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Abstract. Knowledge bases store information on certain topics. Ap-
plying a well-structured and machine-readable format for a knowledge
base is a prerequisite for any AI-based processing or reasoning. Semantic
technologies (e.g., RDF) offer such a format and have the advantages
that they make it possible to define the semantics of the information
and support advanced querying. However, the disadvantage is that us-
ing such technologies is challenging for people not trained in IT, such as
subject matter experts. This means that they need to rely on semantic
technology experts to create, maintain, and query their knowledge bases.
However, these experts are, in turn, not trained in the subject matter,
while domain knowledge is essential for the construction of high-quality
knowledge bases. In this paper, we present an end-user engineering ap-
proach for ontology-based knowledge bases. The goal is to allow subject
matter experts to develop, maintain, and exploit the knowledge base
themselves. We also present the supporting tools developed so far. The
tools for the construction and the manual filling of the knowledge base
are using the jigsaw metaphor to hide technicalities and guide the users.
The end-user approach and the tools are demonstrated for building a
knowledge base in the toxicology domain.
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1 Introduction

In many research domains like life-science, a huge amount of data and informa-
tion is (publicly) available. This information may be needed for conducting new
research, but may also be useful for consultation by practitioners in the field.
However, in many domains, the information is often available in the form of
documents and reports that may all have different formats and provide informa-
tion of different levels of details. As a consequence, manual searching through
the different documents and reports is needed when information is required.
This is a time-consuming process and, in addition, it makes it hard to aggregate
knowledge and reuse it in research.

Further, to stimulate data sharing and allow for intelligent data processing,
there is an increasing interest in mechanisms that allow for a more uniform,
flexible, and powerful way of storing data and information. Knowledge bases
are suitable for this. A knowledge base can be used to collect and centralize
information in a domain using a well-structured and machine-readable format.
A knowledge base is different from a database in the sense that a database is
mainly storing facts and its expressive power is limited. For instance, it is hard,
if not impossible without additional tools, to deal with variability in data, to
express the meaning of the data, or to perform intelligent reasoning over the
data. Semantic technologies (e.g., RDF [16], OWL [3]), are more appropriate
for storing knowledge, as they overcome the limitations of traditional database
technology, i.e., information can be structured in a flexible way and the semantics
of the information can be expressed, and they provide support for more advanced
querying mechanisms and reasoning [24].

Knowledge bases can be constructed either manually or automatically. Work
exists in the context of automated knowledge base construction, e.g., [2, 11, 14,
45]. However, the approaches proposed are usually domain-specific or cover only
a certain aspect of the knowledge base creation, e.g., the automatic identification
of concepts and their concept hierarchies, or populating a knowledge base from
unstructured data. Therefore, the manual construction of the knowledge base is
still a widespread practice.

Plain use of semantic technologies, such as RDF, is very challenging for those
not ICT literate [46]. When applying semantic technologies for creating a knowl-
edge base, usually tools such as Protégé [48] or OntoEdit [58] are used (see [55]
for an overview of such tools and languages). These tools are quite technical.
Consequently, subject matter experts, oftentimes not trained to use these tools,
need to rely on semantic technology experts to construct and maintain their
knowledge base. However, these experts are usually IT experts and they are,
in turn, not trained in the subject matter, while the construction of knowledge
bases requires extensive knowledge of the domain. The lack of knowledge about
each other’s domain results in a vast knowledge gap between the two groups of
experts. In addition, each group of experts uses its own vocabulary and has its
own concerns. Bridging this gap is a laborious and challenging process.

Different authors have studied and analyzed the gaps and barriers in interdis-
ciplinary research [10, 40, 54] and proposed various approaches for bridging the



End-User Engineering of Ontology-Based Knowledge Bases 3

gap. For instance, in [40], the use of human translators or intermediaries, trained
in both disciplines, is suggested to solve the communication problem in inter-
disciplinary collaboration. However, in the case of knowledge engineering, this
only moves the problem of mastering two completely different disciplines from
the IT expert or subject matter expert to the intermediaries. In the same publi-
cation, the use of technology to bridge collaboration barriers is mentioned. This
is the approach we follow. Our goal is to provide subject matter experts tools
that are easier to use than current semantic technology tools, and that hide the
technicalities. This will facilitate constructing and maintaining knowledge bases
without being completely dependent on semantic technology engineers.

This paper presents an end-user approach to engineering4 domain-specific
knowledge bases and a collection of tools developed to support this approach.
The proposed end-user approach is based on the Abstract Reference Architecture
(ARA), an existing framework for creating, maintaining and exploiting knowl-
edge graphs [24]. Because we opt for an ontology-based knowledge base, which
can be considered as a form of knowledge graph, we can apply this framework.
Following that work, we distinguish three main activities: Knowledge Base Con-
struction, Knowledge Storage, and Knowledge Consumption. We first explain
these different phases and discuss whether and how end users can performed
them. Next, we present the toolkit developed to support this end-user approach.
Currently, the focus of the toolkit, called DIY-KR-KIT, is on providing support
for the development of the knowledge base, including filling it with data. For
this, we use the jigsaw metaphor, a metaphor that became popular with the
programming language Scratch. The purpose of applying this metaphor is to
hide the technicalities and terminology of the semantic technologies. Using this
jigsaw metaphor, subject matter experts can create their own domain ontology,
meaning that they can define the concepts and relationships used in their do-
main and needed to represent the available knowledge formally. Using the same
metaphor, subject matter experts can also set up the knowledge base and fill it
with data. The approach and tools are demonstrated to build a knowledge base
in the toxicology domain. A first evaluation has been performed [53]. Further-
more, we present a tool to automatically import data from spreadsheets that
were previously composed by subject matter experts to maintain their data. We
also discuss directions to deal with quality assurance.

The paper is organized as follows: Section 2 explains the concept of an
ontology-based knowledge base and the existing ARA framework for engineer-
ing ontology-based knowledge bases. Section 3 presents our end-user approach
towards ontology-based knowledge base engineering, including a discussion on
how the different activities can be made accessible for end users. In Section 4,
the various tools developed so far are explained and demonstrated with a use
case from the toxicology domain. Related work is discussed in Section 5. The
paper ends with conclusions and future work (Section 6).

