
Generating Executable Mappings from RDF Data Cube
Data Structure Definitions

Christophe Debruyne[0000-0003-4734-3847], Dave Lewis[0000-0002-3503-4644], and
Declan O’Sullivan[0000-0003-1090-3548]

ADAPT Centre, Trinity College Dublin, Dublin 2, Ireland
{first.last}@adaptcentre.ie

Abstract. Data processing is increasingly the subject of various internal and ex-
ternal regulations, such as GDPR which has recently come into effect. Instead of
assuming that such processes avail of data sources (such as files and relational
databases), we approach the problem in a more abstract manner and view these
processes as taking datasets as input. These datasets are then created by pulling
data from various data sources. Taking a W3C Recommendation for prescribing
the structure of and for describing datasets, we investigate an extension of that
vocabulary for the generation of executable R2RML mappings. This results in a
top-down approach where one prescribes the dataset to be used by a data process
and where to find the data, and where that prescription is subsequently used to
retrieve the data for the creation of the dataset “just in time”. We argue that this
approach to the generation of an R2RML mapping from a dataset description is
the first step towards policy-aware mappings, where the generation takes into
account regulations to generate mappings that are compliant. In this paper, we
describe how one can obtain an R2RML mapping from a data structure definition
in a declarative manner using SPARQL CONSTRUCT queries, and demonstrate
it using a running example. Some of the more technical aspects are also de-
scribed.

Keywords: Data Cube, R2RML, Data Transformation

1 Introduction

The Resource Description Format [18] (RDF) provides us a flexible data model for
semantic interoperability and data integration, especially in scenarios where data from
various heterogeneous sources need to be processed for a particular purpose. Organiza-
tions have become increasingly sensitive to data processing policies, both organiza-
tional and especially those put forward by legislation (such as GDPR). Scholars right-
fully argue that compliance should be treated in the early phases of information systems
design [4]. In cases where data needs to be integrated or when a particular data pro-
cessing activity was not yet foreseen, one is faced with additional challenges, such as:

• Are we allowed to process the data in a particular way?
• Are we allowed to use all the data?

Christophe Debruyne, Dave Lewis, and Declan O'Sullivan. Generating executable mappings from RDF data cube data structure definitions. In Hervé Panetto, Christophe Debruyne, Henderik A. Proper, Claudio Agostino Ardagna, Dumitru Roman, and Robert Meersman, editors, On the Move to Meaningful Internet Systems. OTM 2018 Conferences - Confederated International Conferences: CoopIS, C&TC, and ODBASE 2018, Valletta, Malta, October 22-26, 2018, Proceedings, Part II, volume 11230 of Lecture Notes in Computer Science, pages 333–350. Springer, 2018�

2

• Have people given their consent for their data to be processed?

The data that is needed are often stored in different files or databases, which means
they have to be retrieved and integrated. The integration of heterogenous resources can
be facilitated with the Resource Description Framework (RDF), a W3C Recommenda-
tion. Mapping languages such as R2RML [6] have been used to map relational (or tab-
ular) data to RDF datasets. R2RML can thus be used to retrieve and integrate data for
the creation of a dataset for a particular data processing activity. The use of RDF allows
our work to be integrated with post-hoc analysis methods reported in [16].

While the vocabularies, representations, or even formats for these datasets may be
bespoke, we will adopt a standardized RDF vocabulary for representing datasets and
their structure. The RDF Data Cube Vocabulary [19] is an ontology1 for describing
multi-dimensional datasets on the Semantic Web where the structure of a dataset can
be prescribed via so-called Data Structure Definitions (DSDs) where observations are
identified by their dimensions, capture one or more observed values via measures, and
observed values can be annotated with attributes. Linked Data principles allow all these
entities to be linked with other Linked Data datasets, providing one with the means to
interpret or correctly process the data. Such datasets are thus curated with particular
(types of) data processing in mind.

Using RDF Data Cube and R2RML2, the steps to create a dataset would look as
follows:

1. Declare a data structure definition for an application;
2. Declare a dataset which will contain the observations from a database;
3. Create a mapping from a relational database (table or query) to that dataset;
4. Execute the mapping for creating the dataset; and
5. Validate the resulting dataset.

While databases are typically used by various applications within an organizational
context, particular processes often need only a subset of the data (often retrieved with
a query). Similarly, the data contained in a dataset will only contain those fit for a par-
ticular purpose; e.g., the number of sales per product and week. If (parts) of the data
were to be subject of a particular policy, one needs to be cautious. Since datasets are
curated for a particular purpose, and those datasets may be subject to policies, it makes

1 While RDF provides us the data model, data is usually integrated using a common model cap-

tured in a so-called ontology. Ontologies – being commonly defined as “a [formal] explicit
specification of a [shared] conceptualization” [10] – are also developed for a particular pur-
pose, but the ontologies (or vocabularies) we observe on the Linked Data Web are often light-
weight and meant for information exchange. Applications that consume such Linked Data are
not (necessarily) known beforehand and are often published with very accessible licenses such
as Creative Commons.

2 Even if we were not to use RDF Data Cube and R2RML, similar steps would be necessary for
capturing the schema or structure of the dataset, and the creation and execution of a mapping
to populate that schema.

3

sense to attach such policy information to the dataset or DSDs (rather than the map-
ping). Mappings are only concerned with retrieving and transforming the information.
The problem, however, is that one tends to create a mapping manually.

The research question we aim to answer in this paper is: “Can we generate an
R2RML mapping from a data structure definition?” An algorithm generating such a
mapping could subsequently be extended to take into account policies so as to generate
mapping that is compliant. In other words, the algorithm for generating R2RML map-
pings would then be “policy-aware”.

