicity”

bottom part of Figure 11). The user filter the output on the type of test (in vivo
and/or in vitro) and filter by whether OECD guidelines were used. Moreover,
extended filters can search for values in certain parts coming from the opinions.
The UI for this perspective is shown in Figure 12 for the “Repeated dose toxicity”
health effect.

A dedicated tool for querying and searching the enriched Knowledge
graph described in Section 5.3 has yet to be developed, but an existing tool,
Ontodia [24], has been used to show that the competency questions formulated
by the toxicologists can be answered. Ontodia is a tool allowing one to visually
explore a triple-based knowledge graph using diagrams and faceted browsing,
providing a way to navigate knowledge graphs (note that there exist other tools
that could also be used for this purpose, such as WebVOWL14). In Figure 13,
we illustrate the answer to the competency question “Knowing some adverse
effects observed in a subject, what diseases or toxic processes may affect this
subject?” Figure 13 presents different adverse effects that could be observed
during a toxicological test, such as “Increasing blood ALP concentration.” These
adverse effects are linked to toxic courses or diseases with the predicates ’has
part’ and ’has context’. These predicates allow one to query all the toxic courses
for which an adverse effect could be observed. Moreover, relationships between
toxic processes are represented. However, it not only allows for finding toxic
processes related to an adverse outcome, but it also allows for the examination

14 http://vowl.visualdataweb.org/webvowl.html
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of the relationships between adverse effects, toxic effects, toxic courses, and
diseases.

Figure 13.
Illustration of how the enriched knowledge graph can be used to answer the competency question “Knowing
some adverse effects observed in a subject, what diseases or toxic processes may affect this subject?”.

6. Conclusions

In this chapter, we presented the knowledge management system developed
in the TOXIN project to support toxicologists in the animal-free hazard assess-
ment of new cosmetic compounds. The developed knowledge management
system is based on the tasks defined for creating, maintaining, and exploiting
knowledge graphs in the Abstract Reference Architecture (ARA), which defines
the main processes and tasks required during the life cycle of knowledge graphs.
The knowledge system is developed as a knowledge graph by means of semantic
technology, and tools were developed for the following ARA tasks: the Ontology
Development, Data Lifting, Data Annotation & Enrichment, Quality Assurance,
and Knowledge Consumption.

In addition, special attention has been paid to the fact that subject matter
experts, i.e., toxicologists, should be able to perform most of the tasks by
themselves. Where possible, the tools shield the non-IT users as much as possible
from the technical aspects of the technology used and they are able to use these
tools with some minimal training. For the tasks for which this was impossible,
automatic tools were developed where possible.

The different developed tools have been described. Two tools are provided
for defining the knowledge graph and populating it with data. First, we have
developed an end-user tool, based on the jigsaw metaphor, that allows the
manual definition and population of a knowledge graph by toxicologists. In
addition, we developed a tool to automatically import toxicity data previously
collected by the subject matter experts in spreadsheets into the knowledge
graph. A search and query tool has been developed that allows toxicologists to
explore and search in the knowledge graph by means of a simple web-based user
interface and without the need to use the technical query language SPARQL.
Furthermore, we integrated multiple data sources from the field of toxicology
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into the TOXIN knowledge graph to further support the hazard assessment of
new compounds. For exploring this enriched knowledge graph, an existing tool,
i.e., Ontodia, is currently used. Finally, we investigated an approach to deal with
some aspects of the quality assurance of the knowledge graph.

For future work, we are considering the use of Natural Language Process-
ing (NLP) techniques for different tasks. We noticed that more than searching
in the knowledge graph by only using text matching is needed, especially when
one wants to search for knowledge from different sources. For example, if a
toxicologist wants to know which chemical compounds raise the value of a
particular observation. They might search using the term “increase”, however,
given that different terminology is used to describe this effect, such as “growth”
or “change”, they will miss a few search results. In addition, sometimes results
of tests are entered all together as one large text block rather than as separate
results. Sometimes a value was even considered as a concept or the other way
around when entering the knowledge, which means that searching should not be
limited to the values of properties but also the names of concepts and properties
should be considered.

