
Received January 11, 2022, accepted February 17, 2022, date of publication February 22, 2022, date of current version March 2, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3153366

Circuitree: A Datalog Reasoner in
Zero-Knowledge
TOM GODDEN 1, RUBEN DE SMET 2, (Student Member, IEEE), CHRISTOPHE DEBRUYNE 3,
THIBAUT VANDERVELDEN 1, KRIS STEENHAUT 1,2, (Member, IEEE), AND AN BRAEKEN 1
1INDI Department, Vrije Universiteit Brussel, 1050 Brussels, Belgium
2ETRO Department, Vrije Universiteit Brussel, 1050 Brussels, Belgium
3Institut Montefiore, Université de Liège, 4000 Liège, Belgium

Corresponding authors: Tom Godden (tom.godden@vub.be) and Ruben De Smet (rubedesm@vub.be)

This work was supported in part by the Project Fund for Technology and Transfer (TETRA) of Flanders Innovation &
Entrepreneurship (VLAIO) under Award HBC.2020.2073-Velcro.

ABSTRACT Driven by the increased consciousness in data ownership and privacy, zero-knowledge proofs
(ZKPs) have become a popular tool to convince a third party of the truthfulness of a statement without disclos-
ing any further information. As ZKPs are rather complex to design, frameworks that transform high-level
languages into ZKPs have been proposed. We propose Circuitree, a Datalog reasoner in zero-knowledge.
Datalog is a high-level declarative logic language that is generally used for querying. Furthermore, as a
logic language, it can also be used to solve logic problems. An application using Circuitree can efficiently
generate ZKPs, based on Datalog rules and encrypted data, to prove that a certain conclusion follows from
a Datalog ruleset and encrypted input data. Compared to existing frameworks, which generally use their
own limited imperative languages, Circuitree uses an existing high-level declarative language. We point out
several applications for Circuitree, including EU Digital COVID Certificates and privacy-preserving access
control for peer-to-peer (p2p) networks. Circuitree’s performance is evaluated for access control in a p2p
network. First results show that our approach allows for fast proofs and proof verification for this application.

INDEX TERMS Access control, bulletproofs, datalog, privacy, zero-knowledge proof, security, identity
management, verifiable computation, blockchain, privacy-enhancing technologies.

I. INTRODUCTION
Witnessing the continuous stream of news reports about per-
sonal data leaks, data trade as a new business model, or data
misuse by government agencies for various political purposes
[1]–[3], it should be evident that the lack of online privacy is
a big issue. While initiatives such as the General Data Pro-
tection Regulation (GDPR) covers the legal aspect, privacy-
enhancing technologies (PETs) try to avoid infringements on
privacy from a technological perspective.

A current paradigm in PETs is the adoption of ZKPs.
A ZKP allows proving a statement that relates to some secret
knowledge without revealing anything beyond the truth of
this statement. ZKPs have applications in many domains,
although they are primarily used for authentication and
authorization. A recent example is the Signal private group
system [4], wherein participants prove that they have the

The associate editor coordinating the review of this manuscript and

approving it for publication was Muhammad Imran Tariq .

necessary access rights to alter an existing group definition
without disclosing their identity or even their access level.

ZKPs have also been applied in blockchain technology.
In cryptocurrencies, for instance, ZKPs are used to conceal
transaction amounts, senders, and receivers [5], [6]. Later,
proposals appeared which use ZKPs to manage anonymous
credentials [7] for decentralized identities on blockchains [8].

Many different systems for proving nearly arbitrary state-
ments in zero-knowledge have been devised in the last
decade. Because designing ZKPs is complex and error-
prone, various high-level programming languages and cor-
responding compilers for ZKP systems have been brought
forward [9]–[15]. Like regular high-level languages and com-
pilers, these tools are designed to make development easier.
They accomplish this by providing abstractions that increase
the efficiency of the development and the correctness of the
resulting proof.

This article proposes to use Datalog as a high-level lan-
guage for ZKPs, as an alternative to existing systems, which
exclusively use imperative languages. Datalog is a declarative

21384 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-8999-072X
https://orcid.org/0000-0003-0436-527X
https://orcid.org/0000-0003-4734-3847
https://orcid.org/0000-0002-6006-7480
https://orcid.org/0000-0002-5901-4218
https://orcid.org/0000-0002-9965-915X
https://orcid.org/0000-0003-2787-8334

T. Godden et al.: Circuitree: Datalog Reasoner in Zero-Knowledge

FIGURE 1. Relations between application, Circuitree, proof system and underlying cryptographic primitives. In this scenario, Alice
wants to go to a bar, and Victor has to verify her COVID Certificate, according to the application-specified policy. First, Circuitree is
initialized with the application-specific ruleset (step 1). The secret input data are injected into the proof system through an input
gadget; in the case of the EU Digital COVID certificate, a signature is verified in zero-knowledge (step 2 and 3). The corresponding
facts are declared to Circuitree (step 4), in an application-specific way. When Circuitree is supplied with a query (step 5), it will
allocate the facts, run the Datalog reasoner and generate the constraints for the supplied query (step 6). Finally, the proof is
generated (step 7) and sent to Victor, the verifier (step 8).

programming language. Datalog is not Turing-complete,
which is a desirable property for data retrieval and querying.
For instance, it is the basis of graph query languages such as
SPARQL [16]. We will compile Datalog, as an existing high-
level programming language, to zero-knowledge. This makes
the development for declarative zero-knowledge applications
significantly easier and less error-prone, compared to a direct
implementation in zero-knowledge. Furthermore, this com-
pilation introduces a layer of abstraction, which allows us to
potentially exploit a large variety of zero-knowledge systems.

We describe an efficient implementation strategy in the
rank-1 constraint system (R1CS) setting which we call ‘‘Cir-
cuitree’’. We demonstrate its performance with a Datalog
reasoner using the zero-knowledge system Bulletproofs [17].
With Circuitree, we aim to provide a framework that bene-
fits from Datalog’s computational characteristics to generate
efficient proofs of entailment with low latency.

Figure 1 depicts the Circuitree application stack. It illus-
trates where Circuitree is situated in an application, and how it
relates to its underlying proof system. As a concrete example,
the figure focuses on a privacy-preserving implementation of
the EUDigital COVID Certificate system. The context of this
example is explained in Section III-E.
A typical usage of Circuitree in an application can be

roughly divided in 8 steps, also depicted in Fig. 1. First, the
application ruleset is injected in Circuitree (step 1). A more
complete ruleset, specific to the depicted example can be
found in Fig. 1. Next (step 2), the prover injects their secret

facts. These typically come from an earlier commitment, or
from encrypted or signed data. An input gadget generates
the necessary constraints corresponding to decryption or sig-
nature verification, and inserts them into the proof system
(step 3). The prover then declares the facts retrieved from
the input gadget to Circuitree (step 4). Now, Circuitree is
initialized and can be queried (step 5). Circuitree generates
the constraints that relate the query to the input data and
ruleset (step 6). The bulk of this article (Sections V and VI)
is concerned with generating these constraints in an efficient
manner. Finally, the proof can be extracted from the underly-
ing proof system (step 7), which can then be presented to a
verifier (step 8).

The name Circuitree is derived from the tree-like structure
of our generated arithmetic circuits, a term which is com-
monly (but incorrectly) used as a synonym for R1CS.

In what follows, we describe the related work and the
context in which Circuitree is situated (Section II), and we
illustrate the usefulness of Circuitree with multiple applica-
tions (Section III). The three sections thereafter are concerned
with the technical details. We start with an overview of
Circuitree’s design in Section IV, and we continue with the
details in Sections V and VI where we describe a naive and
an improved design respectively. In Section VII we describe
our implementation, in Section VIII we give a quantitative
and qualitative evaluation, and we conclude in Section IX.
Finally, in Section X we give some pointers to future
work.

