
An Ontology for Representing and Annotating Data
Flows to Facilitate Compliance Verification

Christophe Debruyne1,2, Jonathan Riggio2, Olga De Troyer2, Declan O’Sullivan1
1 Trinity College Dublin, Dublin, Ireland

2 Vrije Universiteit Brussel, Brussels, Belgium
debruync@tcd.ie, jriggio@vub.be, olga.detroyer@vub.be, declan.osullivan@tcd.ie

Abstract— In this paper, we argue that there is a gap to be
bridged between the development and maintenance of services
and the various internal and external policies that emerge and
evolve outside of these systems. To bridge this gap, we propose a
semantic model, i.e. ontology, for representing Data Flows and
linking them with structured representations of the data that is
processed (datasets, databases, queries, etc.). Data Flow Dia-
gramming is a technique for capturing the various data and
information flows between an information system and external
stakeholders as well as within such a system. This technique is
used in the analysis phase of information systems development
and captures the inputs and outputs of various processes. Our
model allows these data flows to be presented and linked with
structured representations of the data that is to be used, consult-
ed, processed, etc. We demonstrate that this model can facilitate
compliance verification processes of (intelligent) systems by al-
lowing these flows to be analyzed. Next to the ontology, which has
been made available according to best practices in the field, we
furthermore posit our contributions within the state of the art.

Keywords-component; Data Flows, Data Flow Diagrams, Se-
mantic Models

I. INTRODUCTION
Data processing, in general, is increasingly the subject of

various regulations such as the General Data Protection Regu-
lation (GDPR)1, an EU law that came into effect on May 2018.
While not new, principles such as privacy by design or data
protection by design have been explicitly mentioned by some
of these legislations, encouraging developers to account for, at
the start, the measures necessary to be compliant. Policies may
be internal or external and even evolve over time. This means
that not only the development but also the maintenance of
information systems and their intelligent processes should co-
evolve.

In this context, the adoption of Data Flow Diagrams to sup-
port this co-evolution appears as a practical solution as it is
already widely used in industry for structured software analysis
and design, providing efficient means of communication be-
tween developers and business administration [1]. However, as
Data Flow Diagrams are merely used during analysis and for
communication and documentation, there is a disconnection
between the data flow models and the artifacts that have been

1 https://eur-lex.europa.eu/eli/reg/2016/679/oj

produced during development phases. In order to tie the analy-
sis and design of services with the resulting or used artifacts
(databases, datasets, etc.), appropriate solutions are needed.
These solutions could also facilitate data governance. Data
governance is defined as “[referring] to what decisions must
be made to ensure effective management and use of IT (deci-
sion domains) and who makes the decisions (locus of account-
ability for decision-making).” [2] As a solution, we propose an
ontology usable for capturing data flows and annotate them
with information that will allow compliance to be analyzed.
The resulting model cannot only be used at design time but at
any time components of the system are to evolve.

The literature on the adoption of Semantic Web technolo-
gies (i.e., models) for analyzing GDPR compliance has been
investigated. Much of the work in the state of the art addresses
assessing compliance a posteriori [3] [4], in other words: as-
sessing the compliance of past events by, for instance, annotat-
ed and querying logs. Others propose models for describing
policies and prescriptions of the various data processing steps
[5], [6]. We instead propose a model to bridge the gap between
both the analysis and design, and the development and mainte-
nance of information systems, and the various policies those
systems should comply with. This allows analysts to better
describe systems, more in particular in terms of the (types of)
data used by their processes. Therefore, it enables to verify
compliance with the necessary measures that need to be put in
place during the analysis and design phases of a project.

Our solution relies on standardized Semantic Web technol-
ogies – the Web Ontology Language (OWL) [7] and the Re-
source Description Framework (RDF) [8] – to facilitate the
integration of other models, ontologies and vocabularies.

The remainder of this paper is structured as follows: Sec-
tion 2 provides a brief introduction to Data Flow Diagrams
(DFDs); Section 3 presents our Data Flow ontology and exem-
plifies its use; Section 4 illustrates how one can avail vocabu-
laries to enrich data flows for compliance analysis, demonstrat-
ing that our model is apt to tackle aforementioned gap between
the analysis and design of services, and development; in Sec-
tion 5 we present the related work and argue for the use of
DFDs over workflow-oriented models; and finally, in Section
6, we summarize contributions and describe future work.