4 The process of designing, building, and using a system
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2 Background

In this section, we provide the background of the work. We start by explaining
the concept of an ontology-based knowledge base. Thereafter, we discuss the
engineering process of such a knowledge base.

2.1 Ontology-Based Knowledge Bases

To explain the concept of an ontology-based knowledge base, we will compare it
with a classical database. A database organizes data according to a specific data
schema, also called a data model. In this way, the database is an “instantiation”
of the data model, as at each moment, the stored data can be considered as an
instance of the data model. Similarly, a knowledge base (KB) also stores data (or
rather, knowledge), but the data/knowledge is not stored according to a strict
data schema but in general in the form of a knowledge graph, which is a collection
of connected descriptions. An ontology can be used to specify which type of
knowledge can be stored in the knowledge graph [33]. An ontology describes
concepts in a domain and their properties, as well as relationships between the
concepts and domain rules that apply to them. In this way, the ontology can
be seen as the schema/model, and the knowledge stored can be considered as
an instantiation of the ontology [33, 13]. Using an ontology to define the model
of a knowledge base has the advantage of providing formal definitions of the
knowledge that can be stored, its meaning, and possible restrictions on what can
be stored. This not only provides an unambiguous description of the knowledge,
it also allows humans, as well as computers, to process the information and infer
new knowledge.

Note that in some applications, the instances of the concepts and relation-
ships (i.e., the ”real” data) are also considered as part of the ontology, removing
the strict separation between model and data. However, we follow the approach
proposed by Chasseray et al. in [13], where the distinction between model and
data is kept: a knowledge base is composed of a domain ontology and an in-
stantiated ontology. The domain ontology is used to specify the organizational
structure of the knowledge base, and as the name indicates, the instantiated
ontology is an instantiation of the domain ontology containing the actual in-
stances (data). Chasseray et al. combine ontologies with the OMG’s Model-
Driven Engineering (MDE) approach [15] that defines four modeling levels: data
level, model level, meta-model level, and meta-metamodel level. Following this
MDE approach, the authors of [13] consider the domain ontology as an instantia-
tion of an upper ontology that, in its turn, defines the concepts and relationships
needed to define domain ontologies, and corresponds to the meta-model level
from the MDE approach. Such an upper ontology contains general modeling
concepts such as Concept, Relation, and Instance. We show this tree-level struc-
ture for an ontology-based knowledge base in Fig. 1.

We illustrate the structure of such an ontology-based knowledge base with a
use case from the toxicology domain. We will use this use case throughout the
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Fig. 1: Knowledge base structure based on the MDE approach (adapted
from [13])

paper. In the toxicology domain, Safety Evaluation Opinions issued by the Scien-
tific Committee on Consumer Safety (SCCS), provide collections of information
on safety testing of cosmetic ingredients. These Safety Evaluation Opinions are
text documents5. In order to create a knowledge base containing the information
from such documents, and following the approach described above, first a domain
ontology needs to be defined. That domain ontology will describe what type of
information experts want to capture from these opinions in the knowledge base,
e.g., test species used and test reliability, and how this information is related.
Then the actual information from the opinions can be entered into the knowledge
base, resulting into an instantiated ontology. The upper ontology is used to define
the domain ontology for the safety evaluation opinions, i.e., the upper ontology
should contain concepts and relationships (so-called meta-concepts, e.g., Domain
Concept) needed to define the concepts and relationships required for specifying
the knowledge contained in the opinions. For example, Acute Toxicity can be
defined as an instance of Domain Concept.

2.2 Engineering Ontology-Based Knowledge Bases

For the engineering of ontology-based knowledge bases, we will follow (in Sec-
tion 3) the process for creating, maintaining and exploiting knowledge graphs
introduced in [24]. In that work, an Abstract Reference Architecture (ARA) is
introduced to define the main phases and tasks required during the life cycle
of knowledge graphs. Because an ontology-based knowledge base is one form of
a knowledge graph, ARA is applicable for our purpose. ARA consists of three
layers: Knowledge Acquisition and Integration Layer, Knowledge Storage Layer,
and Knowledge Consumption Layer, which correspond to the three major tasks
related to using a knowledge graph in organizations: construction, storage, and
consumption. Each of these tasks can consist of sub-tasks:

1. The Knowledge Acquisition and Integration Layer deals with the knowledge
life cycle, which consists, according to ARA, of the following tasks: Ontology
Development, Data Lifting, Data Annotation, and Quality Assurance. These
activities are shown in Fig. 2. From that figure, one can see that the outcome
of each activity informs the other. For instance, when the schema evolves,

5 Example Safety Evaluation Opinion: https://ec.europa.eu/health/scientific
committees/consumer safety/docs/sccs o 199.pdf
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the transformation and integration of data into the knowledge base may need
to be updated.

2. The Knowledge Storage Layer deals with the storage of the knowledge. Two
main architectural options are mentioned in [24]: (1) reusing existing data
storage and providing mappings between the ontology and the data schemes
of the existing storage’s; and (2) using a graph-based data store.

3. The Knowledge Consumption Layer provides tools for interested parties to
access the knowledge. Examples include search and querying tools.

Fig. 2: The architecture of a knowledge base project depicting the various activ-
ities in knowledge base engineering, based on [24]

According to ARA, the first task to start with is the Ontology Development.
Several methodologies defining a set of activities and techniques for develop-
ing an ontology have been suggested in the past, e.g., METHONTOLOGY [17],
Diligent [51], HCOME [42], NeOn [57], and DOGMA [36], and dedicated tools
have been developed, e.g., [34, 23]. As already mentioned in the introduction,
ontologies are either created manually (by domain experts and/or knowledge en-
gineers), or (semi-)automatically generated from non-ontological resources, such
as classification schemes, thesauri, databases, XML, structured files, or unstruc-
tured documents. For unstructured documents, natural language processing may
be needed to extract concepts and relationships automatically from the docu-
ments. It is also possible to learn (automatically or semi-automatically) domain
definitions from existing data. This is called Ontology Learning [44].