VOLUME 10, 2022 21385

T. Godden et al.: Circuitree: Datalog Reasoner in Zero-Knowledge

II. CONTEXT AND RELATED WORK
Since around 1987, it has been known that all languages in
the nondeterministic polynomial time (NP) complexity class
have zero-knowledge proof systems [18]–[20], i.e., for every
statement that can be verified in polynomial time, the truth of
that statement is guaranteed without disclosing any additional
information. After its theoretical inception, zero-knowledge
research found an application in blockchain technology.
ZKPs allow keeping the contents of a public blockchain
private while maintaining the integrity and consistency con-
straints for which the blockchain is used [5], [6], [21].

Driven by increased interest, many different proof systems
have been developed in recent years. Each of these proof
systems has its strengths and weaknesses, most prominently
related to performance and cryptographic assumptions. For
example, Bulletproofs [17] does not require a trusted setup.
A system with a trusted setup requires a setup phase with an
honest party, before any proofs are generated. If this party
were dishonest, the ‘‘toxic waste’’ that is produced during
the setup ritual could be exploited to falsify proofs. Bullet-
proofs instead has transparent setup, but it is significantly
more costly in operation compared to many succinct argu-
ments of knowledge (SNARKs), for instance the ZK-STARK
protocol [22].

A. CONSTRAINT SYSTEMS AND NATIVE LANGUAGES
Proof systems also differ in the constraint system they are
designed with, often referred to as their ‘‘native language’’.
Bulletproofs and most SNARKs take a rank-1 constraint sys-
tem (R1CS), which is a system of multiplication constraints
and linear constraints taken over a prime field Fp. Usually,
the system’s complexity depends on the number of multipli-
cation gates n. For example, Bulletproofs produces proofs of
size O(log n).

Some newer proof systems devise their bespoke constraint
system. For example, ZK-STARK works with an arithmetic
execution trace (AET), a set of low-degree polynomials that
are repetitively applied to the input data. Another example
is Hoffmann, Klooß, and Rupp [23], which allows quadratic
multiplication gates, instead of linear multiplication gates in
standard R1CS. Since R1CS is the most widely known and
used constraint system, this article will further assume R1CS.
For our implementation, we will build on top of Bulletproofs.

B. ZERO-KNOWLEDGE ABSTRACTIONS
For several reasons, high-level programming languages and
abstractions have been designed on top of these zero-
knowledge algorithms. Firstly, a manual implementation
tightly couples an application to a particular ZKP system.
Moving from e.g. Bulletproofs to ZK-STARK requires a
reimplementation of the whole system. Secondly, directly
designing the zero-knowledge equations is a challenging and
error-prone process because of the limitations of the con-
straint system and the low-level aspect of the zero-knowledge
tools. Thirdly, debugging these applications is challenging
because of their cryptographic nature. Because of these

reasons, high-level languages have been introduced that can
be compiled to constraints directly, or to instruction sets that
are interpreted at runtime to these constraints.

The most generic among these implement a Turing-
complete programming system. TinyRAM [10], [11], for
example, is a Harvard-architecture reduced instruction set
computer (RISC) for which programmers design their ZKP
using a subset of the C programming language. TinyRAM
works by compiling the programmer’s program to a zero-
knowledge constraint system, which in turn can prove that
every program instruction has been executed correctly on
a given input. A related approach works by implementing
a complete von Neumann architecture as a zero-knowledge
program, effectively implementing a Turing-complete com-
puter that can verify arbitrary programs. This is the approach
used by vnTinyRAM [12] and later Cairo [14].

A prominent use case of Turing-complete zero-knowledge
abstractions is verifiable computation. Mouris and
Tsoutsos [15] introduce Zilch, a framework specifically for
verifiable computation with ZKPs. Zilch uses zMIPS, a zero-
knowledge oriented Microprocessor without Interlocked
Pipelined Stages (MIPS) architecture, and ZeroJava, a high-
level Java-like domain-specific language that is compiled to
zMIPS. In verifiable computation, a user sends a secret input
to a third party which will perform computations with this
input and returns its output, together with a proof that the
computations where performed correctly. Zilch’s instruction
set provides a relatively efficient way of generating this proof.
Because ZeroJava is a high-level language, it is significantly
easier to design these proofs than withmanually implemented
arithmetic constraints.

Alternative languages like zero-knowledge proof descrip-
tion language (ZKPDL) [9] and Circom [13] are then
again tied to a specific zero-knowledge architecture. Circom
encodes constraints for R1CS, and can be used with several
different R1CS-based ZKP systems. Whereas it does not
impose any overhead on top of the underlying R1CS system,
it only abstracts over a specific family of ZKP systems.
ZKPDL is not based on an NP-complete subsystem, but
instead works by specifying the raw (discrete log) relations
between public inputs and secret inputs.

Circuitree can provide a declarative option for verifiable
computation, as an alternative to the previously mentioned
imperative systems. Compared to the previously mentioned
frameworks, which use their own domain-specific imperative
language with limitations, Circuitree implements Datalog,
an existing declarative language.

C. DATALOG AND REBAC
Datalog is a declarative programming language and a subset
of Prolog. Compared to imperative languages, where the
programmer gives the program exact instructions, declarative
languages allow the programmer to define assertions (also
called facts) and logical rules which generate new assertions
based on existing ones. It is then possible to either find
all assertions the program entails, or query the program to

21386 VOLUME 10, 2022

T. Godden et al.: Circuitree: Datalog Reasoner in Zero-Knowledge

determine whether the assertions and rules entail a specific
query (also called a question).

Datalog’s main application is database querying and data
retrieval; it has certain restrictions, most importantly concern-
ing negation, that ensure that a Datalog reasoning process
always terminates. It is because of these restrictions that
infinite loops are impossible in Datalog, which makes Dat-
alog not Turing-complete. These restrictions make Datalog
suitable for declaring access control rules [24], [25].

Masoumzadeh and Joshi [26] describe a methodology for
enforcing access control in an ontology-based social network-
ing system (SNS), which they call OSNAC (ontology-based
social network access control). Their approach embeds the
permissions as data in the SNS. Similar to OSNAC is
ReBAC (relationship-based access control) [27]. We draw
inspiration from both. Permissions can be defined explicitly
(i.e. asserted), or derived from data via logic rules. This allows
one to enforce permissions with a simple database query.

OSNAC assumes a centralized database, where the service
provider has complete control over the data. For privacy-
minded applications, it would be desirable to have an
OSNAC-like system,where permissions are enforcedwithout
a service provider. Peer-to-peer networks such as Peer-
SoN [28], Glycos [29], or LibreSocial [30] all provide pri-
vate and secure SNSs. Their access control mechanisms are
relatively simple, in the sense that every user that should have
access is listed with the protected data item. This technique
is called an access control list (ACL). We propose to replace
the ACLs with ZKPs, by declaring the access control rules in
Circuitree instead. This keeps the data and access permissions
confidential, while the prover’s authorization claim can be
verified without disclosing any additional information.

In such a system, a database query suffices to establish
whether a user is allowed to write data. However, if the
permission data or the data required to deduce the permission
needs to stay secret, as would be the case in a privacy-oriented
p2p network, the query enginewould have to be able to reason
about encrypted data. In the next section, we will describe
how Circuitree solves this issue.

III. APPLICATIONS
Circuitree can be used as a building block for identity
management. Applications that require identity management
range from banking, healthcare, and government services
to education and transportation [31], [32]. Circuitree could
play a role in the new World Wide Web Consortium (W3C)
recommendation about Linked data proofs [33], allowing for
a broader feature set. Circuitree can also be applied to other
domains, like verifiable computation. We show that other
problems like access control for p2p networks and logic
problems are, in essence, a verifiable computation problem
that can be solved by Circuitree.