Christophe Debruyne, Jonathan Riggio, Olga De Troyer, and Declan O’Sullivan. An ontology for representing and annotating data flows to facilitate compliance verification. In Manuel Kolp, Jean Vanderdonckt, Monique Snoeck, and Yves Wautelet, editors, 13th International Conference on Research Challenges in Information Science, RCIS 2019, Brussels, Belgium, May 29-31, 2019, pages 1–6. IEEE, 2019�

II. DATA FLOW DIAGRAMS (DFD)
Data Flow Diagrams “enable [one] to model how data flow

through an information system, the relationships among the
data flows, and how data come to be stored at specific loca-
tions. Data flow diagrams also show the processes that change
or transform data.” [9] Figure 1 depicts the various elements of
a component diagram:

• Interfaces are rectangles and represent the external entities
or “actors” that engage with the system. They can send and
receive data flows. In Figure 1, interfaces are the customer,
the restaurant’s kitchen and the restaurant’s manager.

• Processes, shown as ellipses, process the data they receive
as input and send output on to other DFD entities. A pro-
cess always has at least one input and at least one output.
In the example, there are processes for ordering food, up-
dating the records and inventory, and producing manage-
ment reports.

• Data stores, represented as rectangles with only a top and a
bottom border, represent the places where data is stored (in
any form) for other processes to consult. In Figure 1, there
are two data stores that facilitate keeping track of the res-
taurant’s sales and inventory.

• Data flows are depicted as arrows and indicate data mov-
ing from one DFD entity to another. For example, in Fig-
ure 1, there is a data flow “order” that denotes the infor-
mation submitted by the customer to the “Order Food”
process.

Figure 1 Example of a Data Flow Diagram (inspired from [9])

The notation also has a set of rules including that interfaces
and data stores should not be connected (a process needs to be
modeled in the middle); data flows should have unique names;
etc. Some notations allow processes to be decomposed into
subprocesses and comes with its own set of rules such as bal-

ancing: “The conservation of inputs and outputs to a DFD
process when that process is decomposed.” [9]

DFDs are not well suited for modeling a highly distributed
system as services provided by other systems should be mod-
eled as interfaces (i.e., an “actor” outside the information sys-
tem) in a DFD. As DFDs are focused on data flows, however,
one can consider the distributed system as one information
system. This allows one to model the services as processes
(owned by actors), even though the details of which may not be
known to the modelers.

For the purpose of this paper, we limit ourselves to “sim-
ple” DFD diagrams and data flows that cannot be forked or
merged. Our semantic model, which we will present in the next
section, can be easily extended to support more complex DFDs.

III. THE DFD ONTOLOGY
This section presents an ontology for representing Data

Flows. This ontology provides predicates to represent data
flows and entities. We have decided not to include capturing
the graphical representation of the diagram, as this does not
pertain to the aim of analyzing the processes and flows. If this
would be needed, one can easily add statements about the loca-
tion, size, etc. of the various entities and flows with, for in-
stance, WKT2.

The ontology3 is implemented using OWL 2 [7]. The ontol-
ogy has been made available with a CC-BY-4.0 license and
published according to best practices and guidelines in the
Semantic Web community. Documentation was generated
using WIDOCO [10], which integrated LODE [11] and Web-
VOWL [12]. The former generated documentation for the
OWL ontology using its axioms and annotations, and the latter
visualizes the ontology.

The ontology contains 4 disjoint classes: dfd:DataFlow,
dfd:DataStore, dfd:Interface, and dfd:Process.
dfd:DataStore, dfd:Interface, and dfd:Process
are subclasses of dfd:Entity. There are two object proper-
ties relating Data Flows to DFD Entities: dfd:from and
dfd:to. Both have dfd:DataFlow as the domain and
dfd:Entity as range. All the components of a DFD diagram
are named, for which we will reuse the rdfs:label predi-
cate. All DFD entities and all data flows are supposed to have
unique names in a diagram. Using Semantic Web technologies,
this is a rule that is more difficult to impose. We, therefore,
redefine this rule to state that all DFD entities and all data
flows have a unique name and that these names are to be
unique in the base or in the RDF graph they are used.

