
1

Using Knowledge Graphs and SHACL to Validate Declaration Forms:

An Experiment in the Social Security Domain to Assess SHACL's

Applicability

Davan Chiem Dao

Montefiore Institute

University of Liège

4000 Liège

Belgium

Christophe Debruyne1

Montefiore Institute

University of Liège

4000 Liège

Belgium

Paul Stijfhals

Smals Research

Smals asbl

1060 Brussels

Belgium

Abstract

Smals carries out innovative ICT projects in e-government and e-health in Belgium. Smals Research

conducts applied research into novel technologies to see whether they can improve or provide new

solutions to their clients. In 2021, these technologies included knowledge graphs and SHACL. In this

paper, we report on a study we conducted in 2021 at Smals Research and continued in 2022 at the

University of Liège. Many use cases within Smals' clients rely on XML for various reporting purposes,

validated with a combination of XML Schema Definition (XSD) documents and bespoke code. We

wanted to know to what extent SHACL is more expressive than XSD and to what extent SHACL can

scale to support such data validation tasks. To answer this question, Smals Research has conducted an

experiment in which we validate declaration forms in the Belgian social security domain. Our study

indicates that while SHACL is more expressive than XSD for these declaration forms, how SHACL

shapes are declared profoundly impacts reusability and efficiency.

1. Introduction

The Shapes Constraint Language (SHACL) (Knublauch & Kontokostas, 2017) allows us to

validate RDF (Schreiber & Raimond, 2014) graphs by declaring constraints for RDF

resources that are called shapes. These shapes describe the characteristics that RDF resources

and their properties should possess. These shapes can define conditions on, among others, the

presence or absence of certain properties and property paths, the relationship between a the

value of a property and the value of property paths, the allowed data types of properties, and

the cardinality of properties.

In public administrations and the EU, SHACL has been used to implement constraints put

forward by so-called application profiles. For example, the Flemish government's Open

Standaarden voor Linkende Organisaties (OSLO) provides JSON-LD (Kellogg, Longley, &

Champin, 2020) contexts as schemas for data exchange, which can be validated against

corresponding SHACL templates. These profiles are used to validate data and are shared with

the public. That said, the shapes described in those application profiles are often limited to

"simple" integrity constraints such as cardinality, length, and regular expressions. Complex

rules or constraints must be validated in industrial and organizational knowledge graphs

(KGs) (Hogan et al., 2020). Such constraints, which we will now call complex constraints, are

often outside the scope of the basic constructs provided by SHACL. Luckily, those constraints

can be declared by "implementing" those constraints using SPARQL (Seaborne & Harris,

2013), which is the RDF query language. Those SPARQL queries are embedded in so-called

SPARQL Constraint Components, which does require knowledge of yet another technology.

1 Corresponding author: Christophe Debruyne – c.debruyne@uliege.be

mailto:c.debruyne@uliege.be
Davan Chiem Dao, Christophe Debruyne, and Paul Stijfhals. Using knowledge graphs and SHACL to validate declaration forms: An experiment in the social security domain to assess shacl's applicability. In European Commission, Directorate-General for Informatics, and Publications Office of the European Union, editors, ENDORSE, 2nd EuropeaN Data conference On Reference data and SEmantics ENDORSE 2023 - Virtual event, 14-16 March 2023 - Proceedings, pages 85-96. Publications Office of the European Union, 2023

2

Smals 2 carries out innovative ICT projects in e-government and e-health for social

security and healthcare institutions. Smals Research3 conducts applied research into novel

technologies to see whether they can improve or provide new solutions to their clients. In

2021, these technologies included RDF KGs and SHACL to validate the data in KGs

Many use cases within Smals' clients rely on XML for various reporting purposes,

validated with a combination of XML Schema Definition (XSD) documents and bespoke

code. The bespoke code was used to validate constraints that were too complex for XSD. We

wanted to know to what extent SHACL can scale to validate forms against shapes that

implement complex constraints, which need to rely on a combination of existing SHACL

constructs, logical operations, and embedded SPARQL queries. To answer this question,

Smals Research has conducted an experiment in which we validate declaration forms in the

Belgian social security domain (RSZ-ONSS). This study was conducted in 2021 at Smals

Research and continued in 2022 at the University of Liège. We report on this study and our

findings in this paper.