In ARA, Data Lifting focuses on transforming raw data (e.g., stored in
spreadsheets or classical databases) into semantic data, which involves converting
the data to the appropriate format using the selected ontology. Data Annotation
deals with linking and enriching the data with other relevant sources (e.g., other
ontologies, knowledge bases, or even classical databases), resulting in interlinked
and contextualized semantic data.

Finally, the Quality assurance phase in ARA is about ensuring that no mis-
takes are introduced into the knowledge base and its ontology. As mistakes can
be introduced at multiple levels, different techniques need to be adopted to
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detect and repair those. Quality assurance requires both domain expertise (to
assess whether the knowledge base makes sense from an application domain’s
perspective) and knowledge base expertise (to assess whether there are no log-
ical mistakes, for instance). Quality assurance can therefore be perceived as an
interdisciplinary activity.

3 End-User Engineering of Ontology-Based Knowledge
Bases

As already motivated in the introduction, direct use of semantic technology by
subject matter experts who are not technologically skilled is often impossible. IT
experts can be called in, but for specialized domains, like the domain of toxicol-
ogy, it may take a long time before IT experts have familiarized themselves with
the domain. In addition, the IT expert needs to stay available for the complete
lifetime of the knowledge base as knowledge bases tend to evolve over time, e.g.,
new properties and concepts may be needed or new annotations may be required,
and new data will be added. Furthermore, during the Knowledge Consumption
phase, the assistance of IT experts may be needed, e.g., for the formulation of
(new) queries or for (new) reasoning support. To avoid being largely or com-
pletely dependent on IT experts, we propose an end-user development approach
for engineering ontology-based knowledge bases. According to [43], End-User
Development (EUD) can be defined as a set of methods, techniques, and tools
that allow users of software systems, who are acting as non-professional software
developers, at some point to create, modify or extend a software artifact.

Our proposed end-user development approach is based on the knowledge base
engineering approach explained in Section 2.2 but targets subject matter experts
who are not skilled in Computer Science as main developers. Fig. 3 provides an
overview of the proposed end-user engineering process. Ideally, all tasks in the
engineering process should be accessible to end users (i.e., subject matter ex-
perts); however, this seems not feasible for some tasks. In particular, tasks related
to Data Lifting, Data Annotation, Quality Assurance, and Knowledge Storage
may require IT experts’ assistance, or could be handled (semi-)autonomously.
In Fig. 3, three different icons indicate who can perform a task. If a subject
matter expert can perform the task, the SM-expert icon is used; if the task is to
be performed by an IT expert, the IT-expert icon is used; to indicate that the
task can be done automatically, the service icon is used; and when a task can be
done semi-automatically under the supervision of an IT expert, the IT-expert
icon is combined with the service icon. When all three icons are mentioned, this
means that some activities can be done by the subject matter expert and others
semi-automatically or by an IT expert.

We elaborate on each of these activities in more detail in the following sub-
sections. For subject matter expert activities, the main challenge is finding ap-
propriate techniques to hide the technicalities of the Semantic Web technology
and guide these users in the different tasks.
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Fig. 3: End-User Engineering Process of Ontology-Based Knowledge Bases
(based on [24])

3.1 Ontology Development

In the context of knowledge base engineering, Ontology Development is con-
cerned with developing the knowledge base’s schema. As already indicated, we
follow [33] and [13] in the sense that a knowledge base is the combination of a
schema and an instantiation of that schema (i.e., the data).

As the ontology describes (a part of) the domain of the end users, they need
to be involved in some way. We already referred to ontology engineering meth-
ods involving domain experts, i.e., subject matter experts, and tools used by
these stakeholders in Section 2.2. However, we can observe in other domains
that learning how to use these tools can be quite difficult for end users [46]. In
general, two approaches are used for creating an ontology, either domain experts
contribute to the ontology creation, or knowledge engineers use the input of
domain experts to create the ontology. The latter may require the use of knowl-
edge representation techniques that are closer to the end user (e.g., a controlled
natural language rather than logic-based formalisms).

We go one step further in our work and allow subject matter experts to create
the ontology mainly by themselves. To make this possible, we use a metaphor
to hide the technicalities of the semantic technology used. We decided to use
the jigsaw metaphor [31], a metaphor that became popular with the program-
ming language Scratch [52]. This metaphor is already used successfully in several
domains (see Section 5). This section explains how end users can use the jig-
saw metaphor to create a domain-specific ontology. In Section 4, we discuss the
supporting tool and its implementation.

We first illustrate the principle of using the jigsaw metaphor for creating
an ontology for the toxicological use case introduced in Section 2.1. The domain
concepts that typically appear in the Safety Evaluation Opinions can be specified
by means of jigsaw blocks (puzzle pieces) containing placeholders for property
values and connection points for composing concepts; see Fig. 4 for an example
block. This example block represents the domain concept Acute Toxicity. Its



End-User Engineering of Ontology-Based Knowledge Bases 9

main domain-specific property is grading of lesion. The two other properties,
additional information, and own comments will be used to capture additional
information provided in an opinion and comments that the subject matter ex-
perts want to add. Its composing concepts are Test endpoints acute toxicity, Test
method of acute toxicity and Reliability of test acute toxicity.

Fig. 4: Jigsaw Block for Domain Concept “Acute Toxicity”

Later on, when a subject matter expert wants to store the information of an
opinion into the knowledge base, they compose a so-called dossier (representing
the opinion) by connecting the relevant puzzle blocks and filling in the value
fields in the blocks (see Section 3.2).

For defining these domain-specific jigsaw blocks, representing the domain
concepts and their relationships in the ontology, the subject matter experts will
use general jigsaw blocks representing the general modeling concepts (defined
in the upper ontology). In Fig. 5, an example of such a general jigsaw block is
given. This example block shows how to use a general jigsaw block to create the
domain concept “Acute Toxicity” shown earlier on.