Given the DFD example of Figure 1, a snippet of the
DFD’s representation in RDF is given below. In this snippet,
the default namespace is http://example.org/ and URI encoding

2 WKT stands for Well-Known Text and is a markup language for represent-
ing geometric objects (https://en.wikipedia.org/wiki/Well-known_text)
3 https://w3id.org/dfd

was used for the URIs. The RDF was generated using an
Eclipse plugin written for this study (see Figure 2).
@base <http://example.org/> .
@prefix : <http://example.org/> .
@prefix dfd: <https://w3id.org/dfd#> .

:Customer a dfd:Interface ;
 rdfs:label "Customer" .
<http://example.org/Order+Food>
 a dfd:Process ;
 rdfs:label "Order Food" .
:Order a dfd:DataFlow ;
 rdfs:label "Order" ;
 dfd:from :Customer ;
 dfd:to <http://example.org/Order+Food> .

Listing 1 An RDF representation of the “Order” data flow between
“Customer” (an interface) and “Order Food” (a process). Note that the RDFS
namespace was omitted for brevity.

Figure 2 Graphical DFD editor written in Eclipse

IV. KNOWLEDGE ORGANIZATION: TOWARDS
ANNOTATING DFDS FOR COMPLIANCE ANALYSIS

The RDF data model allows one to easily add statements to
a graph. Using the RDF that was generated (as explained in the
previous section), one can extend the graph with 1) structured
information about the data shared or stored, and 2) the purpose
of data being processed. For both, we can avail of existing
(often standardized) vocabularies.

To describe data that is used in a data flow or stored in a da-
ta store, we can:

• Use a reference to a vocabulary or ontology that can be
used to describe the concepts and relations that will be
used in a data flow or store.

• Avail of SPARQL Inferencing Notation (SPIN) [13] to
represent SPARQL queries in a structured manner. Such
structured descriptions of queries are suitable for describ-
ing flows from a data store to a process. Related work has
shown that these representations can be used to interrogate
these queries [14].

• Describe datasets with the RDF Data Cube Vocabulary
[15], which also offers a vocabulary to prescribe a data
sets’ “schema”. The VoID Vocabulary [16] allows one to

describe Linked Data datasets and offers predicates for de-
tailing where one can find the data, such as a SPARQL
endpoint.

For capturing data processing purposes, we can adopt:

• The PAM ontology proposed in [17] relating purpose,
dataset and consent, with consent information limited to
that what is stored by a system. Instances of
dfd:Process can be directly linked to instances of
pam:Purpose.

• An ontological “design pattern”, recently proposed in [6],
for capturing the personal data captured in an organiza-
tion’s privacy policy. This ontology provides predicates
not only to describe the purposes for data processing, it al-
so provides predicates for describing what data is collect-
ed, who it will be shared with, and how long it is retained
for (amongst others). Combined with the ontology pro-
posed in [5], one can interrogate the legal basis of a partic-
ular data processing activity.

It is clear that possibilities are vast, but the goal of this sec-
tion is not to propose a governance framework in which all
models are unified, which would be the subject of future work,
but rather to demonstrate what is feasible.

A. An Example
We will use the simple example of using names and email

addresses to send out newsletters. A part of a DFD capturing
this process and its corresponding RDF are shown in Figure 3
and Listing 2. Note that the data flow containing the email to
the customers (the interface, not the data store) has been omit-
ted for brevity.

Figure 3 DFD for the process of sending newsletters

:Customers a dfd:DataStore ;
 rdfs:label "Customers" .

<http://example.org/Send+newsletters>
 a dfd:Process ;
 rdfs:label "Send newsletters" .

<http://example.org/names+and+email+addresses>
 a dfd:DataFlow ;
 rdfs:label "names and email addresses" ;
 dfd:from :Customers ;
 dfd:to <http://example.org/Send+newsletters> .