The paper is organized as follows: Section 2 describes the context of the Belgian social

security and the DmfA declaration that is the focus of our study. Section 3 reports on our

method for constructing an RDF knowledge graph, transforming DmfA declarations into RDF

and developing SHACL shapes. Section 4 provides an overview of recurring patterns for

which one could foresee abstractions and some design considerations we took to heart while

developing the shapes. Section 5 reports on a demonstration, and Section 6 presents an

overview of the conclusions and lessons learned. Section 6 also prevents an overview of

possible venues for future work.

1.1 Disclaimer

While Smals builds solutions for the RSZ-ONSS, this study was not conducted for the RSZ-

ONSS. This study was conducted to gain insights into the opportunities offered by SHACL.

We chose this domain as it was sufficiently representative concerning complex constraints

and the online availability of all information documentation and files.

2. Context: The Belgian Social Security and DmfA Declarations

The RSZ-ONSS4 is Belgium's national security office and manages Belgium's social security

system. As such, the RSZ-ONSS is responsible for collecting social security contributions

from employers and employees and for distributing these contributions to the various social

security funds (e.g., healthcare, pensions, and unemployment benefits).

To reduce the number of filled-out forms and interactions between RSZ-ONSS and

employers or employees and simplify forms to speed up the process, the RSZ-ONSS

developed three electronic declarations as part of their e-government program. Employers use

these forms to send information about their employers to the RSZ-ONSS.

• The Déclaration immédiate/onmiddelijke aangifte, which translates to "immediate

declaration" (Dimona), contains information concerning the start and end of an

employment relationship.

• The Déclaration des Risques Sociaux (DRS), which translates to "declaration of social

risks," is used to declare that an employee encountered a social risk during the

2 https://smals.be/
3 https://www.smalsresearch.be/
4 Rijksdienst voor Sociale Zekerheid - Office National de Sécurité Sociale: https://www.socialsecurity.be/

https://smals.be/
https://www.smalsresearch.be/
https://www.socialsecurity.be/

3

employment relationship. Social risks are events that change an employee's social

position, such as being fired, being a victim of an accident at work, or suffering an illness

for an extended period.

• The Déclaration multifonctionnelle/multifunctionele Aangifte (DmfA), which translates to

"multifunctional declaration," is used to communicate more general information about an

employment relationship. The various branches of the RSZ-ONSS require that

information.

One could represent these declarations on a timeline where a Dimona declaration provides

information on the start- and end date of an employment relationship, a DfmA declaration

provides period information about that employment relationship, and a DRS declaration

provides information on events during those periods in the employment relationship.

In this study, we wanted to assess the applicability of SHACL in this e-government

process. We focused on DmfA declarations as it is the most complex electronic declaration; it

has the most fields subject to complex constraints. Thus, it is the most suitable declaration to

reveal to what extent KGs and their technologies can potentially improve processes supported

by the existing information system.

2.1 DmfA Declarations

The DmfA is a multifunctional declaration that employers send to the RSZ-ONSS. It is

multifunctional because all institutions use it for social security purposes, e.g., determining

the amount of contribution an employer owes and allocating social rights indemnity

payments.

Concerning the kind of information transmitted, it includes salary data and the employee's

working time. It can be sent via the Web by manually filling in an online form or via file

transfer, for which the information is contained in an XML file. The Web interface covers

many data validation aspects, though filling those in manually can be tedious for companies

employing multiple people. XML is used for communicating information about multiple

employment relationships in a batch. The Belgian social security has made the XSD schema

and a simple Java application available for some "superficial" data validation. This latter

format for a DmfA will be the input source of the validation process. Most employers report

using XML, and the validation of those XML documents will be the focus of our study.

A glossary5 provided by the RSZ-ONSS documents the content of the XML file. The

XML file's structure and schema are described using an Entity-Relationship Diagram (ERD);

the ERD contains 29 entity sets, 28 relationship sets, and over 200 attributes (across the entity

sets). The ERD also indicates which attributes are prohibited. The fact that some entities,

relationships, or attributes can become prohibited highlights that the DmfA changes over

time. Indeed, as the regulations change, the DmfA must reflect these changes. Hence, there

are different versions, each corresponding to a particular quarter. When an employer sends a

DmfA for a particular quarter, it must respect the constraints of that quarter. This temporal

aspect should be taken into consideration when designing a validation process. It is important

to note that the glossary often refers to so-called appendices, which contain additional

(structured) information that needs to be consulted to validate the data. An example would be

the time interval a particular code was valid. Those appendices also evolve over time.