A. IDENTITY MANAGEMENT
ZKPs are notably useful in identity management, where
they typically appear in anonymous authentication systems.

In such a system, a user is able to authenticate with a system
without disclosing their identity. Especially the context of
blockchain technology has seen a recent interest spike as
a cornerstone for identity management [32]. The idea is to
store a personal identity in a secure form (e.g., committed or
encrypted) on a blockchain. At any later time, parts of the
identity can be extracted and transformed so that the data
owner can reveal the result. The correctness of the result is
then verified, given the original blockchain and a small proof.

Another example is the Signal private group system [4],
wherein participants prove that they have the necessary access
rights to alter an existing group definition without disclosing
their identity or even their access level.

The rules for identity management could potentially be
declared in Circuitree to generate such proofs. This approach
is more flexible and high-level than the manual implemen-
tation of every potential proof. The outcome is similar to
role-based encryption (RBE) [34], which enforces role-based
access control at decryption time. Depending on the applica-
tion at hand, one could opt for either Circuitree or RBE, or
both could even be seen as complementary. Applications may
use a form of RBE for read access and Circuitree for write
access.

B. LINKED DATA
The W3C shows interest in standardizing ‘‘Linked data
proofs’’. Linked Data is the principle of interlinking struc-
tured data on the Web, and linked data proofs would enable
extracting partial information from potentially confidential
Linked Data [33]. The W3C draft specification is based on
BBS+ signatures [35], a pairing-based signature scheme that
allows efficient ZKPs, to disclose only a subset of multiple
signed messages [36]. At the time of writing, the draft does
not mention providing proofs for transformed data, and to
the best of our knowledge, BBS+ signatures are not suitable
for this purpose. Circuitree trivially reveals data, namely the
query, on top of applying transformations.We believe it could
be an interesting alternative approach to linked data proofs.

C. VERIFIABLE COMPUTATION
In verifiable computation, a party requests a third party to per-
form certain computations and return the result, alongside a
proof that the computations were in fact performed correctly.
This is useful to allow devices with too little computational
power to outsource heavy computations to a semi-trusted
third party, or to allow a party to distribute workload between
untrusted third parties. Circuitree provides a verifiable com-
putation framework for Datalog. A party can reason using
a Datalog reasoner and prove to a third party that they per-
formed computations within the domain of the system.

D. ACCESS CONTROL
Circuitree verifies the correctness of a reasoning process.
This can be used for access control in p2p networks, where no
single authority can decide whether a peer has the authority
to write certain data to a network. An example of such an

VOLUME 10, 2022 21387

T. Godden et al.: Circuitree: Datalog Reasoner in Zero-Knowledge

LISTING 1. An example of a Datalog program that checks whether a person conforms to the requirements of the CST.

application is Glycos [29]. Glycos is a p2p framework for
building privacy-friendly online social networks (OSNs),
which aims to provide equivalent building blocks to classical
OSN services based on client-server and web architectures.
In Glycos, in order to write data, a peer has to convince
the network that they have the authority to do so. With
Circuitree, it could do this by proving that the encrypted
data in the network and the rules defined on the SNS entail
their authority. The peer can use the subset of data on the
network that they know the plaintext of as input assertion set
to Circuitree, to generate a proof that it does, in fact, have
write access to the network. With this in mind, Circuitree
can efficiently enforce an access control policy anonymously
while maintaining the flexibility of declaring access control
rules in a high-level language.

The process described above is an alternative approach to
the traditional verifiable computation, where a third party
performs computations efficiently and returns data, providing
a proof that the data were computed correctly. For Circuitree,
the computing party is the end user who provides a proof
to the system. For access control in Glycos, the performed
computation is that of a Datalog reasoner. The result should
evidently always be the fact that the user is allowed to write
data. In this case, the result is irrelevant since a user will
always claim that they have this authority, regardless of
whether this is true. However, the proof that they computed
this result correctly does hold meaning since the user cannot
lie about this.

E. LOGIC PROBLEMS
Because Datalog is a logic language, albeit not Turing-
complete, we can also apply Circuitree to logic problems.
An example of such a logic problem would be a privacy-
preserving application for EU Digital COVID Certificates

for COVID-19. During the COVID-19 pandemic, these
certificates were designed to prove to a third party that a per-
son meets certain criteria, like vaccination status or whether
they were recently infected or tested. However, the current
certificates contain sensitive information in plaintext, includ-
ing, but not limited to, the certificate holder’s full name, date
of birth, vaccination status, which vaccine they received and
if they have recently been infected. By means of ZKPs, this
information does not need to be transferred but can instead
be replaced with a proof that the certificate holder matches all
required criteria. Based on the rules imposed by each country,
Circuitree can be applied to design such ZKPs through a high-
level logic language, namely Datalog.

Listing 1 demonstrates a small Datalog program that
checks whether a person conforms to the requirements of
the CST, the Belgian EU Digital COVID Certificate for
COVID-19. A user can use Circuitree to generate a proof in
zero-knowledge to prove their conformity without revealing
any personal data.

Because Datalog is a high-level language, it is easy to
create additional rules for other regulations as well. The
end-user would be able to select the regulation for which a
proof is needed, and the application would generate the proof
on-the-fly.

Note that this proof requires arithmetic reasoning, which
is future work for Circuitree. Additionally, the prover appli-
cation will need a way to introduce the input assertions in a
sound way, for example by means of an embedded signature
verification algorithm.

Circuitree could also be applied to generate ZKP for simi-
lar problems. It could, for example, generate a proof that can
prove a person meets the criteria to take a loan from a bank
without having to disclose a large amount of personal data
like current balance or income.

21388 VOLUME 10, 2022

T. Godden et al.: Circuitree: Datalog Reasoner in Zero-Knowledge

These problems can once again be seen as a form of
verifiable computation, where a user proves to a third party
that they computed the permissions correctly.

IV. CIRCUITREE OVERVIEW
Our Circuitree implementation is based on a slightlymodified
version of Bulletproofs [17]. Our choice for Bulletproofs is
motivated by its transparent setup and the size of its proofs.
Small proofs are a desirable property in p2p applications. In a
commercial setting, one could trade a transparent setup for a
boost in performance by using a ZK-SNARK, or one could
trade the small proofs for a boost in performance by using a
ZK-STARK.

An R1CS system of constraints is usually declared using
one or more so-called ‘‘gadgets’’, which are modular and
reusable pieces of proof-embedded logic. In its turn, the
gadget encodes logical statements as (arithmetic) constraints.
In our case, given a set of rules, these logical statements are
the program flow of a Datalog reasoner. More specifically,
the set of constraints declared by this reasoner gadget should
be valid if and only if the assertions and rules expressed in
Datalog entail the query result that we wanted to prove.

The arithmetic constraints form a rank-1 constraint system
(R1CS). A R1CS is a mathematical model which only rec-
ognizes addition, subtraction, and multiplication operations
on integers modulo some large prime p. This implies that
we have to convert our logical reasoning operations to those
arithmetic operations. It should be noted that the equations
in the R1CS are never actually computed. This means that
the data are never revealed and cannot be extracted from the
system, as opposed to a regular program, where the data pass
through the program. However, this also implies that it is
impossible to do a conditional branch in a R1CS (because
the branch condition is never computed), nor is it possible
to use recursion. Because our gadget’s performance is tied
to the number of constraints, the challenge is to design the
reasoner gadget so that it uses the lowest number of arithmetic
constraints possible, given these restrictions. We do not make
assumptions on the input for the reasoner gadget. In practice,
the reasoner gadget will receive input from either a decryption
gadget or a commitment. The decryption gadget proves that
a certain encrypted input can be decrypted and decoded to be
fed into the reasoner gadget. A commitment means that the
processed data was committed to earlier in time and binds the
committing party to a certain value in a privacy-preserving
way. The hidden value cannot feasibly be changed, and can
be optionally revealed at a later time. Using a commitment
in a proof is known as the commit-then-prove paradigm. The
composition of the reasoning gadget with its complementary
gadgets is visualized in Fig. 2. Proof-of-decryption is con-
sidered out-of-scope for this article, especially now that new
symmetric encryption algorithms are being designed with
proof-of-decryption in mind [37].