Listing 2 An RDF representation of the DFD in Figure 3

Let’s assume that the customer database is accessible via a
SPARQL endpoint using FOAF4. The data flow can be anno-

4 http://xmlns.com/foaf/0.1/

tated with the SPARQL query for retrieving the foaf:name
and foaf:mbox of customers. We will use SPIN to represent
the SPARQL query and the predicate dfd:representedBy
to relate the data flow and the query. This would look as fol-
lows:
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name ?email WHERE {
?x foaf:name ?name .
?x foaf:mbox ?email .
}
<http://example.org/names+and+email+addresses>
 dfd:representedBy [
 a sp:Select ;
 sp:resultVariables (_:b1 _:b2) ;
 sp:where ([sp:object sp:_arg1 ;
 sp:predicate foaf:name ;
 sp:subject _:b1]
 [sp:object sp:_arg1 ;
 sp:predicate foaf:mbox ;
 sp:subject _:b2])
].
_:b1 sp:varName "name"^^xsd:string .
_:b2 sp:varName "email"^^xsd:string .

Listing 3 The SPARQL query and its corresponding SPIN representation.
Notice how the URI of the data flow is connected to the query.

The GDPROV ontology5 proposed in [5] allows one to
state RDF resources to be an instance of
gdprov:PersonalData. We will use this ontology to state
the two FOAF properties we use are such instances using
rdf:type. Assuming that one can query the RDF representa-
tion of the data flows, its representation of the data, and infor-
mation about its nature, the following SPARQL query allows
an agent to find out whether a data flow is using personal data:

1. SELECT ?dataflow ?predicate WHERE {
2. ?dataflow a dfd:DataFlow .
3. ?dataflow sp:where/rdf:rest*/rdf:first
4. [sp:object ?object ;
5. sp:predicate ?predicate ;
6. sp:subject ?subject] .
7. ?predicate a gdprov:PersonalData .
8. }

Listing 4 SPARQL query to list all personal data that data flows use. Note that
the third line allows us to iterate over each of the triple patterns in the where
clause. The rdf:rest* in the property path will match with both the 0th and
1st occurrence of rdf:rest in our list.

The SPARQL query in Listing 4 only checks whether the
predicates used are considering personal data. The query can be
extended to check whether this holds true for other parts of the
triple patterns. One example is to test whether the subject is an
instance of personal data when the predicate is rdf:type.
This shows that a set of SPARQL queries can be written to
inform users of aspects to be taken into account.

5 http://purl.org/adaptcentre/openscience/ontologies/gdprov#

B. Towards governance and a feedback loop
We demonstrated how enriched RDF representations of da-

ta flows can be used to engage with the services being de-
signed. Those representations, when combined with the work,
for example, proposed by [5], allows one to ask more complex
questions such as: “What is the legal basis of using personal
data for this process?” or “Are we allowed to use the personal
data in an information purpose for a particular process?” These
are the questions that appropriate data governance platforms
need to answer. These models, when stored, can be furthermore
used for reassessing processes whenever datasets, policies, etc.
change. The models we propose have the potential to facilitate
not only compliance analysis but also the impact of certain
changes.

We emphasize that this facilitation will be achieved through
integration with work proposed in for instance [3]–[5] (which
includes support for formulating compliance), as the ontology
is meant to bridge the gap between design, development, and
monitoring. The integration of our approach and the models we
adopted into a governance framework will be the subject of
future work.

V. RELATED WORK
We briefly described related work on compliance analysis

in Section I. In this section, we will describe the related work
on representing processes with Business Process Model and
Notation (BPMN) [18] and other initiatives for representing
processes with ontologies and motivate our choice for DFDs.

A. DFD vs. BPMN
Before discussing the reasons for adopting DFDs, we first

want to elaborate on the difference between Data Flow Model-
ing, and Business Process Modeling and Flow Charts.

As stated in Section II, Data Flow Diagrams depict the
movement of data as data flows between external entities
(called interfaces), and internal entities (processes and data
stores) within an information system. Data Flow Diagramming
is useful to describe a solution during the analysis phase of the
systems development life cycle (SDLC), and is not a detailed
design for it. As [19] noted, DFDs focus on data and have no
means to model decisions, branches, workflows, etc. DFDs
thus provide a “snapshot” of all possible data flows within a
system.