To show how constraints are described in the glossary, an example is provided in Figure

1. It illustrates the glossary's HTML version, but PDF and XML versions also exist. One can

5 https://www.socialsecurity.be/lambda/portail/glossaires/dmfa.nsf/web/glossary_home_fr

https://www.socialsecurity.be/lambda/portail/glossaires/dmfa.nsf/web/glossary_home_fr

4

observe that some constraints are structured, such as the compulsory presence of an attribute

or the maximum length of a value, which can both be expressed in XSD. Nevertheless, most

constraints are informally described. While some of these constraints can be expressed in

XSD (e.g., a regular expression), many of them cannot and require to be validated by an

application (e.g., computing a checksum of an ID number).

Currently, there are two validation processes put in place by the RSZ-ONSS. First, the

most uncomplicated validation process consists of a lightweight Java program. This program

is available to employers to verify a DmfA declaration before submission. This program

verifies whether the DmfA declaration is a well-formed XML file that conforms to the XSD.

Additionally, two constraints are verified: the uniqueness of the Social Security Identification

Numbers and the amount owned declared corresponds to the one computed. Data validation

capabilities by the employer are thus limited. The other validation process occurs upon the

submission of a DmfA. The RSZ-ONSS runs a non-disclosed program that validates all the

constraints a DmfA should respect. However, the validation result can take up to ten days to

be sent.

Figure 1 A page of the DmfA glossary describing enterprise numbers.

These explanations have highlighted some key issues with the current situation. Many

constraints fall outside the expressivity of XSD and are described in natural language and thus

cannot be processed by a computer agent or are written in a non-interoperable format (i.e.,

Java code or non-disclosed). The current validation processes are either partially complete or

not directly available for employers, increasing the required time to fill the declaration.

Knowledge graph technologies and SHACL can hopefully overcome these problems by

creating interoperable data validation constraints.

3. Method

We built a prototype knowledge graph to determine to what extent SHACL can scale to

validate complex constraints. The steps are relatively straightforward. We first created a

vocabulary for our knowledge graph (without SHACL shapes) and then transformed the

glossary and the different appendices into RDF, committing to that vocabulary. We also

5

created a mapping from DmfA declarations in XML to RDF. Once everything was

implemented, we developed the SHACL shapes and a process for validating DmfA XML

files. All of these steps will be detailed in the following subsections.6

3.1 Building the Vocabulary

As this knowledge graph project did not require the support for complex reasoning tasks and

our Universe of Discourse was fairly simple, we decided to develop a vocabulary rather than

an ontology. The development of this vocabulary followed the following steps. We first lifted

the XSD schema into a vocabulary. Each functional block corresponds with a concept (or

class in the vocabulary), and the relationships between concepts have been made explicit. We

then lifted the schemas of the appendices into the vocabulary. Finally, we used the ERD and

some domain knowledge to refine the vocabulary. One example is the homogenization of

temporal aspects (using quarters throughout the knowledge graph instead of a combination of

quarters and years).

3.2 Data Transformation

While integrating non-RDF data into the RDF knowledge graph is not key to this study's

report, we felt it was sufficiently important to describe our experiences.

As DmfA declarations are stored as XML, and the appendices are available as XML and

CSV files (among others), we were able to use declarative mapping languages such as RML

(Dimou et al., 2014) to transform (and integrate) the data into an RDF knowledge graph.

RML allows us to declare how data in those files should be transformed into RDF. RML

mappings are stored as RDF and are part of the knowledge graph. Such an approach thus aids

in answering data lineage and data provenance questions such as: "Where do the values for a

particular property come from?"

One of the advantages of RML is its availability of FNO (De Meester, Maroy, Dimou,

Verborgh, & Mannens, 2017), allowing us to use functions to manipulate data during the RDF

generation process. Unfortunately, the FNO prototype implementation did not implement all

GREL7 functions, and we had to resort to some custom scripts in some cases.