The remainder of this paper is organized as follows: Section 2 presents some related
work on generating datasets from relational data; Section 3 presents our approach using
a running example and describes our declarative approach using SPARQL
CONSTRUCT queries to generate an R2RML mapping from a DSD; Section 4 elabo-
rates on some of the more technical aspects of our approach; Section 5 discusses some
aspects of our approach; Section 6 then discusses the rationale of annotating DSDs with
policy information and to extend our approach for generating customized mappings
(which is part of our future work); and finally, in Section 6, we conclude our paper.

2 Related Work

To the best of our knowledge, related work in generating (R2RML) mappings from
other representations is quite limited. The authors in [23] – who proposed a declarative
language for ontology-based data access where a single description results in an ontol-
ogy, mappings and rules for transforming queries – mentioned adopting R2RML be-
cause of its increasing uptake.

TabLinker, mentioned in [14], transforms Excel documents into Data Cube datasets
by mapping the markup of cells in a Microsoft Excel’s XML file to elements to a Data
Cube dataset (and structure). In other words, users have to manually format the Excel
file and that formatting is then used to generate the RDF dataset. OLAP2DataCube and
CSV2DataCube are two tools proposed in [22] for extracting statistical data and the
creation of data cube datasets. When using OLAP2DataCube, queries are mapped onto
datasets, dimensions, and measures.

The Open Cube Toolkit [12] provides a D2RQ [3] extension for generating an RDF
graph – according to the RDF Data Cube Vocabulary – using D2RQ’s R2RML support.
The D2RQ data provider requires a mapping relating a table to a dataset using a bespoke
XML mapping language. The XML file – of which an example is shown in Listing 1
– is then used to generate an R2RML mapping which is then executed by D2RQ’s en-
gine. Their approach is thus similar in that it generates an executable R2RML file from
the mapping. The limitations of their approach are brought forward by their mapping
language; it is bespoke, not in RDF and has not been declared in a particular namespace.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <mapping>
3 <dataset>
4 <table-name>OBSERVATIONS</table-name>
5 <label>people age in Ireland</label>
6 <uri>people-in-ireland</uri>

4

7 <pattern>{"ID"}</pattern>
8 </dataset>
9 <dimensions>
10 <dimension>
11 <column>D1</column>
12 <label>Age group</label>
13 <uri>age-group</uri>
14 <property>age-group</property>
15 </dimension>
16 </dimensions>
17 <measures>
18 <measure>
19 <column>MEASURE</column>
20 <label>Have a personal computer</label>
21 <uri>have-a-personal-computer</uri>
22 <property>have-a-computer</property>
23 <datatype>xsd:int</datatype>
24 </measure>
25 </measures>
26 </mapping>

Listing 1. Example of the Open Cube Toolkit’s mapping declaring where the various elements
of a dataset can be found in a relational database table, which came out of the toolkit’s box.

Wigham et al. highlighted some of the problems with the RDF Data Cube Vocabu-
lary and proposed their own model for capturing (relational) datasets [25]. Capturing
multiple observation values, for instance, is not straightforward, and they thus propose
vocabulary for relational data where “cells” can be added to record tables and where
records can be nested. The authors also presented a Microsoft Excel plugin for gener-
ating RDF graphs using their Record Table schema in [20]. Similar to TabLinker, the
mapping from the spreadsheet to the RDF is a built-in plugin.

In [1], the author presented a tool that generated diagrams based on TURTLE. The
tool is aimed to facilitate modelling by guaranteeing consistency between statements
and visualization; “what you see is what you mean”. In [1], the author furthermore
criticizes the complexity and verbosity of R2RML, and presented an extension of the
tool. By embedding SQL queries and fieldnames in the examples (in TURTLE), the
tool is able to generate a complete and executable R2RML mapping.

3 R2DQB – Approach Demonstration

In this section we present R2DQB, pronounced R-2-D-cube, which is a contraction of
R2RML and Data QB (short for “cube”).

The approach we adopt is to avail of RDF’s data model to annotate data structure
definitions (DSDs) (and dimensions, measures, and attributes) in such a way that DSDs
are reusable, and R2RML mappings can be generated that will create a dataset “popu-
lating” the DSD. The different steps in our approach are depicted in Fig. 1 and will be
described in this section. The generated Data Cube Datasets should refer to its DSD
with a qb:structure statement (from qb:DataSet to qb:DataStructure-
Defintion), which basically informs agents that this dataset is structured according
to that DSD. To exemplify our approach, we will first introduce our running example.

5

Fig. 1. The various steps in generating and executing an R2RML mapping from a DSD for the

creation of a Data Cube dataset.

3.1 Running example

We have chosen to adopt the example from the RDF Data Cube Vocabulary’s specifi-
cation [19], shown in Table 1. In this table, we have examples of life expectancy (in
number of years) broken down by region, age and time. There are thus three dimensions
(region, time period, and gender) and one measure (life expectancy). One can also
model attributes of the measure, e.g. the unit is to be interpreted as a number of years.

Table 1. Excerpt from the StatsWales report number 003311 which describes life expectancy
broken down by region, age and time (from [19])

2004-2006 2005-2007 2006-2008

Male Female Male Female Male Female
Newport 76.7 80.7 77.1 80.9 77.0 81.5
Cardiff 78.7 83.3 78.6 83.7 78.7 83.4
Monmouthshire 76.6 81.3 76.5 81.5 76.6 81.7
Merthyr Tydfil 75.5 79.1 75.5 79.4 74.9 79.6

The example (re)uses resources (URIs) for the dimension. Albeit possible in our ap-
proach, we will first describe the steps using the values (i.e., literals) for each of the
dimension. We note that according to [19], dimensions may either be a resource or a
literal. We will demonstrate the use of URIs, as well as other technicalities of our ap-
proach, in a subsequent section.