This ontology development process is illustrated in Fig. 6. The subject mat-
ter experts are using general jigsaw blocks to create the domain ontology, i.e.,
to define the concepts and their relationships in the specific domain. For each
defined domain concept, a jigsaw block will be generated. These jigsaw blocks
can then, in turn, be used later on by subject matter experts to compose and
fill the knowledge base (see Section 3.2 and Fig. 8).

3.2 Data Lifting

Data Lifting comprises the activities related to filling the knowledge base. How
this can be done depends on the data source. If the data is stored in some struc-
tured form, such as a database or spreadsheet, one can develop mappings to
transform that data into the desired format. Those mappings can take on the
form of dedicated software or be represented in a domain-specific language (e.g.,
R2RML [20]), which is interpreted by a processor that executes the transforma-
tions. If the data is captured in unstructured documents, manually entering the
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Fig. 5: Jigsaw Block for creating the Domain Concept “Acute Toxicity”

Fig. 6: Ontology Development Process
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data is often the only option. Below, we discuss the possibilities in the context
of an EUD approach.

Manual Data Lifting. To allow subject matter expert to enter their data
manually into the knowledge base, we propose to use the same metaphor as
for ontology development, i.e., the jigsaw metaphor. Again, we illustrate the
principle of using the jigsaw metaphor for filling a knowledge base with the toxi-
cological use case. When a subject matter expert wants to enter the information
from a Safety Evaluation Opinion, they use the domain-specific jigsaw blocks
generated during the Ontology Development Process (see Section 3.1) to com-
pose a so-called dossier (representing the opinion) by connecting the relevant
puzzle blocks and filling in the value fields in the blocks (see Fig. 7 for a (partial)
example dossier). The jigsaw blocks can only be composed in a restricted way
and validation for data fields can be provided. When the ontology is created
with the terminology of the Safety Evaluation Opinions in mind, the names of
the blocks and fields correspond with this terminology, and the subject matter
experts can fill the knowledge base while reading the opinions. Based on the
puzzle composition and its values, RDF can be generated that forms (a part of)
the instantiated ontology. This data entering process is illustrated in Fig. 8. It
is similar to the Ontology Development Process but the subject matter expert
is now using domain-specific jigsaw blocks to instantiate the knowledge base.

Fig. 7: Example Jigsaw Block for the dossier ”Vetiveryl Acetate”
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Fig. 8: Manual Knowledge Base Filling Process

Automatic Data Lifting. When data sources are structured, one can use map-
pings to transform data from non-RDF into RDF (a standard model for data
interchange on the Web). One can either write tailor-made software (e.g., Python
scripts) to transform the data or use domain-specific languages such as R2RML
(a W3C Recommendation for transforming relational data into RDF) or RML [25],
a non-standardized superset of R2RML that includes support for XML and
JSON. There are quite a few tools that help one to transform data into RDF6.

3.3 Data Annotation

Data Annotation comprises the activities of linking concepts and data with other
relevant sources (e.g., other ontologies, knowledge bases, vocabularies, or even
classical databases), resulting in interlinked semantic data. Similar to Data Lift-
ing, some data annotation activities can or should be done manually, while tools
can also be used for (semi-) automatic data annotation. In [24], different types
of (semi-)automatic data annotation and examples of tools are discussed.

3.4 Knowledge Storage

In the context of end-user knowledge base engineering, the end users should not
be concerned with knowledge storage. Given the approaches used for the On-
tology Development and the Data Lifting, the resulting knowledge base storage
(e.g., in the form of a triple store) can be automatically generated. Possibly,
some intervention may be needed from an IT expert to deal with server issues.

3.5 Quality Assurance

Quality assurance is about ensuring that no mistakes are introduced into the
knowledge base and its ontology. It is important to have high-quality knowledge
bases, as one cannot rely on wrong or inconsistent data. In this context, two

6 We refer to https://www.w3.org/wiki/ConverterToRdf for a non-exhaustive list.
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different questions can be considered [59]: (1) has the knowledge base been built
correctly, i.e., according to the requirements, and (2) has the right knowledge
base been built, i.e., does the ontology correctly reflects the domain and does it
contain correct data? Finding an answer to the first question corresponds with
the notion of knowledge base verification, and finding an answer to the second
one with the notion of knowledge base validation [30].

Assessing whether the knowledge base has been built correctly is arguably
easier than assessing whether the right ontology has been built. For instance, one
can quickly check whether a knowledge base contains contradictions. Evaluating
whether the correct knowledge base has been built is much harder. One way
to detect problems is to let subject matter experts use the knowledge base for
a while. In [59], a comprehensive survey of the various dimensions of quality
assurance with pointers to state of the art is provided. Important to note is
that only a few of these dimensions can be assessed automatically. Sometimes
dedicated software can be developed but often human input will be needed (i.e.,
semi-automatic approaches), usually from IT experts.

Furthermore, validating whether parts of the knowledge base adhere to the
structure defined for it, is challenging to achieve with ontology languages due to
the Open World Assumption (OWA)7. Validating the data in a knowledge base
using ontology languages would not scale well; it would require the definition
of many rules (e.g., to uniquely identify experiments mentioned in reports) and
assertions (e.g., to explicitly state each pair of experiments in the knowledge
base is disjoint).

An alternative is to use the Shapes Constraint Language (SHACL) [41]. With
SHACL, a W3C Recommendation, one can validate RDF graphs. I.e., one can
validate the structure of triples in a Closed World Setting, with little to no
utilization of an ontology language’s capability8. SHACL provides a set of “core”
constructs for declaring rules (value- and data type checking, cardinality, value
ranges, comparisons,. . . which can be combined with a set of logical operators).
While the jigsaw metaphor can guide end users in entering information that
is valid with respect to the jigsaw blocks, validating the knowledge base with
SHACL is still valuable due to the fact that the integration of data via other
means is often also possible or needed (see Section 3.2). One of SHACL’s key
concepts is the notion of a shape. A shape is a subset of an RDF graph, which
can be declared, and to which one can add constraints. Shapes can be defined
for both entities9 (called node shapes) and properties (called property shapes).