Another limitation was that, at the time of the study, we could not manipulate the source

file before RDF generation; you refer to a file as the source.8 As the XML file is a tree, there

are no cycles. The knowledge graph, on the other hand, does. The XML file contained many

repeating elements of the same types, and we had to find a way to assign them internal IDs to

ensure that the right RDF resources were related. Thus, we had to include those IDs with a

script before generating RDF, which made the RDF generation process less self-contained. A

recent proposal (Delva, Van Assche, Heyvaert, De Meester, & Dimou, 2021) may address this

issue.

Of the 24 appendices, 19 were integrated. Of the remaining 5, 4 appendices were

unnecessary (e.g., land codes and ASCII conversion codes), and 1 was too complex as we had

no access to domain expertise.

6 The results of this process are available on https://github.com/chrdebru/dmfa_pub
7 https://openrefine.org/docs/manual/grelfunctions
8 This is possible when generating data from relational databases as you can avail of the SQL query language

(and thus its functions) to indicate what tables or views to transform.

https://github.com/chrdebru/dmfa_pub
https://openrefine.org/docs/manual/grelfunctions

6

3.3 Developing SHACL Shapes

This section covers the process of creating SHACL shapes for the DmfA. It covers how our

SHACL shapes were generated. In the next section, we discuss emerging patterns and design

considerations.

The shapes for classes and data properties were "bootstrapped" by processing the XSD,

i.e., a script that generated SHACL shapes based on XSD constraints capturing data types,

cardinality constraints, maximum length, patterns, etc. Figure 2 depicts some of these "basic"

shapes. The starting point for a class's shape is a rule stating that each instance has valid data

properties. Other shapes describe criteria data properties must meet, such as specified

datatypes, value and length constraints, and patterns. These criteria are the SHACL equivalent

of XSD constraints. Important to note is that all constraints had to be manually checked, as

there are some "inconsistencies" in the glossary (see Figure 1). The length can refer to both

the maximum length and the exact length. We choose to generate validation checks for the

former and change those where necessary.

Figure 2 The DmfA shapes generated by a script as a starting point. Notice that the node

shape for ont:EmployerDeclaration refers to various property shapes. In our figure, we

illustrate the property shape for ont:Quarter.

These constraints do not cover all the constraints that the declaration should respect. Thus,

they were manually verified and refined. The glossary of each class, data property, and object

property were consulted to determine missing constraints. Missing constraints concerning

classes and data properties were added to the base shapes, whereas object properties'

constraints were added to the shape of their domain. Figure 3 shows how the constraints

concerning ont:Quarter were refined (only the datatype was retained). Some of the missing

constraints can be expressed with SHACL-core components (such as adding min length to

simulate an exact length), while others had to be expressed with SPARQL Constraint

Components. In this example, we use SPARQL to test whether "year-trimester," which

contains five digits, contains a valid year (between 2003 and the time of declaration) and a

valid trimester.

The example in Figure 3 contains a SPARQL query to check the validity of a property.

We note that there are examples in which the graph needs to be traversed. For instance, to

check whether a date of an entity falls in the interval of a related appendix. An example of

such SPARQL Constraint Components will be illustrated shortly.

4 Emerging Patterns and Design Considerations

Various patterns were identified during the development of the SHACL shapes. We aim to

provide constraints that can be applied in contexts beyond the social security domain or to

serve as a model for creating other constraints by presenting the structure of the developed

shapes. We omit some code samples due to space constraints, but examples can be found in

the GitHub mentioned above repository.

7

Figure 3: Glossary of Quarter (left) and refined shape of Quarter (right)

4.1 Checksums

Checksums can be used to verify the correctness of identifiers (e.g., company IDs). Two

checksums are used in DmfA (anecdotally, a reference to one of the older algorithms was

missing). Each checksum can be declared and implemented in SPARQL Constraint

Components, which are reused by various property shapes.

4.2 Existing Code w.r.t Appendices

Some appendices define values that certain fields in the XML can accept. Listing 1 illustrates

the validity checking for ont:PositionCode with a set of allowed values defined by Appendix

9. This rule checks if at least one resource of type an9:PositionCode with a code equal to the

property value that corresponds with that field. The main advantage of this rule is that it is up

to date with the current state of Appendix 9.