• Data Structure Definitions
• Dimensions
• Measures
• Attributes

• References to tables
• References to columns
• Transformation functions
• …

Mapping
Engine

R2RML Mapping

R2RML
Processor

Data Cube Dataset

extended with

according
to

1

2

3

Validation 4

Provenance
Information

captured with

5

6

3.2 Step 1: Annotating DSDs

We start off with the (re)use of a DSD including, which we will extend with information
on where to fetch the data. Listing 2 depicts an RDF graph containing a stripped-down
version of the DSD from [19]. This DSD does not contain labels and links to concepts,
and the range declaration in the dimensions have also been omitted as we will generate
literals. Listing 3 another RDF graph that extends the former with mapping infor-
mation. We refer to a relational database table called “statssimple” with the structure
depicted in Table 2.

Table 2. Relational database table “statssimple” for the running example.

Field Type Null Key
period varchar(20) NO PRI
area varchar(20) NO PRI
sex varchar(20) NO PRI
lifeexpectancy float NO

1 @base <http://www.example.org/>
2 <#refPeriod> a rdf:Property, qb:DimensionProperty;
3 rdfs:subPropertyOf sdmx-dimension:refPeriod .
4
5 <#refArea> a rdf:Property, qb:DimensionProperty;
6 rdfs:subPropertyOf sdmx-dimension:refArea .
7
8 <#lifeExpectancy> a rdf:Property, qb:MeasureProperty;
9 rdfs:subPropertyOf sdmx-measure:obsValue;
10 rdfs:range xsd:decimal .
11
12 sdmx-dimension:sex a rdf:Property, qb:DimensionProperty .
13
14 <#dsd-le> a qb:DataStructureDefinition;
15 # The dimensions
16 qb:component [qb:dimension <#refArea>];
17 qb:component [qb:dimension <#refPeriod>];
18 qb:component [qb:dimension sdmx-dimension:sex];
19 # The measure(s)
20 qb:component [qb:measure <#lifeExpectancy>] .

Listing 2. And RDF graph describing a DSD.

1 @base <http://www.example.org/>
2 <#refPeriod> rr:column "period";
3 <#refArea> rr:column "area";
4 <#lifeExpectancy> rr:column "lifeexpectancy";
5 sdmx-dimension:sex rr:column "sex" .
6 <#dsd-le> rr:tableName "statssimple";

Listing 3. Extending the DSD of Listing 2 with mapping information.

For this study, and to prove the feasibility of our approach, we have chosen to reuse
R2RML predicates. R2RML provides us with the necessary predicates to annotate

7

DSDs and their components with instruction on where to find the information in a re-
lational database. As a consequence, the graph in Listing 3 does not constitute a valid
R2RML document. A more generic approach will be considered as future work.

3.3 Step 2: The generation of an R2RML mapping

We have chosen to adopt a declarative approach to generating the R2RML mapping via
a sequence of SPARQL CONSTRUCT queries. The various queries can be summarized
as follows: 1) Create the triples maps (for mapping tables, views or queries to RDF); 2)
Use the dimensions to create subject maps; and 3) Create predicate object maps for the
measures, and dimensions.

We obtain an executable R2RML mapping by merging the models of each SPARQL
CONSTRUCT query. This model is not meant to be merged with the prior RDF graphs
from Listing 2 and Listing 3, as it is meant to generate RDF that will be a dataset,
which can be regarded as an instance of the DSD captured in Listing 2. In a wider
governance narrative, the resulting mapping may be stored to inform stakeholders of
the provenance of the datasets.

We now begin with the description of each query. We have omitted prefixes and
base declarations from the queries for brevity.

The generation of a logical table for each DSD related to a table is shown in Listing
4. Note that views are also referred to with rr:tableName. A similar CONSTRUCT
query is used for DSD’s related to a query with the rr:query predicate. The
namespace pam refers to our vocabulary developed for this study. In this listing, we
create a link between triples maps and their DSDs. This will come in handy to attach
the different components of the R2RML mapping (described later on). The resulting
triples map is a blank node. The query can be changed to assign it an IRI, either with
the IRI function or as a parameter provided by a user.

1 CONSTRUCT {
2 [] rr:logicalTable [rr:tableName ?t] ;
3 pam:correspondsWith ?x .
4 } WHERE {
5 ?x a qb:DataStructureDefinition ;
6 rr:tableName ?t .

7 }

Listing 4. Generating an R2RML triples map for each data structure definition

The CONSTRUCT query for generating the subject map is shown in Listing 5. Di-
mensions are used to identify each observation. We use that information to generate the
subject map of a triples map. The columns used by the dimensions are used for creating
a template that will identify each observation in the dataset. An R2RML processor will
use the template, which will generate values, to keep information of each observation
in an appropriate data structure (e.g., a dictionary). Next to a subject map, this mapping
also creates a predicate object map that will relate individual observations to a particular
dataset.