One advantage of SHACL and RDF is that SHACL reports what errors RDF
graphs contain and which entities violate the constraints. It does so by using the
entities’ Internationalized Resource Identifier (IRI). One can apply SHACL not
only to validate the contents of a knowledge base, but also the validate data

7 While an oversimplification, it suffices to state, for this article, that in an OWA
setting, information that is not known is not necessarily false.

8 Most often limited to inferring triples with a reasoning engine before applying
SHACL.

9 In a RDF graph, entities refer to the nodes in the graph.
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prior to integration. Tools such as TopBraid’s SHACL API10 and PySHACL11

can be easily integrated into a workflow allowing end users to identify and spot
problems. The messages generated by SHACL are comprehensive enough for
them: e.g., ”123” is not of the type xsd:integer. SHACL’s disadvantage is that
it is not suitable for direct use by end users, i.e., we can not assume that end
user can write SHACL-code themselves to validate a knowledge base. Therefore,
either knowledge base specific applications need to be developed (by IT experts)
or a method to generate such data validation patterns automatically is needed.
In our tool support, we have adopted this second option (see Section 4.4).

3.6 Knowledge Consumption

The Knowledge Consumption refers to the activities dedicated to the knowledge
base’s use (or consumption). In an end-user approach, we should provide tools
usable by people not schooled in IT [50]; we cannot expect that these end users
are capable to (learn to) formulate SPARQL, for instance. For visualizing and
browsing through the knowledge base, tools can be developed or existing tools
(e.g., [6]) can be used if they are suitable for end users. However, when the
subject matter expert needs precise answers to specific questions, the use of a
dedicated query language may be required. Predefined queries can be provided
by IT experts but not all possible queries can be foreseen and this makes the
subject matter experts again dependent on the availability of IT experts. In that
case, the challenge is to provide a layer on top of the query language to hide
the technicalities of the language for the end user. See [56] for an elaborated
discussion on this.

4 Tool Support: DIY-KR-KIT

This section explains the toolkit developed to support the end-user engineer-
ing of ontology-based knowledge bases. The toolkit, called DIY-KR-KIT (Do
It Yourself Knowledge Representation Kit), currently provides support for the
following tasks: Ontology Development, Data Lifting, Data Annotation, Qual-
ity Assurance, and Knowledge Storage. Support for Knowledge Consumption is
under development. In the following sections, we describe the support for the
different tasks and the status and limitations of the different tools.

4.1 Ontology Development Support

As mentioned before, Ontology Development uses the jigsaw metaphor. The tool
is based on the tool described in [22]. In that tool, subject matter experts still
had to rely on IT experts to define the domain ontology. Thus, that tool did
not support end-user ontology development. Subject matter experts could only

10 https://github.com/TopQuadrant/shacl
11 https://github.com/RDFLib/pySHACL
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use the tool to compose and fill the knowledge base by means of the domain
concepts defined in the ontology (i.e., manual data lifting). We extended and
adapted the tool in such a way that subject matter experts can also use it to
create the domain ontology. A first version of this new tool was described in [53].
In the meantime and based on the user study performed (also described in [53]),
the tool has been improved and functionality has been added.

The tool is a web-based application, built on top of Apache Jena, which
provides the triplestore and SPARQL endpoint. The jigsaw metaphor is imple-
mented via the Google Blockly JavaScript library.

For the ontology creation, the end user has to define the domain concepts. As
described in Section 3.1 and illustrated in Fig. 5, for adding such a concept, a spe-
cial block is provided that allows entering the name of the concept, an optional
abbreviation and description of the concept, its properties, its sub-components,
and optionally a link (URL) referring to a source providing information about
the concept (such as a definition or explanation - see also Section 4.3). An already
defined domain concept can also be adapted in this way.

Fig. 9: Screenshot of the domain concept definition page

Fig. 9 shows the definition page for the domain concept Test conditions acute
toxicity. On the left-hand-side of the page, one can see the top-level blue block
“Domain Concept” that allows specifying the structure of the domain concept
as previously described. Properties can be added to a domain concept block by
dragging and dropping the empty Property block from the Custom Properties
tab in the menu at the left. Properties have a name, a value type, and an optional
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default value. In the example, the first property of the domain concept is given
the name “type of study” with value type “text” and default value “in vivo”
. Note that in the left sidebar menu we also have the Default Properties tab,
which provides recurring property blocks, such as the “year” property block.
By using these default properties blocks, users can save time.

A domain concept can be composed of other domain concepts. In Fig. 9, we
see that the Test conditions acute toxicity concept is further composed of the
Test species in in vivo study and the Route of exposure concept. This is shown in
the blue Domain Concept block under the “Composed of” field. The “Composed
of” dropdown allows adding other composing concepts.

On the right in Fig. 9, a preview of the generated jigsaw block for the domain
concept defined at the left is given. In this case, the block contains two puzzle
connectors on the right side, one for each composing concept given. Any changes
made on the left side are reflected in real-time in the preview on the right.

Blockly defines blocks in XML format. However, when a domain concept is
saved (using the “Save Domain Concept” button), this XML representation is
transformed by our tool into RDF using an XSLT file so that it can be integrated
into the domain ontology. Once the concept is created, its name will appear in
the menu with the domain concepts.

4.2 Data Lifting Support

Our toolkit supports manual as well as some form of automatic data lifting:

Manual Data Lifting Support. As explained in Section 3.2, the same
metaphor as for the ontology development, i.e., the jigsaw metaphor, is used
for filling the knowledge base with data. For example, when a subject matter ex-
pert wants to enter the information from a particular Safety Evaluation Opinion,
they use the domain-specific jigsaw blocks created during the Ontology Develop-
ment Process (see Section 4.1) to compose a so-called dossier (representing the
opinion) by connecting the relevant puzzle blocks and filling in the value fields
in the blocks (see Fig. 7 for a (partial) example dossier). The jigsaw blocks can
only be composed in a restricted way and validation for data fields is provided.