Our running example is a hypothetical access control
model for p2p social networks, wherein the p2p network will
enforce write permissions in zero-knowledge, i.e. without

FIGURE 2. Schematic overview of the reasoner gadget and its context.
Above is a gadget responsible to securely provide the input data, usually
a decryption gadget. The data are then fed from the decryption gadget
into the reasoner gadget, which takes the ruleset and outputs the
necessary constraints, corresponding to the iterative reasoning of the
Datalog engine.

access to the plaintext information. A peer uploading data to
the networkwill need to attach a proof to their data that proves
they are allowed to upload the data. For example, assume
that the can_write property gives a Person object the
permission to write to a Wall object and that the network
has a Datalog rule like
can_write(APerson, AWall) :-
has_wall(AnotherPerson, AWall),
has_friend(AnotherPerson, APerson).

This rule indicates that Bob can write to Alice’s wall if
Alice has Bob as a friend. However, these data are not readily
available on the network but can be derived with the rule
above. This means that if Bob wants to write to Alice’s wall,
he needs to attach a ZKP that proves that the network’s data
and rules entail can_write(bob,aliceWall).

In Section V, we first ‘‘naively’’ implement a reasoner and
show that it has a worse-than-exponential behavior in terms
of arithmetic constraints. This naive implementation provides
an insight into Datalog reasoners and R1CS systems, which
will help understand Section VI. With regard to verifiable
computation, this naive implementation demonstrates how a
Datalog reasoner would be executed in an imperative system
like Zilch. In Section VI, we present an optimization to this
reasoner, which first generates the path of the reasoning tree,
and then proves that every step taken in the tree is valid.
We show that this approach has a cubic behavior in terms of
arithmetic constraints.

V. NAIVE IMPLEMENTATION
The input for the reasoner gadget represents a dataset,
for example from a p2p network containing Datalog

VOLUME 10, 2022 21389

T. Godden et al.: Circuitree: Datalog Reasoner in Zero-Knowledge

FIGURE 3. ‘‘Naive’’ reasoner gadget. All rules are applied to every
assertion in the input assertion set Ai , which outputs the set Ai+1.
Every assertion carries a ‘‘validity flag’’ (illustrated by or 7), indicating
whether the used rule was applicable.

facts, e.g. has_wall(alice, aliceWall) or
has_friend(alice, bob). We need to reason over
these data by applying the plaintext rules provided by the
application. We assume that the initial assertion set A0 is the
input of the reasoner gadget, and the ruleset R is defined in
the application.

A. REASONER STRUCTURE
When queried, a fixpoint Datalog reasoner applies each rule
in the ruleset R recursively on each matching combination
of assertions from A0, generating new assertions in every
recursive step. These new assertions will be added to A0 to
create a new assertion set A1, which in its turn will then
be used in the next iteration of the reasoner. This process is
applied recursively until the assertion set remains unchanged,
i.e. Ai = Ai+1. The reasoner returns the set of results that
match the query. For our application, the empty set is a failure,
any other result is a success. Because Circuitree does not
support wildcards at this stage, a successful result will always
be a single set containing only the query, and we can stop our
iterations once the result is found.

However, because we are reasoning in zero-knowledge,
the operations we are allowed to apply are limited. The
limitations are: we cannot perform a conditional branch, we
cannot use (unbounded) recursion, and (because of the former
two) we do not know when our reasoner halts. Instead of
branching, we follow each possible path and store and track
the validity of a condition in a ‘‘validity flag’’. This flag tracks
whether a generated assertion is correct, i.e., whether a plain
Datalog engine would have produced it.

Circuitree’s recursive step is implemented by unwinding
the would-be recursive calls, which means that, for each

Datalog iteration, we replicate the computational logic. Since
we cannot branch based on the comparison of two consecu-
tive assertion sets, it is impossible to halt the reasoner that
way, nor is it possible to compute the recursion depth n after
which to halt, because Datalog’s boundedness is not solvable
in general without the plaintext input database [38]. To solve
this, the prover is responsible for providing a maximum
number of iterations n in clear text, after which the query
should be found in the assertion set. If the query is not found
within this number of iterations, the result is a failure. When
further restricting the Datalog language, it would be possible
to compute the maximum number of iterations based on the
ruleset, eliminating the need for the prover to provide n.

B. RULE APPLICATION
Circuitree supports rules of any cardinality but, for the sake of
simplicity, we only consider binary rules in this article. These
are rules with exactly two subgoals, e.g. q(U, X) :-
f(O, O), b(A, R). In Section VII-E we discuss rules
of different cardinality.

In order to apply a binary rule r0 at iteration i, we take
all the combinations Ai ⊗ Ai of each assertion in Ai, and
pass these combinations one by one to Algorithm 1 together
with the rule. Because we cannot encode a conditional branch
in R1CS, the result of this application is always a new
assertion, independent of whether the assertions match the
rule. A ‘‘validity flag’’ is added that tracks whether the rule
matches: a new assertion is valid if and only if its parent asser-
tions are valid, and the parent assertions and their arguments
match the rule generating the new assertion.

To give a concrete example, assume we have the following
initial assertion set:
Example 1 (Alice’s profile and her friend Bob):

A0 = {a0, a1, a2}

with

a0 = has_wall(alice, aliceWall),

a1 = has_friend(alice, bob), and

a2 = has_wall(bob, bobWall).

Because these assertions are in the initial assertion set, we
assume them to be true, and thus set the validity flag for these
assertions true. Also assume the rulesetR containing only the
previously introduced rule r0:
can_write(APerson, AWall) :-
has_wall(AnotherPerson, AWall),
has_friend(AnotherPerson, APerson).

To apply r0, we need to take the combinationsA0⊗A0 as
arguments for the rule’s subgoals. These combinations are:

{ (a0, a0), (a0, a1), (a0, a2),

(a1, a0), (a1, a1), (a1, a2),

(a2, a3), (a2, a3), (a2, a3)}

We then pass each of these combinations and rule r0 as
arguments to Algorithm 1, which will generate nine new
assertions.

21390 VOLUME 10, 2022

T. Godden et al.: Circuitree: Datalog Reasoner in Zero-Knowledge

Algorithm 1 Apply Rule rj to Assertions ax and ay, Yielding the Assertion ar . Unification Is Enforced on Algorithm 5.
Arguments That Should Be Unified Are Compared, and Their Comparison Is Conjoined in the Validity Flag. The Unified
Argument Can Also Be Present in the Rule’s Head Through the Index arg_r.

1: function apply_rule(assertions ax , ay, binary rule rj)
2: let ar ← new assertion{}
3: ar .predicate← rj.predicate

4: let rule_matches?← (rj.subgoals[0]
?
= ax .predicate) and (rj.subgoals[1]

?
= ay.predicate)

5: for all (arg_r, arg1, arg2)← rj.args_to_unify do

6: rule_matches?← rule_matches? and ax .args[arg1]
?
= ay.args[arg2]

7: if arg_r 6= null then
8: ar .args[arg_r]← ax .args[arg1] F ax .args[arg1] is equal to ay.args[arg2]
9: end if

10: end for
11: ar .valid?← ax .valid? and ay.valid? and rule_matches?
12: return ar
13: end function

FIGURE 4. The assertions that result from applying the r0 rule to the
dataset from example 1. Of these assertions, only can_write(bob,
aliceWall) is valid and therefore depicted in bold. The other assertions
are considered invalid and are therefore struck out with a red line.