8

1 CONSTRUCT {
2 ?tm rr:subjectMap [
3 rr:class qb:Observation ;
4 rr:termType rr:BlankNode ;
5 rr:template ?x ;
6] .
7 ?tm rr:predicateObjectMap [
8 rr:predicate qb:dataSet ;
9 rr:object ?ds;
10] .
11 } WHERE {
12 ?tm pam:correspondsWith ?dsd ;
13 rr:logicalTable [rr:tableName ?t] ;
14 BIND(IRI(?t) AS ?ds)
15 {
16 SELECT
17 (CONCAT("{", GROUP_CONCAT(?c; SEPARATOR="}-{"), "}") as ?x) {
18 ?dsd qb:component ?component .
19 { ?component qb:dimension [rr:column ?c] }
20 UNION
21 { ?component qb:dimension [
22 rrf:functionCall [
23 rrf:parameterBindings ([rr:column ?c])
24]
25] }
26 } GROUP BY ?dsd
27 }

28 }

Listing 5. Generating an R2RML triples map for each data structure definition

Notice that we cover two cases in Listing 5; dimensions based on column values,
and dimensions based on function calls. Function calls are used to relate column values
to literals or URIs – simulating an association. We will later describe why the use of
such functions is desirable.

Listing 6 provides the CONSTRUCT queries for adding object predicate maps to
the triples maps based on measures. The CONSTRUCT query for a similar mapping
based on dimensions is similar; one of the main differences is the predicate (highlighted
in yellow). If a dimension or a measure has been declared a range, we will add that
range declaration to the R2RML mapping only if that range is declared in the XSD
namespace. The predicates used for dimensions and measures may both be used for
literals and resources. The rr:datatype predicate of R2RML is only used for data
types (literals). If we were to remove the filter, we could end up with predicate object
maps that generate resources and are provided a datatype. The R2RML specification
states that this is erroneous.

A current limitation is that we can only deal with XSD datatypes. Mappings using
datatypes outside of XSD, such as geo:wktLiteral for polygons for geospatial
data in GeoSPARQL [15], cannot yet be generated. A naïve approach would be to keep
track of an exhaustive list of datatypes in the query, but more elegant approaches will
be investigated as part of our future work.

1 CONSTRUCT {
2 ?tm rr:predicateObjectMap [

9

3 rr:predicate ?measure ;
4 rr:objectMap [
5 ?p ?c ; rr:termType ?type ; rr:datatype ?range ;
6] ;
7]
8 } WHERE {
9 ?tm pam:correspondsWith ?dsd .
10 ?dsd qb:component ?component .
11 ?component qb:measure ?measure .
12 ?measure ?p ?c .
13 ?measure rr:column|rr:template|rr:constant|rrf:functionCall ?c .
14 OPTIONAL { ?measure rr:termType ?type }
15 OPTIONAL {
16 ?measure rdfs:range ?range .
17 FILTER(
18 CONTAINS(STR(?range), "http://www.w3.org/2001/XMLSchema#")
19)
20 }

21 }

Listing 6. Generating predicate object maps from measures

Finally, the generated dataset also needs to be connected to its DSD. This is straight-
forward with the following CONSTRUCT query (in Listing 7). The IRI of the dataset
is based on the table’s name (or query). Some relational databases allow spaces (or
other special characters) to be used in table names. The function ENCODE_FOR_URI
ensures that characters in table names (such as spaces in some databases) are correctly
encoded.3

1 CONSTRUCT {
2 ?ds a qb:DataSet ; qb:structure ?x .
3 } WHERE {
4 ?x a qb:DataStructureDefinition ;
5 rr:tableName ?t .
6 BIND(IRI(ENCODE_FOR_URI(?t)) AS ?ds)

7 }

Listing 7. Creating an instance of a dataset based on an annotated DSD

With these mappings – which are declarative and implemented as SPARQL
CONSTRUCT queries – we are able to generate an executable R2RML mapping. Given
our table “statssimple” (see Table 2) and the snippets from Listing 2, the R2RML in
Listing 8 is generated. While it is not explicit that the resource is a rr:TriplesMap,
it will be inferred by the R2RML engine as such due to the domain of rr:logi-
calTable being rr:TriplesMap.

1 [pam:correspondsWith <http://www.example.org/#dsd-le> ;
2 rr:logicalTable [rr:tableName "statssimple"] ;
3 rr:predicateObjectMap [
4 rr:objectMap [rr:column "area"] ;
5 rr:predicate <http://www.example.org/#refArea>

3 We thank the anonymous reviewer for spotting this issue.

10

6] ;
7 rr:predicateObjectMap [
8 rr:objectMap [rr:column "period"] ;
9 rr:predicate <http://www.example.org/#refPeriod>
10] ;
11 rr:predicateObjectMap [
12 rr:objectMap [rr:column "sex"] ;
13 rr:predicate sdmx-dimension:sex
14] ;
15 rr:predicateObjectMap [
16 rr:objectMap [
17 rr:column "lifeexpectancy" ;
18 rr:datatype xsd:decimal
19] ;
20 rr:predicate <http://www.example.org/#lifeExpectancy>
21] ;
22 rr:predicateObjectMap [
23 rr:object <statssimple> ;
24 rr:predicate qb:dataSet
25] ;
26 rr:subjectMap [
27 rr:class qb:Observation ;
28 rr:template "{area}-{period}-{sex}" ;
29 rr:termType rr:BlankNode
30]
31] .

Listing 8. Generated R2RML

3.4 Step 3: Execution of the R2RML mapping

For the execution of our mapping, we rely on an implementation of the R2RML imple-
mentation developed by the ADAPT Centre.4 This implementation complies with the
R2RML implementation as it is used to demonstrate minimal extensions of the mapping
language (such as functions written in JavaScript [7]). The mapping in Listing 8 con-
tains no statements that fall outside R2RML’s scope and should work with other im-
plementation of the specification. This mapping execution generated 144 triples; 6 tri-
ples for each of the 24 observations. An example of such an observation is shown in
Listing 9.