From the user study performed (see [53]), it became clear that the manual
filling of the knowledge base was rather time consuming. Several actions had
to be repeated, such as defining some recurring blocks, which were needed to
structure a dossier. In order to save time and also to ensure that those blocks
are always defined in the same way, we now allow the end user to save such
recurring block structures so that they can be reused in multiple dossiers as
is. The Acute Toxicity block shown in Fig. 7 could, for example, be saved as a
block structure. Then this block together with all its sub-components (i.e., blocks
attached to its right) will appear in the tab “saved block structures” depicted
in Fig. 10. These saved block structures can be dragged and dropped as a whole,
which saves time for subject matter experts.
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Fig. 10: Screenshot of the dossier creation page’s saved block structure tab

Automatic Data Lifting Support. In the past, the subject matter experts
from our toxicology use case used spreadsheets to structure and store the in-
formation from Safety Evaluation Opinions. Although the structuring of the
information in the spreadsheets was very ad hoc, mostly based on a particular
study or experiment, and limited, we decide to develop a tool to import the
data into the knowledge base, as they spent a considerable amount of time in
creating these spreadsheets. The tool works automatically given that the spread-
sheet has a valid structure. However, we noticed recurrent encoding mistakes in
some spreadsheets, such as merged cells that were not supposed to be merged
or misplaced nodes in hierarchical tree structures drawn with cells. It therefore
still requires to check manually that the spreadsheets are well-formed before
parsing them. However, some errors are caught by the approach, which we will
explain below. Automation of this process would be possible in a future version
of the tool but would require reasoning capabilities in order to infer accurate
corrections, similar to the solutions presented in [12] and [1].

We use R2RML to transform the spreadsheets into RDF. R2RML is a W3C
Recommendation for transforming relational data into RDF. The spreadsheets
are not relational databases, but each spreadsheet, once stored as comma sepa-
rated values (CSV) file, can be considered as containing relational data (i.e., rows
with attributes). R2RML engines (and dialects) such as RML [25] and R2RML-F
[21] provide support for CSV files. We have chosen to adopt R2RML-F as this
particular engine loads the CSV files into an in-memory relational database,
which allows us to manipulate the data in the records with SQL prior to gener-
ating RDF.

As for data validation, R2RML-F produces RDF, but –as per R2RML
specification– is not responsible for data validation such as checking data types.
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Checking whether data types are correct are left to the graph database. Graph
databases such as Apache Jena Fuseki (see Section 3.4) provide warnings when
data types are invalid. Within our approach, we also avail of shape expressions
(see Section 3.5) to see whether the generated RDF adheres to the structure of
our domain ontology.

In Fig. 11, we show some of the RDF generated from the spreadsheets, in
a visual manner with Ontodia [47]. Ontodia is a tool allowing one to visually
explore a triple-based knowledge base using diagrams and faceted browsing. The
RDF we show in this figure is, for sake of simplicity, limited to the concept of
repeated toxicity. On the left, we have a list of classes and a list of instances tied
to that class. We have dragged and dropped the report on “phenoxythenol” and
started exploring by expanding its relationships. We see that there are 8 tests
(w.r.t. repeated toxicity), 6 of which are OECD compliant tests and two that are
not. We have shown the list of attributes of two tests. We can also navigate via
other domain concepts, such as the species used in the tests. These visualizations
can be used by the subject matter experts and by IT experts to validate whether
the transformation was correctly performed, but also for quality assurance (see
Section 4.4).

Fig. 11: Visually exploring the RDF generated from a spreadsheet with Ontodia.

4.3 Data Annotation Support

Currently, our own tool only supports manual data annotation. While defining
the ontology, the subject matter expert can link domain concepts and data to



End-User Engineering of Ontology-Based Knowledge Bases 19

existing sources. While defining the ontology, the subject matter expert can
link domain concepts and data to existing sources. Therefore, when creating
a dossier or a domain concept, the subject matter expert has the possibility
to add a link. For a dossier, this is a link to the Safety Evaluation Opinion
file; for a domain concept it is a IRI (see Fig. 12). References to files indeed
allow a user to consult the (original) sources from which the data is gathered.
When they provide references to other ontologies and/or RDF datasets, the end
users are effectively creating Linked Data [7]. Linked Data is an initiative in
which one published RDF data according to specific best practices that result
in interconnected data stored on different servers; a Web of data.

Fig. 12: Homepage for domain concept creation and modification

4.4 Quality Assurance Support

Currently, the support for quality assurance is limited in our tool to the vali-
dation of the structure of the data in the knowledge base by means of SHACL
shapes (see Section 3.5 for SHACL). Because we cannot expect that our subject
matter experts are able to write SHACL-code, we looked at an approach by
which the SHACL-shapes and constraints can be generated.

Note that in our approach, the knowledge base also contains the domain
ontology, which not only defines the domain concepts, but also the way the data
should be structured in the knowledge base. By analyzing this information, one
can infer what predicates are allowed to appear for particular entities in the RDF
graph. Thus, shapes can be generated in a declarative manner using SPARQL
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PREFIX toxin: <http://ontologies.vub.be/oecd#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX sh: <http://www.w3.org/ns/shacl#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

CONSTRUCT {

?nodeshape

a sh:NodeShape ;

sh:targetClass ?s ;

sh:property ?propertyshape ;

sh:closed true ;

.

}

WHERE {

?s rdfs:subClassOf toxin:Test .

?s toxin:attributeGroup*/toxin:attribute/toxin:predicate ?p .

BIND( IRI(CONCAT(STR(?s), "Shape")) AS ?nodeshape )

BIND( IRI(CONCAT(STR(?p), "Shape")) AS ?propertyshape )

}

Listing 1: Creating node shapes for each type of ”test” in the TOXIN knowledge
base

CONSTRUCT queries. For example, and for the knowledge base of our use case,
the query in Listing 1 is responsible for generating the node shapes for each type
of test12 and linking each type of test with its test as defined by the domain
ontology. The WHERE clause of Listing 1 looks for the different types of tests
and their properties. These results are then used to create IRIs for both node
and property shapes. In the CONSTRUCT clause, one can see how one shape for
each type of test is created. The node shape is “closed” , which means that each
entity of that type should not use properties beyond those that are declared in
their property shapes. We can provide a list of exceptions, as shown in Listing 3.
As rdf:type is not mentioned in a property shape, we have decided to ignore
that. We could have created a property shape for rdf:type in Listing 1, but
this approach is more elegant and more commonplace. In Listing 2, we finally
generate property shapes for each property used. The query also inspects the
ontology to find the data type of that property. Listing 4 provides an example
of a node shape and of a property shape.