The resulting assertions are depicted in Fig. 4. Of
the resulting assertions, only can_write(bob,
aliceWall) has a validity flag that evaluates to true.

During iteration i, we apply each rule in R to each com-
bination of assertions in Ai, and add these results to Ai to
generate Ai+1. We do this as many times as defined in the
maximum number of iterations n. In order to confirmwhether
the query q is in fact true, we use the following formula, where
a.valid? is a’s validity flag:∨

a∈An

a.valid? ∧ (a ?
= q)

After themaximumnumber of iterations, the final assertion
set will have been generated. The reasoning results in a
success if the query is found as an assertion in the assertion
set, and that assertion is valid.

C. COMPUTATIONAL COMPLEXITY
For Ai an assertion set and |R| the number of rules in the
ontology, we can compute the size of the next iteration of the
assertion set Ai+1:

|Ai+1| = |Ai ⊗Ai| × |R|
= |Ai|2 × |R|

where Ai ⊗Ai is the cartesian product of Ai with itself. For
n iterations, we can generalize the assertion set size in one
iteration to:

|An| = |An−1 ⊗An−1| × r

= |An−1|
2
× r

= (|An−2 ⊗An−2| × r)2 × r

= (|An−2|
2
× r)2 × r

= |An−2|
4
× r3

= (|An−3|
2
× r)4 × r3

= |An−3|
8
× r7

= . . .

= |A0|
2n
× r2

n
−1

This shows that the final assertion set size grows superexpo-
nentially in the initial assertion set size. Because the size of
the assertion sets impacts the size of our proof and compu-
tation time linearly, this performance is less than desirable,
which is why we propose improvements in Section VI.

VI. IMPROVED IMPLEMENTATION
Datalog problems are a subset of NP. This means that a
solution of a Datalog problem can be verified in polynomial
time. We base our improved version of the reasoner on this
insight. Our improved version will no longer be a reasoner,
but a verifier that can verify whether a single result holds true
for our initial assertion set and rules.

VOLUME 10, 2022 21391

T. Godden et al.: Circuitree: Datalog Reasoner in Zero-Knowledge

FIGURE 5. ‘‘Improved’’ reasoner gadget. Like in the ‘‘naive version’’, all
rules are applied to every assertion in the input set, yielding the output
set Ai+1. Instead of feeding Ai+1 directly back into the next iteration,
we use a previously generated assertion set Ci+1 as the input for the
iteration, which has the unnecessary (——) and invalid (7) assertions
pruned.

As explained in Section V, our naive reasoner’s most sig-
nificant performance issue is the superexpontential growth
of our assertion sets. The main cause of the assertion set’s
combinatorial explosion is that we combine each assertion set
with itself and do this many times over. Ideally, we minimize
the size of each assertion set. In a R1CS, we cannot compare
and branch, so it is impossible to remove assertions with the
false flag.

However, we can achieve smaller assertion set sizes by
doing a preliminary reasoning phase using a standard Datalog
reasoner, and logging the assertion sets used in each iteration.
As an additional argument to the proof, these assertions are
passed per iteration. We then only have to compare each iter-
ation with the assertions resulting from the rule applications
on the assertions of the previous iteration. This approach
effectively prunes the intermediate assertion sets, leaving
only the minimal number of assertions to evaluate, instead
of the ever-growing generated assertion sets from the naive
reasoning gadget.

More specifically, the new method is as follows: first,
we prove that the input assertion set A0 contains the first
assertion set C0 from the assertions generated by the pre-
liminary reasoner. Then we prove for each iteration i that
Ci∪A0 ` Ci+1 by applying rules in the samemanner as shown
in the naive reasoner, and proving that the generated assertion
set Ai+1 fully contains Ci+1. Finally, we prove that the query
is in Cn, the assertion set of the last iteration generated by the
preliminary reasoner. This process is illustrated in Fig. 5.
For each iteration, we start our reasoning with an assertion

set of minimal size instead of our generated assertion set
containing a large number of invalid assertions. As a result,
our assertion sets no longer grow superexponentially in our

improved implementation. Each generated assertion set will
now have a maximum size of |C|2×|R|, where C is the largest
assertion set.

In the naive implementation, the assertion set size was
the biggest issue performance-wise. With that issue resolved,
we can analyze our implementation more accurately. We will
do this by counting the number of comparisons that happen
in the constraint system. This correlates to the number of
multipliers used in the R1CS, which in turn is the factor with
the biggest influence on our proof’s performance.

Denote by C the largest assertion set, A the input asser-
tions, R the ruleset and I the number of iterations, then the
total number of comparisons in the reasoner gadget can be
computed as:

O(|C| × |A| (prove C0 ⊆ A)

+|C|2 × |R| (rule application)

×(|C| + |A|) (subset comparison)

×I) (iterations) (1)

We can use this formula to reason about other potential
trade-offs and improvements.

VII. IMPLEMENTATION
In the previous sections, we have omitted some details for
the sake of simplicity. This section will give some in-depth
remarks to clarify these details.

A. FROM LOGIC TO ARITHMETIC
Until now, we have casually used logical operators and
the term ‘‘comparison’’. Because Bulletproofs works with
R1CSs instead of Boolean logic and we are working with
integer values instead of facts, we cannot use these concepts
in practice. However, it is easy enough to map these concepts
and values to arithmetic constraints. Suppose we assume 0 as
true in our constraint system and any other value as false,
then:
• a comparison becomes a subtraction,
• a disjunction becomes a multiplication, and
• a conjunction becomes a (randomized) addition.
When we want to compare two assertions, we subtract

the predicates and each corresponding argument and take a
randomized sum of the results. When we want to find out
whether an assertion is in an assertion set, we compare the
assertion to each assertion in the set, and take the disjunction
of the results by multiplying them.

B. DUMMY VALUES
For the underlying proof system to correctly process the input
data, some metadata needs to accompany the proof. It would
be possible to transmit the exact sizes of all assertion sets
Ci, each assertion and each iteration. However, this would
leak a large amount of metadata. Instead, we only supply
the size of the largest assertion set that is encountered, and
the largest number of arguments that are ever encountered
in any assertion. The prover ensures that each assertion set

21392 VOLUME 10, 2022

T. Godden et al.: Circuitree: Datalog Reasoner in Zero-Knowledge

Ci is as large as the largest assertion set (or another larger
number) by padding the empty assertion slots with ‘‘dummy’’
assertions. These dummy values are system-wide, constant,
random numbers.

We also pad every assertion to a number of arguments equal
to the largest number of arguments of a single assertion. This
allows us to compare assertions with a different number of
arguments, and this also means that we do not have to supply
more information-leaking metadata.

This provokes a small change in our proof of entailment in
iterations: Ci ∪ A0 ` Ci+1 is valid if each element of Ci+1 is
either in the generated assertion set Ai+1 or a dummy value.

C. NEGATION
Currently, Circuitree does not support negation for sev-
eral reasons. Firstly, as one of its restictions, Datalog itself
only supports certain kinds of negation. Having a Prolog-
like negation would make our Datalog implementation
non-computable.

Secondly, negation in Datalog is non-trivial. A negation
in Datalog means taking the complement of an assertion
set, which is each assertion not in that assertion set, which
amounts to an infinite number of assertions.