1 [a qb:Observation ;
2 qb:dataSet <statssimple> ;
3 sdmx-dimension:sex "Male" ;
4 <http://www.example.org/#lifeExpectancy> 78.6 ;
5 <http://www.example.org/#refArea> "Cardiff" ;
6 <http://www.example.org/#refPeriod> "2005-2007"] .

Listing 9. An observation generated with the R2RML mapping of Listing 8

In the case of an XSD datatype, our R2RML processor checks whether a value that
is generated by an object map corresponds with that datatype and reports when this is
not the case. When a datatype is not part of the XSD namespace is used for an object

4 https://github.com/chrdebru/r2rml

11

map, such as ex:myInteger for instance, the literal is merely typed with that
datatype. If no datatype is provided, the datatype of the literal depends on the datatype
of the column (see Section 10.2 “10.2 Natural Mapping of SQL Values” of [6]).

3.5 Step 4: Validating the generated RDF

We validate the generated RDF by checking the integrity constraints put forward by the
RDF Data Cube Vocabulary, presented as a set of so-called integrity constraints in the
specification [19]. This is necessary as the execution of the R2RML mapping does not
guarantee a well-formed cube. R2RML prescribes, for instance, that a triple is not added
to the model if any of the columns used for a predicate, object or subject contains a
NULL value. If a cell for a dimension were to have a NULL value, then no triple is
generated, but an observation must be related to all dimensions.

Fig. 2. Core concepts and relations in PROV-O from [21], Copyright © 2011-2013 W3C®

(MIT, ERCIM, Keio, Beihang).

3.6 Step 5: Provenance information

We note that Step 5 is not really a step per se, but that the process captures provenance
information during all aforementioned steps. Provenance information provides insights
on a resource’s origin, such as who created that resource, when it was modified or how
it was created [26]. PROV-O [21], which we have adopted for this study, is a W3C
Recommendation for representing and exchanging provenance information as RDF.
PROV-O’s core concepts and relations (shown in Fig. 2) provide a good starting point
for describing the activities and intermediate artifacts that lead to the realization of an
ontology mapping.

Rather than providing a snippet of the generated RDF, we will describe how we
extended PROV-O and how the entities are used an interrelated. The classes we have
declared in our namespace and which PROV-O concepts they specialize are shown in
Table 3. Our proof-of-concept relies on R2RML-F, which will be an instance of

12

pam:R2RML_Processor. Our pam:Mapping_Generator is our implementa-
tion of D2RQB. We also developed an instance of pam:Validator, which currently
implements the integrity constraints prescribed by [19].

Table 3. Classes that extend PROV-O

Classes extending prov:Entity
pam:DSD_Document Used to represent RDF documents/graphs containing our

annotated Data Structure Definitions.
pam:R2RML_Mapping Used to represent the generated R2RML mappings
pam:Dataset Used to represent the generated Data Cube datasets
pam:Validation_Report Used to represent the validation reports

Classes extending prov:Activity
pam:Generate_Mapping Represents the activity of generating an R2RML mapping

from an annotated DSD
pam:Execute_Mapping Represents the activity of executing the R2RML mapping
pam:Validate_Dataset Represents the activity of validating a mapping

Classes extending prov:(Software)Agent
pam:Mapping_Generator Represents the software agent that generates an R2RML

mapping as per approach.
pam:R2RML_Processor Represents the software agent executing the mapping
pam:Validator Represents the software agent validating the dataset

Fig. 2 clearly depicts how the main entities of PROV-O are interrelated. The rela-

tions between our entities are as follows:

─ A pam:Generate_Mapping uses (prov:uses) a pam:DSD_Document to
generate a pam:R2RML_Mapping. A mapping is thus generated by
(prov:wasGeneratedBy) such an activity. This activity was performed
(prov:wasAssociatedWith) by our implementation of our approach
(pam:Mapping_Generator). The mapping is also derived from the
pam:DSD_Document, so we also assert a prov:wasDerivedFrom between
the two entities.

─ A pam:Execute_Mapping uses (prov:uses) a pam:R2RML_Mapping to
generate a pam:Dataset. That dataset was thus generated by (prov:wasGen-
eratedBy) that activity. This activity was performed by (prov:wasAssoci-
atedWith) by the pam:R2RML_Processor we adopted.

─ A pam:Validator uses (prov:uses) both a generated dataset (pam:Da-
taset) and DSD document (pam:DSD_Document) for validating the dataset and
producing a report (pam:Validation_Report). It relies on an implementation
(prov:wasAssociatedWith a pam:Validator) of at least the integrity con-
straints prescribed by [19].

We also store timestamps (start and end-time) of each activity. The adoption of
PROV-O in this study allows us to create traceable data flows where a DSD can be
used to generate an executable R2RML document multiple times. This helps us fulfill
some of the requirements put forward by policies.

13

4 Extended Demonstration

In the previous section we demonstrated our approach using a running example. In this
section, we demonstrate more advanced aspects of our approach starting from the same
example.

4.1 Mapping values onto URIs

A common mapping problem is relating column values to a corresponding set of “val-
ues” (IRIs or literals); for instance “blauw” corresponds with dbpedia:Blue, “rood”
with dbpedia:Red. R2RML provides no support for capturing such correspondences
as part of the mapping. One can create a mapping from an SQL query in which an SQL
CASE function is used to relate column values to, for instance, IRIs, but these then
become quite cumbersome to maintain. The D2R mapping language [2] provided a
convenient way to relate these correspondences via a so-called “translation table”. In
our approach, we adopted a minimal extension of R2RML called R2RML-F with sup-
port [7] for functions. R2RML-F allows us to create a function that takes as input a
column-value and returns the corresponding value. We then still are able to benefit from
keeping the table or query to be mapped as simple as possible and – if need be – only
change the function to deal with changes in the ontology or source data. We provide
more detail on how these functions look like in the next subsection.