Last but not least, other future work concerns the addition of a data prove-
nance layer [16] to our knowledge graph, which will allow to trace who has
added which information and when.
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Négny, S., Le Lann, J.M.: A Generic
Metamodel for Data Extraction and
Generic Ontology Population. Journal
of Information Science (2021).
https://doi.org/10.1177/
0165551521989641

[5] Colomb, R.M., Raymond, K., Hart,
L., Emery, P., Welty, C., Xie, G.T.,
Kendall, E.F.: The Object Management
Group Ontology Definition
Metamodel. In: Ontologies for
Software Engineering and Software
Technology, pp. 217–247. Springer
(2006). https://doi.org/10.1007/3-540-
34518-3 8

[6] Consortium, T.U.: UniProt: the
universal protein knowledgebase in
2021. Nucleic Acids Research 49(D1),
D480–D489 (2021).

https://doi.org/10.1093/nar/gkaa1100

[7] David, J., Euzenat, J., Scharffe, F.,
Trojahn, C.: The Alignment API 4.0.
Semantic Web 2, 3–10 (2011).
https://doi.org/10.3233/SW-2011-0028

[8] Davis, A.P., Murphy, C.G.,
Saraceni-Richards, C.A., Rosenstein,
M.C., Wiegers, T.C., Mattingly, C.J.:
Comparative Toxicogenomics
Database: a knowledgebase and
discovery tool for
chemical-gene-disease networks.
Nucleic Acids Research 37, D786–D792
(2022)

[9] Debruyne, C., O’Sullivan, D.:
R2RML-F: towards sharing and
executing domain logic in R2RML
mappings. In: Auer, S., Berners-Lee, T.,
Bizer, C., Heath, T. (eds.) Proceedings
of the Workshop on Linked Data on
the Web, LDOW 2016, co-located with
25th International World Wide Web
Conference (WWW 2016). CEUR
Workshop Proceedings, vol. 1593.
CEUR-WS.org (2016)

[10] Denaux, R., Ren, Y.,
Villazón-Terrazas, B., Alexopoulos, P.,
Faraotti, A., Wu, H.: Knowledge
architecture for organisations. In: Pan,
J.Z., Vetere, G., Gómez-Pérez, J.M., Wu,
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[36] Wood, D., Cyganiak, R., Lanthaler,
M.: RDF 1.1 Concepts and Abstract
Syntax. W3C Recommendation, W3C
(2014), https://www.w3.org/TR/
2014/REC-rdf11-concepts-20140225/

[37] Yamagata, Y., Yamada, H.:
Ontological approach to the
knowledge systematization of a toxic
process and toxic course representation
framework for early drug risk
management. Scientific Reports 10,
14581 (2020).
https://doi.org/10.1038/s41598-020-
71370-7

[38] Yang, C., Cronin, M., Arvidson, K.,
Bienfait, B., Enoch, S., Heldreth, B.,
Hobocienski, B., Muldoon-Jacobs, K.,
Lan, Y., Madden, J., Magdziarz, T.,
Marusczyk, J., Mostrag, A., Nelms, M.,
Neagu, D., Przybylak, K., Rathman, J.,
Park, J., Richarz, A.N., Richard, A.,
Ribeiro, J., Sacher, O., Schwab, C.,
Vitcheva, V., Volarath, P., Worth, A.:
COSMOS next generation – A public
knowledge base leveraging chemical
and biological data to support the
regulatory assessment of chemicals.
Computational Toxicology 19 (2021).
https://doi.org/10.1016/j.
comtox.2021.100175

[39] Zhou, X., Menche, J., Barabási,
A.L., Sharma, A.: Human
symptoms–disease network. Nature
Communications 5(1) (2014).
https://doi.org/10.1038/ncomms5212

28