Thirdly, since Circuitree has been designed for p2p appli-
cations, most of which assume an open world. The Open
World Assumption states that, if a fact is not found in the
database, it is not necessarily false.

This means that negation is a complex issue for Circuitree.
Limited forms of negation are possible under certain restric-
tions. As such, we regard negation in Circuitree as a topic for
future work.

D. PRELIMINARY REASONER
The prover uses the preliminary reasoner to query the plain-
text assertion set and obtain a history of how data are pro-
duced throughout its iterations. Each assertion remembers its
provenance, i.e., the assertions from which it was generated.
This way, the data are structured tree-like, with as root the
query result and as leafs the required assertions in the initial
assertion sets. Each non-leaf node in the tree is a generated
assertion, whose children are the assertions it was generated
from. By doing a breadth-first collection of this data, we can
obtain the assertion sets for each iteration of the reasoner.

In a standard Datalog reasoner, the same assertion is only
generated once. However, in our ZKP reasoner, we prune the
assertions at every iteration. This means that we can only use
assertions generated in the previous iteration. Because of this,
we always need to prove every branch of the tree fully until we
reach the leaves. We cannot shortcut this reasoning process
with previously generated assertions.

It would be possible to include all the previous assertion
sets in each iteration, since they stay valid, but this would
generally result in a bigger performance loss than if we would
prove identical subtrees multiple times. Instead, we prove
the entire reasoning tree and include the leaves in the iter-
ations provided by the preliminary reasoner. Because of this,

LISTING 2. The rules used for the ‘‘realistic’’ scenario. Participants can
write on a ‘‘wall’’ if they are a member of the wall’s group, or on a
personal wall if the participants are friends. For a dataset
{has_admin(group, bob), has_wall(group, groupWall)}, the query
can_write(bob, groupWall) will result in a reasoning of two
iterations.

we compare the values in each iteration i with both the
generated values Ai, as the input data set A0.

E. RULE CARDINALITY
In our implementations, we have assumed rules with a car-
dinality of two, which means they consist of two subgoals.
Circuitree supports rules with any number of subgoals. How-
ever, for rules with more than two subgoals, we have to take
a larger number of combinations, increasing our assertion
set size significantly. With S the largest number of subgoals,
generalizing eq. (1) yields:

O(|C| × |A| + |C|S × |R| × (|C| + |A|)× I)

This means that rules with large numbers of subgoals cause
a significant decrease in worst-case performance. However,
it is possible to keep the exponent constant by splitting the
rule subgoals and adding a degree of indirection. We can take
two subgoals of the rule, and create a new rule for them.
After one iteration step, an assertion will be generated that
represents the conjunction of these values, but as one subgoal.
The impact of this solution is at most one iteration step and
rule per subgoal after the second, which in our formula will
increase both I and R. Especially with larger assertion set
sizes, this solution is preferable to an increase in subgoals.

VIII. EVALUATION
A. PERFORMANCE
This section describes the performance of our Rust-based
implementation of the improved version of Circuitree.
We benchmark two different scenarios: the ‘‘realistic’’ sce-
nario and the ‘‘treelike’’ scenario, and plot the results in
Fig. 6. The realistic scenario is a system with rules for a
group-based message board system, as depicted in Listing 2.
The ‘‘treelike’’ scenario is a system with rules that generate
exponentially many assertions, as depicted in Listing 3.

For the realistic benchmark, we evaluate the performance
for a realistic scenario and how it is influenced by adding
extra rules to the system. These extra rules will not lead to
our query, but represent rules that are present in the system
for other potential queries. These rules do not accomplish
anything, but they will need to be applied like every other

VOLUME 10, 2022 21393

T. Godden et al.: Circuitree: Datalog Reasoner in Zero-Knowledge

FIGURE 6. Performance measurements for two different scenarios. Even the worst-case ‘‘treelike’’ scenario, in which the intermediate
assertion sets grow exponentially, is still viable for 3 or 4 iterations.

LISTING 3. The rules used for the ‘‘treelike’’ scenario. Every predicate
depends on two other predicates, and the leaf predicates are the input
data for the system. In order to require n iterations, 2n−1 − 1 rules and 2n

leaves are generated. In this example, we require n = 2 iterations, as such
2n = 4 leaves. After n iterations, the reasoning results in the query
pred0(foo).

rule in Circuitree, and therefore impact the total performance.
Since only assertions relevant to the query impact the gad-
get’s performance, we do not vary the total number of asser-
tions. As expected per eq. (1) and as measured and depicted
in Fig. 6(a), our proof and verification time scales linearly
with the number of rules in the system. With 45 rules in
the system, the proof time is only 80ms. Depending on the
performance required by the application, other ZKP systems
should be benchmarked and considered.

The treelike performance is a worst-case scenario for
binary rules, with a varying number of iterations. In this
scenario, our reasoning tree is a full binary tree, which means
it has 2I−1 leaf assertions, 2I − 1 total assertions over all
iterations and 2I−1−1 rules in the system. Figure 6(b) shows
that with four iterations or fewer, the computation time is
acceptable considering, for example, the latency of a web
application. As of five iterations, the query is derived using
31 distinct rules, and 32 leaf assertions, which we believe
to be excessive for realistic applications, and will become
noticeable by an end-user.

The benchmarks show that the system’s performance is
mostly based on the complexity of the reasoning tree and only
minimally by the number of rules in the system. Furthermore,
because only necessary data are used in the proof, the total
amount of data in the system is irrelevant to the performance.

By keeping this information in mind, an application devel-
oper can aim to optimize their system by reducing the

complexity of the reasoner. For example, the developer could
add frequently used derived assertions to their system as data
to drastically minimize the number of iterations needed.

B. VERIFIABLE COMPUTATION SYSTEMS
Cairo [14] and similar high-level zero-knowledge systems are
written, compiled and interpreted as imperative languages.
Datalog is a declarative language, which is interpreted
entirely differently from imperative languages. Datalog has
a reasoner, whereas imperative languages use instructions.
Because existing verifiable computation frameworks are
designed with imperative languages in mind, it is not easy
to fairly assess their relative performance.

Comparing an imperative language to a declarative query-
ing language is a more or less meaningless question. As an
example, it is similar to comparing performance in C to
SQL. The two languages achieve different things in different
ways. One could argue to write a database engine in C in
order to compare them, but this then raises the question of
what optimizations should be implemented, and whether it
is still a C program and not just another querying language.
Similarly, implementing a Datalog reasoner and Circuitree’s
optimizations in e.g. Cairo, can be seen as simply implement-
ing Circuitree on Cairo, which would tell us very little about
the difference between the two.

Furthermore, we count our optimization described in
Section VI as part of Circuitree’s contribution. If we were
to write a Datalog reasoner in an existing system, it would
arguably result in a R1CS system similar to our naive imple-
mentation. In this article, we have already made the compar-
ison between the naive and improved version.

Finally, even though existing systems are on a higher level
than constraints in R1CS, most of them do not support exist-
ing, high-level programming languages. In other words, the
programmer cannot just write a program in e.g. C and pass
this to Cairo, as would be the ideal scenario in verifiable
computation. Indeed, this is exactly what Circuitree provides:
Datalog as a high-level programming language, where the

21394 VOLUME 10, 2022

T. Godden et al.: Circuitree: Datalog Reasoner in Zero-Knowledge

programmer does not interact with any zero-knowledge ele-
ments directly, and can even verify the execution of existing
programs.

To conclude, it is very hard to present a fair comparison
between our declarative system and an existing imperative
system, because of the way such programming languages are
processed by the computer.