Using this approach, we can generate data validation patterns for the main
concepts of the knowledge base. However, note that the validation that can be
done in this way is limited. Examples of rules that cannot be generated in this
way are either domain-specific rules (e.g., the accepted values for a particular
property is depending on the type of test) or more generic rules (e.g., the re-
lationship between start- and end dates). Notwithstanding this limitation, the

12 test is a domain concept
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# namespaces omitted for brevity

CONSTRUCT {

?propertyshape

a sh:PropertyShape ;

sh:path ?p ;

sh:datatype ?r ;

.

}

WHERE {

[] toxin:attributeGroup*/toxin:attribute/toxin:predicate ?p .

?p rdfs:range ?r .

FILTER REGEX(STR(?r), "http://www.w3.org/2001/XMLSchema#") .

BIND( IRI(CONCAT(STR(?r), "Shape")) AS ?propertyshape )

}

Listing 2: Creating property shapes for each property used in blocks.

# namespaces omitted for brevity

CONSTRUCT {

?nodeshape sh:ignoredProperties ( rdf:type ) .

}

WHERE {

?s rdfs:subClassOf toxin:Test .

BIND( IRI(CONCAT(STR(?s), "Shape")) AS ?nodeshape )

}

Listing 3: Node shapes are closed; entities belonging to this node shape may not
use any properties beyond their property shapes. Here, however, we can declare
a list of properties that may be ignored such as rdf:type.

toxin:Test_OECD_489Shape a shacl:NodeShape ;

shacl:closed true ;

shacl:ignoredProperties ( rdf:type ) ;

shacl:property toxin:GLPShape,

toxin:Ref_in_dossierShape,

toxin:SCCS_comment_to_testShape,

# omitted for brevity

toxin:vehicleShape,

toxin:yearShape ;

shacl:targetClass toxin:Test_OECD_489 .

xsd:angleShape a shacl:PropertyShape ;

shacl:datatype xsd:angle ;

shacl:path toxin:Angle_new .

Listing 4: SHACL shapes resulting after the application of SPARQL CON-
STRUCT queries in Listings 1, 2, and 3.
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SHACL that is generated checks whether the data types are correct and whether
the tests only use predicates that are stored in the ontology.

By combining the automatic data lifting with SHACL, we effectively create
an ETL (Extract, Transform, and Load) pipeline with some quality assurance
support.

4.5 Knowledge Storage Support

Both the Blockly-tool for the ontology development and for the manual data
lifting, automatically transform the XML representation used by Blockly into
RDF using an XSLT file so that it can be integrated into the domain ontology.

While there are quite a few triplestores available (both free, commercial, and
free for research purposes), we have adopted Apache Fuseki13 for managing the
triplestores and SPARQL endpoints. The ontology is stored in one named graph.
The data which has been lifted are stored in another. This allows us to separate,
at the level of the data, the ontology and the data.

5 Related Work

In this section, we discuss related work in the context of end-user development
for ontology-based knowledge bases. Thereby, we focus on the aspects that we
elaborated on in the paper: end-user approaches for the development of ontology-
based KB development in general, end-user ontology development, and the use
of the jigsaw metaphor to hide technicalities from end users.

5.1 End-User Approaches for Ontology-Based KB Development

In [28], the authors propose a framework, called DaCura, that provides a process
and tools to harvest and curate Linked Datasets (encoded as an RDF graph and
stored in a triple store). They claim that to ensure high-quality of the published
data, there must be a provision for subject matter experts to review, assess,
and correct harvested data. Therefore, subject matter experts (called Domain
Experts in DaCura) also have a role in the overall process. The authors also
recognize that producing high-quality datasets requires a variety of automated
and manual processing tools. Compared to our work, the role of the subject
matter expert is limited to interpreting reports created by data harvesters and
the generation of facts from these reports using a service, which are then pub-
lished for consumers. Note that defining how the facts are represented is done
by data architects. The data architects are clearly IT-skilled persons, but the
profile of a data harvester is not explicitly defined in the paper. In any case, in
that approach, the role of the subject matter expert is limited to what we call
manual data lifting and some aspects of quality assurance.

KawaWiki, described in [39], enables end users to provide Semantic Web
descriptions and annotation on Wiki content. For this, RDF templates are used

13 https://jena.apache.org/documentation/fuseki2/
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to avoid that end users need to learn the RDF syntax. It allows end users to
generate RDF data through simple forms in a browser, and, in addition, provides
some validation checks. Also in this approach, the role of subject matter experts
is limited to entering data, as the templates are defined by expert RDF users.

In [27], an end-user development approach based on model-driven develop-
ment, visual programming, and wizard form-filling is proposed to develop intel-
ligent systems for supporting the search and troubleshooting onboard aircrafts.
The approach is rather domain-specific as it is based on the use of event trees for
formalizing scenarios for problem situations. For, the knowledge base itself, Per-
sonal Knowledge Base Designer (PKBD) [60] is used but this is not an end-user
tool.

5.2 End-User Ontology Development

In [9], it is proposed to derive an ontology from a conceptual map (Cmaps). Con-
ceptual maps express concepts and their relationships in the form of concept-
relation-concept. A set of heuristic rules to map a conceptual map into an OWL
ontology is presented. A distinction is made between classification relations,
composition relations, bidirectional relations, and other relations. A first imple-
mentation of the translation system was made using Prolog, but no evaluation
with end users was reported. It remains an open question whether conceptual
maps are easier to use for subject matter experts than for instance a graphical
representation of RDF.

Some papers (e.g., [4]) propose to transform UML class diagrams into OWL.
However, we are not convinced that UML class diagrams are suitable for people
without a computer science background, as the ease to learn and understand
them has already been questioned for computer analysts [26].