4.2 Inclusion of data transformation functions

The example of [19] proposes to use the data.gov.uk reference time service to represent
the time period. The following URI represents a 3-year period starting from the 1st of
January, 2004: http://reference.data.gov.uk/id/gregorian-interval/2004-01-
01T00:00:00/P3Y We can use this knowledge to extract the start year from our period
and fill in a template to generate such an IRI in our DSD, as shown in Listing 10. One
can easily see how correspondences described in Section 4.1 can then be implemented
using conditions.

<#refPeriod> a rdf:Property, qb:DimensionProperty;
 rrf:functionCall [
 rrf:function _:b0 ;
 rrf:parameterBindings ([rr:column "period"]) ;
] ;
 rr:termType rr:IRI ;
 rdfs:label "reference period"@en;
 rdfs:subPropertyOf sdmx-dimension:refPeriod;
 rdfs:range interval:Interval;
 qb:concept sdmx-concept:refPeriod
 .
_:b0
 rrf:functionName "translateperiod" ;
 rrf:functionBody """
 function translateperiod(var1) {
 return "http://reference.data.gov.uk/id/gregorian-interval/" +
 var1.substring(0, 4) + "-01-01T00:00:00/P3Y"

14

 }
 """ ;
.

Listing 10. Using functions in a DSD to transform data

The example in Listing 10 only relies on string manipulation. While seemingly sim-
ple, the example serves to demonstrate a particular aspect of our approach. [17] argued
why and when support for functions in mappings are desirable; e.g., when the underly-
ing (database) technology provides no support for data transformation.

4.3 Interlinking datasets

Both dimensions and measures may refer to either literals or resources. The use of re-
sources (typically identified by a URI) are common for dimensions, but less so for
measures. One measures values that you want to manipulate, compare, etc. In our ap-
proach, this is feasible by creating predicate object maps that generate resources (with
a URI). By changing
<#refArea> rr:column "area";

sdmx-dimension:sex rr:column "sex";
in Listing 2 into

<#refArea> rr:template "http://example.org/area/{area}";

sdmx-dimension:sex rr:template "http://dbpedia.org/resource/{sex}";
we create resources for areas and gender. The first generates “local” resources as

http://example.org/ is the namespace of our running example. The second gen-
erates DBpedia [13] URIs. If the second is used, not only does one create links across
datasets, but also with other Linked Data datasets as well.

5 Discussion

While our approach adopted R2RML for the mapping, adoption of other R2RML dia-
lects such as RML [8] and xR2RML [11] is feasible. These implementations provide
native support for other formats such as CSV and JSON. The R2RML processor we
have adopted allows us to approach non-relational data as such by either treating tabular
data files as relational tables (without keys) or by formulating SQL queries for NoSQL
databases by means of Apache Drill5. As long as the DSD is annotated with the names
of tables, views and fields that appear in the database, an executable R2RML mapping
can be produced. Verifying whether those annotations are correct (e.g., does the table
exist) falls outside the scope of this paper. Similarly, verifying whether the resulting
dataset complies with the DSD or the ontologies used by the DSD are up to the Data
Cube validator and external tools respectively. The R2RML processor may be in charge
of verifying whether values comply with datatypes, but the Recommendation does not
require this functionality.

5 https://drill.apache.org/

15

W3C has published Recommendations for representing the “schemas” of tabular
data the Web [17] and how to generate RDF from those [24]. The goals of these initia-
tives were to standardize access to information in tabular form, to propose a schema
language for tabular data, and to specify the conversion of such data into RDF (amongst
others) as part of that initiative. Their goal was thus not to represent datasets in RDF.
The advantage of [17] is that its schema language does provide straightforward value
constraints and the investigation of this vocabulary and converters as an alternative
might be worthwhile investigating.

This study focuses on the generation of an R2RML file for creating RDF Data Cube
Datasets. We note that the RDF Data Cube Vocabulary allows one to publish multi-
dimensional data in general. While the vocabulary’s underlying model is indeed an ISO
standard for representing statistical data and its metadata, the vocabulary is generic
enough to represent even simple “relational” data and datasets fit for training Machine
Learning models. As it is capable of representing a wide variety of datasets and is –
unlike other vocabularies – standardized, we deemed it the most suitable for our study.

6 Towards a policy-aware mapping engine

Now that we have demonstrated the feasibility of annotating a data structure definition
such that an executable R2RML mapping can be generated, we can elaborate on our
vision towards a policy-aware mapping engine.

We stated that datasets are created for a particular purpose. Those purposes are not
necessarily known beforehand and have to be created. Regulations – both internal as
well as external (such as GDPR) – may require that the data contained in datasets and
data processing complies with these regulations. In the case of GDPR, for instance,
users have to be informed how their data is used, and they also have to give their con-
sent.

The next step in our research is thus to tackle the problem of generating datasets
which ensure that compliance. Given a knowledge base containing formalized descrip-
tions of regulations, informed consent, etc., how can we adapt our mapping engine
(number 2 in Fig. 1) as to generate executable mappings that generate compliant da-
tasets? In [9], the authors propose a semantic model for expressing consent leveraging
existing semantic models of provenance, processes, permission and obligations. We
may be able to use this as a basis for formalizing data processing purposes and the data
used in that processing. Knowing the importance of regulatory compliance, such an
approach renders compliance checking a flexible, adaptable top-down approach to data
processing.