[
 sh:message "Invalid code for a position, code does not exist" ;
 sh:prefixes <> ;
 sh:select """
 SELECT $this ?value
 WHERE {
 $this ont:PositionCode ?value.
 OPTIONAL{
 ?pc a an9:PositionCode ; an9:Code ?value.
 }
 FILTER(!BOUND(?pc))
 }""" ;
] .

Listing 1 SPARQL Constraint Component for validating values with respect to appendices.

4.3 Code Within Valid Period w.r.t Appendices

The appendices defining values for certain fields in XML documents also define their validity

period. As mentioned earlier, we homogenized temporal aspects in the vocabulary; data

properties concerning the starting and ending quarter of the validity of a code were added to

the vocabulary so that appendices had dates. This addition made the constraints checking the

temporal validity of a code follow the same pattern. It also eases the checking as the quarter

of declaration must not be transformed into a date before being compared to the validity

8

period. An example of this type of rule is presented in Listing 2. The quarter of the declaration

is reached through the inverse path from a resource and compared to the starting and ending

quarter of the code that matches the value of the ont:PositionCode data property. Like the

previous rule, being up to date with the current state of the appendix is the main advantage of

this rule. This particular example also demonstrates that we do traverse graphs with SPARQL.

[
 sh:message "Invalid ont:PositionCode, code is out of valid quarter range." ;
 sh:prefixes <> ;
 sh:select """
 SELECT $this ?value
 WHERE {
 $this ont:PositionCode ?value.
 OPTIONAL {
 ?pc a an9:PositionCode;
 an9:Code ?value;
 an9:validFromQuarter ?startQuarter;
 an9:validToQuarter ?endQuarter .
 $this ^ont:R_90012_90015/
 ^ont:R_90017_90012/
 ^ont:R_90007_90017/
 ont:Quarter ?quarter.
 FILTER(?startQuarter < ?quarter && ?quarter < ?endQuarter)
 }
 FILTER(!BOUND(?pc))
 }""" ;
] .

Listing 2 SPARQL Constraint Component for a code's temporal validity.

4.4 Unique Occurrences of Information Inside a DmfA Declaration

Some constraints described in the glossary state that some entity values must be unique inside

a DmfA declaration. Listing 3 illustrates a rule expressing the uniqueness of natural person

sequence numbers in an employer declaration. This rule counts the number of occurrences for

a sequence number. The sequence number is not unique if this number is greater than one. In

this example, we want to avoid two pieces of information about the same person. This pattern

also appears for combinations of properties, though we do not have the space to provide an

example.

[
 sh:message
 "Each ont:NaturalPersonSequenceNbr must be unique for a ont:EmployerDeclaration." ;
 sh:prefixes <> ;
 sh:select """
 SELECT $this
 WHERE {
 {
 SELECT $this (COUNT(?seqNbr) as ?seqNbrOcc)
 WHERE {
 $this ont:R_90007_90017/ont:NaturalPersonSequenceNbr ?seqNbr .
 }
 GROUP BY ?seqNbr $this
 }
 FILTER(?seqNbrOcc > 1)
 }""" ;
] .

Listing 3 SPARQL Constraint Component for ensuring that DmfA declarations do not have

multiple entities for the same person.

9

4.5 Design Considerations

During the implementation of SHACL shapes, various design choices were made. This

section will present these choices and the considerations that led to their implementation. We

will also compare the trade-offs and potential impacts of each alternative on the effectiveness

and efficiency of the SHACL shapes. These considerations should be considered as they can

significantly impact the usability and maintenance of the shapes. For this study, we used the

TopBraid SHACL API.9

4.5.1 SPARQL Constraint Components Optimization

Developing SPARQL Constraint Components requires thorough query language and

computer science knowledge. For instance, a first implementation of a checksum splits the

number using type casting and the substring function. However, string manipulation is often

slower than operating on integers. Thus, this query was improved by performing a modulo

operation to split the number. On average, a reduction of 300 milliseconds was achieved.

Another example was the validation of codes where OPTIONAL was combined with a

FILTER on unbound variables to speed things up. In other words, rather than intuitively

following the description of the constraint, it is worthwhile to approach the problem from

another angle. Here, tests showed an average reduction of 250 milliseconds.

4.5.2 Selecting the Target of a Rule

SHACL shapes were bootstrapped from the XSD schema and refined using the glossary.