IX. CONCLUSION
This article presents the design, implementation and evalua-
tion ofCircuitree, a Datalog verifier that can prove statements
about secret data in zero-knowledge. Datalog, a logic-based
query language, is well suited to model access control rules.
Instead of simulating a full Datalog engine in zero-knowledge
as discussed in our naive approach, we increase performance
and efficiency by only verifying that each reasoning step was
carried out correctly.

We discuss several applications for Circuitree. One such
application is access control in a p2p network with a
knowledge graph. Because Circuitree uses binary predi-
cates, it can be efficiently implemented on existing knowl-
edge graphs. Another application is an implementation
of a secure and privacy-preserving EU Digital COVID
Certificate.

First results show that our approach allows for fast and
efficient proofs and proof verification.

X. FUTURE WORK
Although Circuitree’s performance is acceptable for our cur-
rent goals, when put in a real-world scenario, it might be nec-
essary to investigate ways to further increase its performance.
One of these ways would be to adapt the system to use a more
efficient ZKP protocol, or one with more features. Examples
are Groth16 [39] and Aurora [40]. Porting Circuitree to other
R1CS-based proof systems should be relatively straight for-
ward. It could also prove useful into researching whether it
is viable to design a ZKP protocol that, instead of arithmetic
or boolean values, can use Datalog primitives like assertions
and lists.

Currently, Circuitree only supports a restricted fragment
of Datalog. Extensions, such as negation, lists and math-
ematical operations should be considered for future addi-
tion. Additional features make Circuitree more powerful, and
would allow for fair grounds of comparison with related
systems by tackling existing and well-known problems. For
example, it would be possible to compare a traveling sales-
man problem (TSP) implementation on Circuitree, to one on
TinyRAM [10]. Research has to be conducted in order to
investigate the possibility and performance impact of adding
such features to Circuitree.

ACKNOWLEDGMENT
(Tom Godden and Ruben De Smet are co-first authors.)

REFERENCES
[1] P. Bischoff. Report: 267 Million Phone Numbers & Facebook User

IDs Exposed Online. Comparitech. Accessed: Apr. 27, 2020. [Online].
Available: https://www.comparitech.com/blog/information-security/267-
million-phone-numbers-exposed-online/

[2] E. Graham-Harrison and C. Cadwalladr. Revealed: 50
Million Facebook Profiles Harvested for Cambridge
Analytica in Major Data Breach. [Online]. Available:
https://www.theguardian.com/news/2018/mar/17/cambridge-analytica-
facebook-influence-us-election

[3] R. Satter. U.S. Court: Mass Surveillance Program Exposed by
Snowden was Illegal. Accessed: Sep. 3, 2020. [Online]. Available:
https://www.reuters.com/article/us-usa-nsa-spying-idUSKBN25T3CK

[4] M. Chase, T. Perrin, and G. Zaverucha, ‘‘The signal private group sys-
tem and anonymous credentials supporting efficient verifiable encryp-
tion,’’ in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., Oct. 2020,
pp. 1445–1459.

[5] N. van Saberhagen, ‘‘Cryptonote v2.0,’’ Tech. Rep., 2013.
[6] D. Hopwood, S. Bowe, T. Hornby, and N. Wilcox, ‘‘Zcash protocol speci-

fication,’’ Zerocoin Electr. Coin, Tech. Rep., 2016.
[7] D. Chaum, ‘‘Showing credentials without identification,’’ in Proc. Work-

shop Theory Appl. Cryptograph. Techn. Berlin, Germany: Springer, 1985,
pp. 241–244.

[8] M. Chase, E. Ghosh, S. Setty, and D. Buchner, ‘‘Zero-knowledge
credentials with deferred revocation checks,’’ Tech. Rep., 2020, p. 13.
[Online]. Available: https://raw.githubusercontent.com/decentralized-
identity/snark-credentials/master/whitepaper.pdf

[9] S. Meiklejohn, C. C. Erway, A. Küpçü, T. Hinkle, and A. Lysyanskaya,
‘‘ZKPDL: A language-based system for efficient zero-knowledge proofs
and electronic cash,’’ in Proc. USENIX Secur. Symp., vol. 10, 2010,
pp. 193–206.

[10] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, andM. Virza, ‘‘SNARKs
for C: Verifying program executions succinctly and in zero knowledge,’’ in
Proc. Annu. Cryptol. Conf. Berlin, Germany: Springer, 2013, pp. 90–108.

[11] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and M. Virza,
‘‘TinyRAM architecture specification, v0. 991,’’ SCIPR Lab,
Tech. Rep., 2013, p. 16.

[12] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza, ‘‘Succinct non-
interactive zero knowledge for a von Neumann architecture,’’ in Proc. 23rd
USENIX Secur. Symp., 2014, pp. 781–796.

[13] H. G. Navarro, ‘‘Design and implementation of the Circom 1.0 compiler,’’
Universidad Complutense de Madrid, Madrid, Spain, Tech. Rep., 2020.

[14] L. Goldberg, S. Papini, and M. Riabzev. Cairo—A Turing-Complete Stark-
Friendly CPU Architecture. Accessed: Sep. 2, 2021. [Online]. Available:
https://eprint.iacr.org/2021/1063

[15] D. Mouris and N. G. Tsoutsos, ‘‘Zilch: A framework for deploying
transparent zero-knowledge proofs,’’ IEEE Trans. Inf. Forensics Security,
vol. 16, pp. 3269–3284, 2021.

[16] S. Harris and A. Seaborne. SPARQL 1.1 Query Lan-
guage. Accessed: Jan. 10, 2022. [Online]. Available:
https://www.w3.org/TR/sparql11-query/

[17] B. Bunz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell,
‘‘Bulletproofs: Short proofs for confidential transactions and more,’’ in
Proc. IEEE Symp. Secur. Privacy, May 2018, pp. 315–334.

[18] O. Goldreich, S. Micali, and A. Wigderson, ‘‘How to play ANY men-
tal game,’’ in Proc. 19th Annu. ACM Conf. Theory Comput., 1987,
pp. 218–229.

[19] S. Goldwasser, S. Micali, and C. Rackoff, ‘‘The knowledge complexity of
interactive proof systems,’’ SIAM J. Comput., vol. 18, no. 1, pp. 186–208,
Feb. 1989.

[20] O. Goldreich, S. Micali, and A. Wigderson, ‘‘Proofs that yield nothing but
their validity or all languages in NP have zero-knowledge proof systems,’’
J. ACM, vol. 38, no. 3, pp. 690–728, Jul. 1991.

[21] J. Bonneau, I. Meckler, V. Rao, and E. Shapiro, ‘‘Mina: Decentralized
cryptocurrency at scale,’’ NewYork Univ. O(1) Labs, NewYork, NY, USA,
Whitepaper, 2020, pp. 1–47.

[22] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev, ‘‘Scalable zero
knowledge with, no., trusted setup,’’ in Proc. CRYPTO, in Lecture Notes in
Computer Science, A. Boldyreva and D. Micciancio, Eds. Cham, Switzer-
land: Springer, pp. 701–732.

[23] M. Hoffmann, M. Klooß, and A. Rupp, ‘‘Efficient zero-knowledge argu-
ments in the discrete log setting, revisited,’’ in Proc. ACM SIGSAC Conf.
Comput. Commun. Secur., Nov. 2019, pp. 2093–2110.

VOLUME 10, 2022 21395

T. Godden et al.: Circuitree: Datalog Reasoner in Zero-Knowledge

[24] N. Li and J. C. Mitchell, ‘‘DATALOG with constraints: A foundation
for trust management languages,’’ in Practical Aspects of Declarative
Languages (Lecture Notes in Computer Science), V. Dahl and P. Wadler,
Eds. Berlin, Germany: Springer, vol. 2562, 2002, pp. 58–73.