7 Conclusions and Future Work

The increasing pressure for organizations to be compliant with various regulations and
policies provided the motivation for this study. As organizations need to demonstrate
that their data processing activities (which evolve over time) are compliant (e.g.,

16

GDPR), they can benefit from semi-automated processes that facilitate compliance pro-
cesses. In this study, we argued that data processing activities rely on datasets. A data
process will rarely need all the data stored in one or more data sources. W3C put for-
ward a Recommendation for describing the structure and capturing multi-dimensional
datasets, called the RDF Data Cube vocabulary. This allows one to declare how a data
set should look like for a particular data processing activity. In this study, we aimed to
answer the following research question: “How can we generate an R2RML mapping
from a data structure definition?” in order to create the datasets.

We have proposed a declarative approach to generating an R2RML mapping from a
Data Set Structure definition by 1) annotating the DSD with some predicates based on
R2RML, and 2) executing a sequence of SPARQL CONSTRUCT query that generates
the R2RML mapping. The demonstration in our study shows that our approach is via-
ble, and even highlighted some of the limitation of R2RML (data transformation func-
tions and syntactic sugar for correspondences). Our approach is furthermore built on
top of PROV-O, a provenance ontology, as to ensure the traceability of data processing
activities. While this study limits itself to the generation of provenance information of
our prototype, PROV-O can be immediately used to relate our generated datasets with
data processing activities. This is for instance demonstrated in [16], where PROV-O is
used to validate the informed consent for data processing activities.

The next step in our research is thus to tackle the problem of generating datasets
which ensure that compliance. While studies like [17] investigate the use of PROV-O
to check compliance “post-hoc” basis or based on a questionnaire, we will investigate
a “policy-aware” mapping generator.

Acknowledgements

The ADAPT Centre for Digital Content Technology is funded under the SFI Research
Centres Programme (Grant 13/RC/2106) and is co-funded under the European Regional
Development Fund

References

1. Alexiev, V. RDF By Example: rdfpuml for true RDF diagrams, rdf2rml for R2RML gener-
ation. In: Semantic Web in Libraries 2016 (2016), http://vladimiralex-
iev.github.io/pres/20161128-rdfpuml-rdf2rml/

2. Bizer, C.: D2R MAP - A database to RDF mapping language. In: King, I., Ma ŕay, T. (eds.)
Proceedings of the Twelfth International World Wide Web Conference - Posters, WWW
2003, Budapest, Hungary, May 20-24, 2003 (2003)

3. Bizer, C., Seaborne, A.: D2RQ - treating non-RDF databases as virtual RDF graphs. In:
ISWC2004 (posters) (November 2004), http://sites.wiwiss.fu-berlin.de/suhl/bizer/pub/Bi-
zer-D2RQ-ISWC2004-Poster.pdf

4. Bonazzi, R., Hussami, L., Pigneur, Y.: Compliance Management is Becoming a Major Issue
in IS Design, pp. 391–398. Physica-Verlag HD, Heidelberg (2010).
https://doi.org/10.1007/978-3-7908-2148-2 45

17

5. Crotti Junior, A., Debruyne, C., Brennan, R., O'Sullivan D.: An evaluation of uplift mapping
languages. IJWIS 13(4): 405-424 (2017)

6. Das, S., Cyganiak, R., Sundara, S.: R2RML: RDB to RDF mapping language. W3C Rec-
ommendation, W3C (Sep 2012), http://www.w3.org/TR/2012/REC-r2rml-20120927/

7. Debruyne, C., O'Sullivan, D.: R2RML-F: towards sharing and executing domain logic in
R2RML mappings. In: Auer, S., Berners-Lee, T., Bizer, C., Heath, T. (eds.) Proceedings of
the Workshop on Linked Data on the Web, LDOW 2016, co- located with 25th International
World Wide Web Conference (WWW 2016). CEUR Workshop Proceedings, vol. 1593.
CEUR-WS.org (2016), http://ceur-ws.org/Vol- 1593/article-13.pdf

8. Dimou, A. Vander Sande, M., Colpaert, P., Verborgh, R., Mannens, E., and Van de Walle,
R.: RML: A Generic Language for Integrated RDF Mappings of Heterogeneous Data. In:
Bizer, C., Auer, S., Berners-Lee, T., Heath, T. (eds.) Proceedings of the Workshop on Linked
Data on the Web, LDOW 2014 - co-located with the 23rd International World Wide Web
Conference (WWW 2014). CEUR Workshop Proceedings, vol. 1184. CEUR-WS.org
(2014) http://ceur-ws.org/Vol-1184/ldow2014_paper_01.pdf

9. Fatema, K., Hadziselimovic, E., Pandit, H.J., Debruyne, C., Lewis, D., O’Sullivan, D.: Com-
pliance through informed consent: Semantic based consent permission and data management
model. In: Brewster, C., Cheatham, M., d’Aquin, M., Decker, S., Kirrane, S. (eds.) Proceed-
ings of the 5th Workshop on Society, Privacy and the Semantic Web - Policy and Technol-
ogy (PrivOn2017) co-located with 16th International Semantic Web Conference (ISWC
2017), Vienna, Austria, October 22, 2017. CEUR Workshop Proceedings, vol. 1951. CEUR-
WS.org (2017), http://ceur- ws.org/Vol-1951/PrivOn2017_paper_5.pdf