Another direction is the use of a natural language interface. For instance,
GINO (Guided Input Natural language Ontology editor) [5] is using a natural
language approach. However, to avoid the limitations of full natural language
interfaces, a guided and controlled language akin to English is used. To add
a new construct to the ontology, the user should start by typing “there is” or
“there exists” after which a popup shows possible constructs, such as “class”.
After having selected the appropriate construct, the user is prompted to give
a label and ends the sentence with a full stop. Next, this sentence, e.g., “there
is a class Lake.” , is translated into OWL triples and loaded into the ontology.
Properties are also defined in this way. GINO has been evaluated for usability by
six users without experience in ontology building and with no computer science
background. The participants had to create one class, one subclass, one data type
property, one object property. The participants also had to add one instance with
values for two properties and change the value of a property. An average SUS
score of 70,83 was obtained. However, it must be noted that the task was very
small. Defining a large ontology in this way may be very time-consuming as
the interface is quite verbose. Other works that follow a similar approach are
CLOnE (Controlled Language for Ontology Editing) [29] which allows multiple
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classes to be expressed in a single sentence, and Rabbit [32] which language is
also somewhat richer than GINO’s.

5.3 Jigsaw Metaphor

The jigsaw metaphor has been used in the Semantic Web community for the cre-
ation of Linked Data mappings [38] and the formulation of SPARQL queries [8].
Junior et al. [37] report on an experiment that indicates that users achieved
higher performance and had a lower perceived mental workload when creating
Linked Data mappings using the jigsaw metaphor.

Recently, Öztürk and Özacar [49] propose a block-based approach, based on
Blockly, for instantiating a recipe ontology. Their approach is similar to the man-
ual data lifting in ours as they use the blocks to populate the ontology. However,
the blocks are predefined, which has the disadvantage that the blocks need to be
adapted when the ontology evolves, and new blocks have to be programmed for
each new ontology. We overcome this problem by rendering the necessary blocks
from the meta level in which the end user defines the necessary blocks. The sys-
tem proposed in [49] was evaluated for usability with 14 participants (students),
however more than half of them had a background in ontology engineering.

Next to the use of the jigsaw metaphor for the programming language
Scratch, intended for children between the ages of 8 and 16, the metaphor has
also been used to support end-user development in other domains, e.g., for the
development of IoT [35]; for the development of mobile applications [19]; and for
debugging IF-THEN rules in an IoT context [18].

6 Conclusion and Future Work

To support subject matter experts in the creation and exploitation (i.e., engineer-
ing) of ontology-based knowledge bases, we proposed an end-user development
approach. We argue for such an approach because the direct use of Semantic Web
technology such as RDF or OWL, is very challenging for people not schooled in
IT. As a result, subject matter experts in need of a semantic technology-based
knowledge base are dependent on IT experts for engineering such a knowledge
base. This makes the engineering of such domain-specific knowledge bases a very
tedious, expensive, and long process. There is not only the cost associated with
involving IT experts, but, in general, there is also a vast knowledge gap between
the experts in the field and IT experts. Such a knowledge gap may take a long
time to be bridged and could lead to a lot of miscommunication and misunder-
standings.

The proposed end-user approach is based on the process for creating, main-
taining and exploiting knowledge graphs introduced in [24]. Following that work,
we distinguish three main activities: Knowledge Base Construction, Knowledge
Storage, and Knowledge Consumption. We first explained these different phases
and discussed whether and how they can be performed by end users. For some
tasks and given the current state of technology, it does not yet seem feasible
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that they are (completely) performed by end users. In that case, we argued for
tools that automate the task or semi-automatically perform the task with limited
input from IT experts.

Next, we presented the tools developed to support this end-user approach.
Currently, the main focus of the toolkit, called DIY-KR-KIT, is on providing
support for the development of the ontology and filling the knowledge base with
data. For the development of the ontology and the manual filling of the knowl-
edge base, we used the jigsaw metaphor. The purpose of applying this metaphor
is to hide the technicalities and terminology of the semantic technologies used
for creating ontology-based knowledge bases. A first tool allows subject matter
experts to create their own domain ontology, meaning that they can define the
concepts and relationships used in their domain and needed to formally represent
the available knowledge, and if possible link them to external sources defining
them. Next, a similar tool allows the subject matter experts to set up the knowl-
edge base and fill it with data. The approach, and the tools, are demonstrated
and evaluated14 for building a knowledge base in the toxicology domain. Fur-
thermore, we developed a tool to automatically import data previously collected
by subject matter experts in spreadsheets. We also discussed directions to deal
with quality assurance.

Currently, we investigate how to provide end-user support for the Knowl-
edge Consumption phase. The main challenge in this respect is to allow subject
matter experts to create complex queries without the need for learning technical
query languages such as SPARQL. Other future work includes the investigation
for appropriate end-user methods and tools for knowledge base evolution, i.e.,
managing and propagating changes in the domain ontology to the knowledge
base, and specifying reasoning capabilities.
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30. Gómez-Pérez, A.: Ontology Evaluation. In: Staab, S., Studer, R. (eds.) Hand-
book on Ontologies, pp. 251–274. International Handbooks on Information Sys-
tems, Springer (2004)

31. Gozzi, R.: The Jigsaw Puzzle as a Metaphor for Knowledge. ETC: A Review of
General Semantics 53(4), 447–451 (1996)



28 A. Sanctorum et al.

32. Hart, G., Johnson, M., Dolbear, C.: Rabbit: Developing a Control Natural Lan-
guage for Authoring Ontologies. In: Proceedings of ESWC 2008, European Seman-
tic Web Conference. Tenerife, Spain (June 2008). https://doi.org/10.1007/978-3-
540-68234-9 27

33. Hepp, M.: Ontologies: State of the art, business potential, and grand challenges.
In: Hepp, M., Leenheer, P.D., de Moor, A., Sure, Y. (eds.) Ontology Manage-
ment, Semantic Web, Semantic Web Services, and Business Applications, Se-
mantic Web and Beyond: Computing for Human Experience, vol. 7, pp. 3–22.
Springer (2008). https://doi.org/10.1007/978-0-387-69900-4 1, https://doi.org/10.
1007/978-0-387-69900-4\ 1
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