The Business Process Model and Notation, or BPMN [18],
does provide constructs for modeling sequences with evens
support for branching and converging sequences (based on
decisions). The notation is used to graphically model business
processes. Similar to flowcharts and UML Activity Diagrams,
the models are process-oriented with support for events and
capturing the sequence of tasks. Indeed, the major difference
between the arrows in DFD and BPMN models is that the ar-
rows in the former denote the data being exchanged and the
latter the order of tasks being executed. As BPMN proposes a

logical breakdown of processes, they are more suitable for the
design phase of the SDLC.

In [20], the authors proposed sBPMN, an ontology to serial-
ize BMPN. Much like the purpose of our study, their aim was
to enrich models, in their case with Semantic Web Services.
While we are aware of these ontologies, we have adopted
DFDs for two reasons. First, DFDs are used primarily during
the analysis phase; they primarily focus on the data flows and
provide a more abstract view of the process that a system
should support. Secondly, we deem the data-centric perspective
on a system more suitable for our approach; we are concerned
with the data used by processes at any given time rather than a
logical breakdown of processes that use that data. In DFDs, we
are able to annotate both the data being exchanged (the data
flows are explicit) as well as the data stores.

Although BPMN does provide support for so-called data
objects and data store references (which can be associated with
tasks in processes), the modeling focus is on the processes and
less on the data. In addition, their representation clutters and
complicates the model. For instance, when one process’ output
is another process’ input, there is a need for additional arrows
pointing to and from the data object to indicate input and out-
put. This is demonstrated in Figure 4. This makes the models
less suitable for analysis, as modeling at the same time pro-
cesses and data is cognitively harder.

Figure 4 Tasks where one’s output is the other’s input in BPMN

Therefore, given the purpose of this study – representing
and annotating data and information flows – we deem DFD
diagrams more appropriate. However, the types of annotations
proposed in this study can also be applied to BPMN models.

B. Relation with other Vocabularies
We already discussed the difference between our model and

sBPMN in the previous section. In this section, we will discuss
existing vocabularies. The vocabularies in this section all share
some notion of “process”, “activity” or “task”.

A popular vocabulary for describing activities is provided
by the Provenance Ontology PROV-O [21]. PROV-O allows
one to represent provenance information in terms of activities,
entities and agents. It is important to note that PROV-O is used
to capture the provenance information of things that have hap-
pened in the past, that is why quite a few predicates are written
in a past tense (e.g., prov:wasGeneratedBy). While
PROV-O had a predicate to relate activities to a plan, it did not
allow for plans to be described. This was provided by P-PLAN
[22], which extended prov:Plan to be related with steps,

which in turn correspond with activities. Both PROV-O and P-
PLAN where then reused by OPMW [23], which allowed one
to create workflow-templates, and instantiations thereof, of
scientific processes (publishing an article, generating results,
etc.). Not only is OPMW domain specific, the models that one
can create with this ontology focuses on workflows, much like
BPMN. We do note that the ontology proposed in this paper
can be aligned with PROV-O when there would be a need to
create instances of dfd:Process that are also instances of
prov:Activity, which may be an opportunity in the future.

Furthermore, in bioinformatics an ontology for detailing
workflows in that domain has been proposed [24]. [25] pro-
posed an ontology for modeling ontology engineering work-
flows in the Protégé 6 ontology development environment.
While generic enough for various ontology engineering pro-
jects and methodologies, it is fit for a specific type of project
only. In [26], the authors proposed semantically annotating the
manipulation and analysis of data in data processing “pipe-
lines”. Their efforts are much closer to the execution level of a
particular data processing purpose. For this reason, we deem
their contribution complementary, as the “implementation” of
processes happen after the design process.

We can conclude that – to the best of our knowledge – se-
mantic models to describe processes are not manifold, often
focus on the workflow, and are at times domain specific or
close to an execution model. We have, while looking into relat-
ed work, not taken into account initiatives concerned with
projects such as DOAP7, as the constructs they provide are too
superficial.

VI. CONCLUSIONS AND FUTURE WORK
The increasing pressure for organizations to be compliant

with various regulations and policies provided the motivation
for this study. As organizations need to demonstrate that their
data processing activities (which evolve over time) are compli-
ant (e.g., with GDPR), they can benefit from semi-automated
processes that facilitate compliance processes.