10. Gruber, T.R.: Toward principles for the design of ontologies used for knowledge sharing?
International Journal on Human-Computer Studies. 43(5-6), 907–928 (1995).
https://doi.org/10.1006/ijhc.1995.1081

11. Michel, F., Djimenou, L., Faron-Zucker, C., and Montagnat, J.: Translation of Relational
and Non-relational Databases into RDF with xR2RML. In: Monfort, V., Krempels, K.-H.,
Majchrzak, T. A., and Turk Z. (eds.) WEBIST 2 015 - Proceedings of the 11th International
Conference on Web Information Systems and Technologies. SciTePress, 443-454 (2015)

12. Kalampokis, E., Nikolov, A., Haase, P., Cyganiak, R., Stasiewicz, A., Karamanou, A.,
Zotou, M., Zeginis, D., Tambouris, E., Tarabanis, K.A.: Exploiting linked data cubes with
opencube toolkit. In: Horridge, M., Rospocher, M., van Ossenbruggen, J. (eds.) Proceedings
of the ISWC 2014 Posters & Demonstrations Track a track within the 13th International
Semantic Web Conference, ISWC 2014, Riva del Garda, Italy, October 21, 2014. CEUR
Workshop Proceedings, vol. 1272, pp. 137–140. CEUR- WS.org (2014), http://ceur-
ws.org/Vol-1272/paper 109.pdf

13. Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N., Hellmann,
S., Morsey, M., van Kleef, P., Auer, S., Bizer, C.: DBpedia - A large-scale, multilingual
knowledge base extracted from Wikipedia. Semantic Web 6(2), 167– 195 (2015).
https://doi.org/10.3233/SW-140134

14. Meroo-Peuela, A., Hoekstra, R., Guret, C., Schlobach, S.: Detecting and reporting exten-
sional concept drift in statistical linked data. In: Capadisli, S., Cotton, F., Cyganiak, R., Hal-
ler, A., Hamilton, A., Troncy, R. (eds.) Proceedings of the 1st International Workshop on
Semantic Statistics (SemStats). No. 1549 in CEUR Workshop Proceedings, Aachen (2013),
http://ceur-ws.org/Vol-1549/#article-10

15. Open Geospatial Consortium. GeoSPARQL - A Geographic Query Language for RDF Data.
OGC (2012) http://www.opengeospatial.org/standards/geosparql

16. Pandit, H.J., Lewis, D.: Modelling provenance for GDPR compliance using linked open data
vocabularies. In: Brewster, C., Cheatham, M., d’Aquin, M., Decker, S., Kirrane, S. (eds.)

18

Proceedings of the 5th Workshop on Society, Privacy and the Semantic Web - Policy and
Technology (PrivOn2017) co-located with 16th International Semantic Web Conference
(ISWC 2017), Vienna, Austria, October 22, 2017. CEUR Workshop Proceedings, vol. 1951.
CEUR-WS.org (2017), http://ceur-ws.org/Vol- 1951/PrivOn2017 paper 6.pdf

17. Pollock, R., Tennison, J., Kellogg, G., and Herman, I.: Metadata Vocabulary for Tabular
Data. W3C Recommendation, W3C (Dec 2015) https://www.w3.org/TR/2015/REC-
tabular-metadata-20151217/

18. Raimond, Y., Schreiber, G.: RDF 1.1 Primer. W3C note, W3C (Jun 2014),
http://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/

19. Reynolds, D., Cyganiak, R.: The RDF data cube vocabulary. W3C Recommendation, W3C
(Jan 2014), http://www.w3.org/TR/2014/REC-vocab-data-cube-20140116/

20. Rijgersberg, H., Wigham, M., Top, J.L.: How semantics can improve engineering processes:
A case of units of measure and quantities. Advanced Engineering Informatics 25(2), 276–
287 (2011). https://doi.org/10.1016/j.aei.2010.07.008

21. Sahoo, S., McGuinness, D., Lebo, T.: PROV-o: The PROV ontology. W3C recommenda-
tion, W3C (Apr 2013), http://www.w3.org/TR/2013/REC-prov-o- 20130430/

22. Salas, P.E.R., Mota, F.M.D., Breitman, K.K., Casanova, M.A., Martin, M., Auer, S.: Pub-
lishing statistical data on the web. Int. J. Semantic Computing 6(4), 373–388 (2012).
https://doi.org/10.1142/S1793351X12400119

23. Skjaeveland, M. G., Giese, M., Hovland, D., Lian, E. H., and Waaler, A.: Engineering on-
tology-based access to real-world data sources. J. Web. Sem. 33, 112-140 (2015)
https://doi.org/10.1016/j.websem.2015.03.002

24. Tandy, J., Herman, I., and Kellogg, G.: Generating RDF from Tabular Data on the Web.
W3C Recommendation, W3C (Dec 2015) https://www.w3.org/TR/2015/REC-csv2rdf-
20151217/

25. Wigham, M., Rijgersberg, H., de Vos, M., Top, J.: Semantic support for tables using rdf
record table. International Journal on Advances in Intelligent Systems 8(1-2), 128–144
(2015)

26. Zhao, J., Hartig, O.: Towards interoperable provenance publication on the linked data web.
In: Bizer, C., Heath, T., Berners-Lee, T., Hausenblas, M. (eds.) WWW2012 Workshop on
Linked Data on the Web, Lyon, France, 16 April, 2012. CEUR Workshop Proceedings, vol.
937. CEUR-WS.org (2012), http://ceur- ws.org/Vol-937/ldow2012-paper-03.pdf