However, strict adherence to this approach may significantly slow the validation process. It is

possible to use SPARQL queries to navigate the graph and express constraints from any

resource because the declaration's graph does not have isolated vertices. Thus, rewriting a

constraint to target another class may be more efficient.

An example of this is testing the uniqueness of people in a declaration. The rule that

no two people with the same sequence number can occur in a declaration was described in

NaturalPersonSequenceNbr; following this approach would result in a SPARQL query for

each entity of that type. Declaring (and rewriting) this constraint at the parent

ont:EmployerDeclaration is more efficient.

4.5.3 Redundancy, and Clarity vs. Efficiency

A shape's constraints may have overlapping checks. For example, consider the shape of an

ont:Quarter shown in Figure 3. If the length constraints are not met, the pattern constraint

also fails. Similarly, if the value is less than 20031, the minimum value constraint and the

SPARQL Constraint Component will report errors. While the length and minimum value

constraints are redundant, they offer a more specific reason for failure. An error indicating a

violation of the minimum length reflects a missing character, whereas a mismatching pattern

error does not. For this reason, redundant but more precise constraints were favored.

Nevertheless, this choice decreases efficiency as more checks must be performed.

So, when developing constraints and constraint components, expressing those in a

clear and easily understandable manner was favored other making them as efficient as

possible. Clear constraints often result from a combination of simpler constraints, making

them easier to maintain. As they are fragmented, constraints can be reused for other purposes.

On the other hand, efficient constraints are more likely to be complex and harder to maintain.

9 https://github.com/TopQuadrant/shacl

https://github.com/TopQuadrant/shacl

10

4.5.4 Knowledge Organization

One of the limitations of this study is investigating the use of named graphs for storing the

evolution of annexes and appendices over time. We have not stored DmfA (and other)

declarations in their own named graphs either. The former would not be that interesting of an

exercise, and the latter requires sufficiently representative data to assess the impact of named

graphs. That said, it is known that partitioning the RDF knowledge graph into named graphs

has a positive impact on query efficiency.

5 Demonstration

We tested our SHACL shapes on some examples provided by the glossary. We also changed

some examples so that they contained errors. All examples used artificial data; an arguable

limitation of this study is that it was not applied to actual data. However, as stated before, we

chose this as an application domain for its availability of data, documentation, and complex

constraints. In Figure 4, we demonstrate the validation of a transformed DmfA declaration

containing an erroneous company ID.

Figure 4 Validating DmfA examples provided by RSZ-ONSS in which we introduced errors.

Here, it reports on an invalid checksum of a company ID.

6 Conclusions, Lessons Learned, and Future Work

We wanted to know to what extent SHACL is more expressive than XSD and to what extent

SHACL can scale to support such data validation tasks. We can conclude that we can

represent more validation constraints with SHACL than with XML and XSD. We can

potentially share those SHACL shapes for more "thorough" DmfA data validation by an

employer. I.e., we showed that the subset of the shapes one can share constitutes an

application profile richer than what is possible with current XSD schemas. Our results

demonstrate that this approach is viable for validating declarations against complex

constraints. We know that implementing constraints that validate a declaration considering

11

previously submitted declarations is possible with knowledge graph technologies. However,

they must be investigated in more depth in the future as they require access to the knowledge

graph. A Web service can be conceived, but such a service should ensure that the knowledge

graph cannot be exploited for malicious intents.

Moreover, the SHACL shapes we have developed are also more interoperable. Not

only because they are part of the knowledge graph but also because SHACL processors exist

for different software ecosystems (Python, Java, …). As exemplified by (Debruyne &

McGlinn, 2021), one can use Linked Data (Bizer, Heath, & Berners-Lee, 2009) principles to

share those constraint components within and across organizations. This opportunity was not

explored in this study and is considered for future work.

Important to note is the trade-off between efficiency and clarity. We have chosen to

keep the constraint components as simple (and, therefore, also as reusable) as possible, but

this is at the cost of computational overhead in terms of the number of SPARQL queries being

fired.

Unsurprisingly, creating SHACL shapes and constraint components is a complex

knowledge engineering task. It requires knowledge of RDF and SHACL and a profound

knowledge of SPARQL to implement complex constraints. Not to be underestimated is the

ability to reformulate constraints to reduce overhead or increase efficiency. A prime example

in this study was a constraint on entities that could be rewritten from the perspective of

another related entity.