[25] E. Pasarella and J. Lobo, ‘‘A datalog framework for modeling relationship-
based access control policies,’’ in Proc. 22nd ACM Symp. Access Control
Models Technol., Jun. 2017, pp. 91–102.

[26] A. Masoumzadeh and J. Joshi, ‘‘OSNAC: An ontology-based access con-
trol model for social networking systems,’’ in Proc. IEEE 2nd Int. Conf.
Soc. Comput., Aug. 2010, pp. 751–759.

[27] P. W. L. Fong and I. Siahaan, ‘‘Relationship-based access control policies
and their policy languages,’’ in Proc. 16th ACM Symp. Access Control
Models Technol., 2011, pp. 51–60.

[28] S. Buchegger, D. Schiöberg, L.-H. Vu, and A. Datta, ‘‘PeerSoN: P2P social
networking: Early experiences and insights,’’ in Proc. 2nd ACM EuroSys
Workshop Social Netw. Syst., 2009, pp. 46–52.

[29] R. De Smet, A. Dooms, A. Braeken, and J. Pierson, ‘‘Glycos: The basis
for a peer-to-peer, private online social network,’’ in Privacy and Identity
Management Fairness, Accountability, and Transparency in the Age of Big
Data (IFIP Advances in Information and Communication Technology),
E. Kosta, J. Pierson, D. Slamanig, S. Fischer-Hübner, and S. Krenn, Eds.
Cham, Switzerland: Springer, vol. 547, 2019, pp. 123–136.

[30] K. Graffi and N. Masinde, ‘‘LibreSocial: A peer-to-peer framework for
online social networks,’’ in Proc. Int. Conf. Cloud Edge Comput., Big Data
Blockchain, 2020, vol. 33, no. 8, Art. no. e6150.

[31] S. Z. R. Rizvi, P. W. L. Fong, J. Crampton, and J. Sellwood, ‘‘Relationship-
based access control for an open-source medical records system,’’ in Proc.
20th ACM Symp. Access Control Models Technol., Jun. 2015, pp. 113–124,
doi: 10.1145/2752952.2752962.

[32] L. Lesavre, P. Varin, P. Mell, M. Davidson, and J. Shook, ‘‘A taxonomic
approach to understanding emerging blockchain identity management sys-
tems,’’ 2019, arXiv:1908.00929.

[33] BBS+ Signatures 2020. Accessed: May 14, 2021. [Online]. Available:
https://w3c-ccg.github.io/ldp-bbs2020/

[34] L. Zhou, V. Varadharajan, and M. Hitchens, ‘‘Achieving secure role-based
access control on encrypted data in cloud storage,’’ IEEE Trans. Inf.
Forensics Security, vol. 8, no. 12, pp. 1947–1960, Dec. 2013.

[35] D. Boneh, X. Boyen, and H. Shacham, ‘‘Short group signatures,’’ in Proc.
Annu. Int. Cryptol. Conf. Berlin, Germany: Springer, 2004, pp. 41–55.

[36] M. Lodder and T. Looker. Jun. 15, 2020. BBS+ Signature Scheme.
[Online]. Available: https://mattrglobal.github.io/bbs-signatures-spec/

[37] L. Grassi, D. Khovratovich, C. Rechberger, A. Roy, and M. Schofnegger,
‘‘Poseidon: A new hash function for zero-knowledge proof systems,’’
presented at the 30th USENIX Secur. Symp., 2021.

[38] G. G. Hillebrand, P. C. Kanellakis, H. G.Mairson, andM. Y. Vardi, ‘‘Unde-
cidable boundedness problems for datalog programs,’’ J. Log. Program.,
vol. 25, no. 2, pp. 163–190, 1995.

[39] J. Groth, ‘‘On the size of pairing-based non-interactive arguments,’’ in
Proc. EUROCRYPT, in Lecture Notes in Computer Science, M. Fischlin
and J.-S. Coron, Eds. Berlin, Germany: Springer, pp. 305–326.

[40] E. Ben-Sasson, A. Chiesa, M. Riabzev, N. Spooner, M. Virza, and
N. P. Ward, ‘‘Aurora: Transparent succinct arguments for R1CS,’’ in Proc.
EUROCRYPT, Y. Ishai and V. Rijmen, Eds. Cham, Switzerland: Springer,
2019, pp. 103–128.

TOM GODDEN received the M.Sc. degree in
informatics from the Vrije Universiteit Brussel,
in 2020. He is currently conducting research for his
Ph.D. degree in engineering. His research interest
includes user empowerment through privacy and
security. He is also the designer of Circuitree,
a system for verifiable computation in datalog,
with the goal of applying it for privacy-preserving
enforcement of access control. He is aiding in the
design of Glycos, which sprouted the initial idea
of Circuitree.

RUBEN DE SMET (Student Member, IEEE)
received the M.Sc. degree in engineering from the
Vrije Universiteit Brussel, in 2018, where he is
currently pursuing the Ph.D. degree in the ETRO
Department. His research interests include privacy
enhancing technologies, specifically in online
social networks, using zero-knowledge proofs,
elliptic curves, and symmetric cryptography. He
is the designer of Glycos, a peer-to-peer, private,
online social network platform, and the organizer

of the Belgium Rust Meetup Group.

CHRISTOPHE DEBRUYNE received the Ph.D.
degree from the Vrije Universiteit Brussel,
in 2013. He is currently an Assistant Professor
in data representation and engineering with the
Université de Liège. He also investigates meth-
ods and tools for data integration with knowl-
edge graph technologies and the management
thereof. His research interests include semantics,
data integration, and knowledge graphs. He began
to conducted a Ph.D. on collaborative ontology

engineering. After his Ph.D., he spent several years working as a Research
Fellowwith the Trinity College Dublin, where he applied his research in both
academic and industry-driven projects.

THIBAUT VANDERVELDEN received the M.Sc.
degree in engineering with a specialization in
embedded electronics and ICT from the Vrije
Universiteit Brussel (VUB), in 2019, where he
is currently pursuing the Ph.D. degree. He evalu-
ates performance of IoT communication protocols,
developed using the emerging Rust programming
language with VUB. His current interests include
security and privacy protocols for IoT, embedded
programming, and low-power wireless protocols.

KRIS STEENHAUT (Member, IEEE) received the
master’s degree in engineering sciences, in 1984,
the master’s degree in applied computer sciences,
in 1986, and the Ph.D. degree in engineer-
ing sciences from the Vrije Universiteit Brus-
sel (VUB), in 1995. She is currently a Professor
with the Department of Electronics and Informat-
ics (ETRO) and the Department of Engineering
technology (INDI), Faculty of Engineering, VUB,
Belgium. Her research interests include the design,

implementation and evaluation of wireless sensor networks for building
automation, environmental monitoring, autonomous ground vehicle appli-
cations, mobility control and smart grids, and taking into account security
and privacy aspects.

AN BRAEKEN received theM.Sc. degree in math-
ematics from the University of Gent, in 2002, and
the Ph.D. degree in engineering sciences from the
Research Group Computer Security and Indus-
trial Cryptography (COSIC), KU Leuven, in 2006.
She became a Professor with the Industrial Sci-
ences Department, Erasmushoge School Brussel,
in 2007. Since 2013, she has been with the Vrije
Universiteit Brussel. Her current interests include
security and privacy protocols for IoT, cloud and

fog, blockchain, and 5G security. She is the coauthor of over 120 publi-
cations. She has been a member of the program committee for numerous
conferences and workshops and a member of the editorial board for Security
and Communications Magazine. In addition, since 2015, she has been an
expert reviewer for several EU calls. She has cooperated and coordinated
more than 12 national and international projects.

21396 VOLUME 10, 2022

http://dx.doi.org/10.1145/2752952.2752962