In this study, we argued that there is a disconnection be-
tween appropriate techniques for analyzing services, such as
Data Flow Diagrams, and the development and maintenance of
these services. We therefore proposed an ontology for repre-
senting Data Flow Diagrams, of which its instantiations can –
thanks to the RDF model – be extended with structured de-
scriptions of information (queries, datasets, databases, etc.)
shared between Data Flow entities. We believe that this ap-
proach brings us closer to semi-automated compliance analysis
at design time. The contributions of this work can be integrated
in data governance frameworks where the roles and responsi-
bilities of stakeholders are stored, which is the subject of future
work.

6 https://protege.stanford.edu/
7 Description of a Project (DOAP) vocabulary: http://usefulinc.com/ns/doap

A current limitation of our ontology is the lack of support
for functional decompositions of processes. While not neces-
sary, such function decomposition does allow service designer
to separate concerns and keep diagrams tidy. To support func-
tional decomposition the ontology needs to be extended. The
extension would require relations between processes and its
children as well as set of constraints to validate models. As
checking balanced DFDs is outside the capabilities of OWL,
these will have to be written in a constraint language such as
SHACL [27]. Finally, we foresee aligning our model with
workflow-oriented models by integrated existing work, such as
sBPMN [20], as to provide support for both analysis and design
phases in the systems development life cycle.

ACKNOWLEDGEMENTS
The ADAPT Centre for Digital Content Technology is

funded under the SFI Research Centres Programme (Grant
13/RC/2106) and is co-funded under the European Regional
Development Fund. We would also like to thank the anony-
mous reviewers for their valuable comments.

VII. REFERENCES
[1] Q. Li and Y.-L. Chen, “Data Flow Diagram,” in Modeling and Analysis

of Enterprise and Information Systems, Springer, 2009, pp. 85–97.
[2] V. Khatri and C. V. Brown, “Designing data governance,” Commun.

ACM, vol. 53, no. 1, pp. 148–152, 2010.
[3] P. Westphal, J. D. Fernández, S. Kirrane, and J. Lehmann, “SPIRIT: A

Semantic Transparency and Compliance Stack,” in Proceedings of the
Posters and Demos Track of the 14th International Conference on
Semantic Systems co-located with the 14th International Conference on
Semantic Systems (SEMANTiCS 2018), Vienna, Austria, September 10-
13, 2018., 2018, vol. 2198.

[4] S. Kirrane et al., “A Scalable Consent, Transparency and Compliance
Architecture,” in The Semantic Web: ESWC 2018 Satellite Events -
ESWC 2018 Satellite Events, Heraklion, Crete, Greece, June 3-7, 2018,
Revised Selected Papers, 2018, vol. 11155, pp. 131–136.

[5] H. J. Pandit, D. O’Sullivan, and D. Lewis, “Queryable Provenance
Metadata For GDPR Compliance,” in Proceedings of the 14th
International Conference on Semantic Systems (SEMANTiCS 2018),
Vienna, Austria, Sep. 10-13, 2018, 2018, pp. 262–268.

[6] H. J. Pandit, D. O’Sullivan, and D. Lewis, “An Ontology Design Pattern
for Describing Personal Data in Privacy Policies,” in Proceedings of the
9th Workshop on Ontology Design and Patterns (WOP 2018) co-located
with 17th International Semantic Web Conference (ISWC 2018), 2018.

[7] W3C OWL Working Group, “OWL 2 Web Ontology Language:
Document Overview,” W3C Recommendation, 2012. [Online].
Available: https://www.w3.org/TR/owl2-overview/.

[8] F. Manola and E. Miller, “RDF Primer,” W3C Recomm., 2004.
[9] J. A. Hoffer, J. F. George, and J. S. Valacich, Modern Systems Analysis

and Design, 6th ed. Pearson, 2002.
[10] D. Garijo, “WIDOCO: A wizard for documenting ontologies,” in The

Semantic Web - ISWC 2017 - 16th International Semantic Web
Conference, Vienna, Austria, October 21-25, 2017, Proceedings, Part II,
2017, pp. 94–102.