As for future work, the following elements are considered. We have already

mentioned the interoperability of SHACL shapes and constraint components across software

ecosystems using Linked Data principles. Other aspects pertaining to named graphs. First is

the validation of declarations (all types) over time. For instance, validate revisions of a

declaration, for which appropriate knowledge organization strategies need to be developed—

secondly, the development and deployment of validation across declarations, employers, and

employees. As stated previously, a limitation was the use of artificial examples available

online to demonstrate a point. We believe we have shown said point, but assessing its impact

in an operational environment would be interesting. This will be difficult due to the sensitive

nature of the data and requires collaboration with the RSZ-ONSS.

References

Bizer, C., Heath, T., & Berners-Lee, T. (2009). Linked Data - The Story So Far. International Journal on

Semantic Web and Information Systems. https://doi.org/10.4018/jswis.2009081901

De Meester, B., Maroy, W., Dimou, A., Verborgh, R., & Mannens, E. (2017). RML and FnO: Shaping DBpedia

Declaratively. In E. Blomqvist, K. Hose, H. Paulheim, A. Lawrynowicz, F. Ciravegna, & O. Hartig (Eds.),

The Semantic Web: ESWC 2017 Satellite Events - ESWC 2017 Satellite Events, Portorož, Slovenia, May

28 - June 1, 2017, Revised Selected Papers (pp. 172–177). https://doi.org/10.1007/978-3-319-70407-4_32

Debruyne, C., & McGlinn, K. (2021). Reusable SHACL Constraint Components for Validating Geospatial

Linked Data. In B. Yaman, M. A. Sherif, A.-C. N. Ngomo, & A. Haller (Eds.), Proceedings of the 4th

International Workshop on Geospatial Linked Data (GeoLD) Co-located with the 18th Extended Semantic

Web Conference (ESWC 2021), Virtual event (instead of Hersonissos, Greece), June 7th, 2021 (pp. 59–

66). Retrieved from https://ceur-ws.org/Vol-2977/paper8.pdf

Delva, T., Van Assche, D., Heyvaert, P., De Meester, B., & Dimou, A. (2021). Integrating Nested Data into

Knowledge Graphs with RML Fields. In D. Chaves-Fraga, A. Dimou, P. Heyvaert, F. Priyatna, & J. F.

Sequeda (Eds.), Proceedings of the 2nd International Workshop on Knowledge Graph Construction co-

located with 18th Extended Semantic Web Conference (ESWC 2021), Online, June 6, 2021. Retrieved from

https://ceur-ws.org/Vol-2873/paper9.pdf

Dimou, A., Sande, M. Vander, Colpaert, P., Verborgh, R., Mannens, E., & de Walle, R. Van. (2014). RML: A

Generic Language for Integrated RDF Mappings of Heterogeneous Data. In C. Bizer, T. Heath, S. Auer, &

T. Berners-Lee (Eds.), Proceedings of the Workshop on Linked Data on the Web co-located with the 23rd

International World Wide Web Conference (WWW 2014), Seoul, Korea, April 8, 2014. Retrieved from

http://ceur-ws.org/Vol-1184/ldow2014_paper_01.pdf

Hogan, A., Blomqvist, E., Cochez, M., d’Amato, C., de Melo, G., Gutiérrez, C., … Zimmermann, A. (2020).

12

Knowledge Graphs. CoRR, abs/2003.0. Retrieved from https://arxiv.org/abs/2003.02320

Kellogg, G., Longley, D., & Champin, P.-A. (2020). JSON-LD 1.1.

Knublauch, H., & Kontokostas, D. (2017). Shapes Constraint Language (SHACL). Retrieved from W3C

website: https://www.w3.org/TR/shacl/

Schreiber, G., & Raimond, Y. (2014). Rdf 1.1 Primer. Retrieved from W3C Working Group Note 24 June 2014

website: https://www.w3.org/TR/rdf-primer/

Seaborne, A., & Harris, S. (2013). SPARQL 1.1 Query Language. Retrieved from W3C Recommendation

website: https://w2.syronex.com/jmr/w3c-biblio