[11] S. Peroni, D. Shotton, and F. Vitali, “The live OWL documentation
environment: A tool for the automatic generation of ontology
documentation,” in Knowledge Engineering and Knowledge
Management - 18th International Conference, EKAW 2012, Galway
City, Ireland, October 8-12, 2012. Proceedings, 2012, pp. 398–412.

[12] S. Lohmann, V. Link, E. Marbach, and S. Negru, “WebVOWL: Web-
based visualization of ontologies,” in Proceedings of the ISWC 2018
Posters & Demonstrations, Industry and Blue Sky Ideas Tracks co-
located with 17th International Semantic Web Conference (ISWC 2018),
Monterey, USA, October 8th - to - 12th, 2018, 2015.

[13] H. Knublauch, J. A. Hendler, and K. Idehen, “SPIN - Overview and
Motivation,” http://www.w3.org/Submission/spin-overview/, 2011.
[Online]. Available: https://www.w3.org/Submission/spin-overview/.

[14] A. Meehan, D. Kontokostas, M. Freudenberg, R. Brennan, and D.
O’Sullivan, “Validating interlinks between linked data datasets with the
SUMMR methodology,” in On the Move to Meaningful Internet
Systems: OTM 2016 Conferences - Confederated International
Conferences: CoopIS, C&TC, and ODBASE 2016, Rhodes, Greece,
October 24-28, 2016, Proceedings, 2016, pp. 654–672.

[15] R. Cyganiak and D. Reynolds, “The RDF Data Cube Vocabulary,” 2014.
[Online]. Available: https://www.w3.org/TR/vocab-data-cube/.

[16] K. Alexander, R. Cyganiak, M. Hausenblas, and Z. Jun, “Describing
Linked Datasets with the VoID Vocabulary,” W3C Interes. Gr. Note 03
March 2011, 2011.

[17] C. Debruyne, H. J. Pandit, D. Lewis, and D. O’Sullivan, “A Consent-
aware Mapping Engine for Generating Policy-compliant Datasets,” in
Proceedings - 12th IEEE International Conference on Semantic
Computing, ICSC 2019, 2019, pp. 199–203.

[18] Object Management Group, R. Parida, and S. Mahapatra, “Business
Process Model and Notation (BPMN) Version 2.0,” Business, 2011. .

[19] G. M. Giaglis, “A taxonomy of business process modeling and
information systems modeling techniques,” Int. J. Flex. Manuf. Syst.,
vol. 13, no. 2, pp. 209–228, 2001.

[20] A. Witold, A. Filipowska, M. Kaczmarek, and T. Kaczmarek,
“Semantically Enhanced Business Process Modeling Notation,” in
Semantic Technologies for Business and Information Systems
Engineering: Concepts and Applications, S. Smolnik, F. Teuteberg, and
O. Thomas, Eds. Hershey, PA: IGI Global, 2012, pp. 259–275.

[21] T. Lebo, D. McGuinness, and S. Sahoo, “PROV-O: The PROV
Ontology,” 2013. [Online]. Available: https://www.w3.org/TR/prov-o/.

[22] D. Garijo and Y. Gil, “The P-PLAN Ontology,” 2014. [Online].
Available: http://vocab.linkeddata.es/p-plan/.

[23] D. Garijo and Y. Gil, “The OPMW-PROV Ontology,” 2014. [Online].
Available: http://www.opmw.org/model/OPMW/.

[24] J. Ison et al., “EDAM: An ontology of bioinformatics operations, types
of data and identifiers, topics and formats,” Bioinformatics, vol. 29, no.
10, pp. 1325–1332, 2013.

[25] A. Sebastian, N. F. Noy, T. Tudorache, and M. A. Musen, “A generic
ontology for collaborative ontology-development workflows,” in
International Conference on Knowledge Engineering and Knowledge
Management, 2008, pp. 318–328.

[26] M.-Á. Sicilia, E. García-Barriocanal, S. Sánchez-Alonso, M. Mora-
Cantallops, and J.-J. Cuadrado, “Ontologies for Data Science: On Its
Application to Data Pipelines,” in Metadata and Semantic Research,
2019, pp. 169–180.

[27] H. Knublauch and D. Kontokostas, “Shapes Constraint Language
(SHACL),” W3C, 2017. [Online]. Available:
https://www.w3.org/TR/shacl/.

