
Juma Uplift: Using a Block Metaphor for
Representing Uplift Mappings

Ademar Crotti Junior
ADAPT Centre

Trinity College Dublin
Dublin 2, Ireland

Email: ademar.crotti@adaptcentre.ie

Christophe Debruyne
Odisee University College

100 Brussels
Belgium

Email: christophe.debruyne@odisee.be

Declan O'Sullivan
ADAPT Centre

Trinity College Dublin
Dublin 2, Ireland

Email: declan.osullivan@adaptcentre.ie

Abstract—A significant part of the Linked Data web is achieved
by converting non-RDF resources into RDF. Even though several
approaches and mapping languages have been proposed in
the literature, the knowledge required for such a task is still
substantial. In prior work, we proposed a visual representation
based on the block metaphor and applied it to the W3C
Recommendation R2RML. In this paper, we describe a new
implementation of this method, called Juma Uplift, that is capable
of generating mapping definitions for different uplift mapping
languages while still being fully compliant to the particular uplift
mapping specification. Preliminary findings indicate that Juma
Uplift is expressive enough to generate accurate mappings for the
two syntactically distinct mapping languages under examination,
R2RML and SML.

Index Terms—Visual Representation, Data Mapping, R2RML,
SML.

I. INTRODUCTION

Large amounts of data on the Web still resides in formats
other than the Resource Description Framework1 (RDF) data
model, currently being advocated by the W3C community as
the means to enable meaningful data exchange on the Web, and
a variety of innovative applications, such as data integration
and others [1]. For this reason, significant research has been
invested by the Semantic Web community into the process
of converting non-RDF resources into RDF. This process is
typically called uplift.

Many approaches and mapping languages have been pro-
posed to map non-RDF data into RDF in literature. Mapping
languages are able to detach mapping definitions from the
implementations that executes them [2]. These, however, still
require knowledge of the mapping language and significant
human effort on manually creating, editing and curating these
mappings [3]. To mitigate the knowledge required by mapping
languages one can avail of graphical editors. Nonetheless to
date, these have mainly focused on Semantic Web experts,
representing mappings as graphs, since the RDF data model
is itself one [4].

In previous work, we have proposed a visual representation
for mappings and applied it to the W3C's RDB to RDF
mapping language (R2RML) [5], called Juma [6]. A user

1https://www.w3.org/TR/rdf11-concepts/, accessed in September 2017.

study showed that this visual representation was helpful in
the creation of mappings with sufficient results in standard
usability tests for different types of stakeholders (including
experts and non-experts of Semantic Web technologies) [4].

Juma is based on the block (or jigsaw) metaphor that has
become popular with visual programming languages where
it is called the block paradigm such as Scratch2. In this
metaphor, concepts are represented as blocks that can only be
combined with other compatible blocks. The block metaphor
targets different types of users, allowing them to focus on the
logic instead of the languages syntax. In addition, it has been
used successfully in other domains, such as programming [7]
and on the creation of SPARQL queries [8].

In this paper, we describe a new implementation of Juma,
called Juma Uplift. This implementation is able to generate
(depending on preference) mappings compliant to the W3C
Recommendation R2RML, an RDF-based mapping language,
and compliant to the SML mapping language [9], a RDB2RDF
SPARQL-based mapping language.

The main contributions of this paper can be summarized
as follows: (i) a new implementation of the Juma method
with support for two syntactically distinct mapping languages,
called Juma Uplift; (ii) a comparison between Juma implemen-
tations and (iii) an evaluation of the expressiveness of Juma
Uplift based on the supported mapping languages and accuracy
of the RDF datasets generated.

The remainder of this paper is structured as follows: Section
II reviews the related work. In Section III and IV we overview
the R2RML and SML mapping languages, respectively. Sec-
tion V describes Juma and the new implementation, Juma
Uplift. A comparison of Juma implementations is presented in
Section VI. Section VII describes the evaluation undertaken.
Section VIII concludes the paper.

II. RELATED WORK

In this section, we discuss the state-of-the-art in mapping
languages and editors.

2https://scratch.mit.edu/, accessed in September 2017.

https://www.w3.org/TR/rdf11-concepts/
https://scratch.mit.edu/
Ademar Crotti Junior, Christophe Debruyne, and Declan O'Sullivan. Juma uplift: Using a block metaphor for representing uplift mappings. In 12th IEEE International Conference on Semantic Computing, ICSC 2018, Laguna Hills, CA, USA, January 31 - February 2, 2018, pages 211–218. IEEE Computer Society, 2018�

A. Mapping Languages

Mapping languages are declarative languages used to ex-
press customized mappings defining how non-RDF data should
be represented in RDF. An engine is usually associated with
a mapping language, being a software processor that uses the
mapping file together with the input data to generate an RDF
dataset.

R2RML [5] is the W3C Recommendation mapping lan-
guage to map relational databases into RDF. Examples of
R2RML implementations are db2triples3 and morph[10].
R2RML-F [11] extends R2RML to add support for data
transformation functions. Other R2RML extensions are RML
[12] and xR2RML [13]. These extensions added support for a
wider set of input data formats, such as CSV and XML. D2R4

is another RDF-based declarative language to map relational
databases into RDF. It is supported by the D2R server and
UltraWrap [14], with the latter also supporting R2RML.

Sparqlification Mapping Language (SML) [9] is a mapping
language based on SQL CREATE VIEWS and SPARQL
CONSTRUCT queries with support for relational databases
and CSV files. SPARQL-Generate [15] is another SPARQL-
based mapping language with support for multiple input data
formats, like RML. XSPARQL [16] combines XQuery and
SPARQL to map XML data into RDF. TARQL5 is another
mapping language based on SPARQL to convert CSV datasets
into RDF.

Though useful, mapping languages require significant hu-
man effort in manually creating, editing and curating mappings
[3]. To mitigate the knowledge required by mapping languages
one can avail of graphical editors.

B. Graphical Editors

Graphical editors offer an interface or a visual representation
to support the definition of mappings.

The fluidOps editor [17] is a web-based application that
relies on a step-by-step workflow. Each step focuses on the
creation of one part of the mapping. The mapping is only
available at the end of this process and changes in the mapping
restart the workflow. In [3], an extension of this editor was
proposed. In this extension, the mapping process starts based
on an existing ontology. In this sense, changes do not re-
start the workflow. OntopPro6 [18] is a Protégé [19] plugin
that uses a proprietary mapping language internally to create
mappings. The Virtuoso Universal Server7 has an extension
where data can be converted into RDF by creating R2RML
mappings or using a wizard that guides users in the creation
such mappings. R2RML By Assertion (RBA) [20] uses a tree
table structure to represent ontologies and RDF vocabularies,
side by side with the input data. This interface allows users
to match classes and properties to attributes. These assertions
generate an R2RML mapping. Datalift [21] is a web editor

3https://github.com/antidot/db2triples, accessed in September 2017.
4http://d2rq.org/d2rq-language, accessed in September 2017
5https://github.com/tarql/tarql, accessed in September 2017.
6http://ontop.inf.unibz.it, accessed in September 2017.
7https://virtuoso.openlinksw.com, accessed in September 2017.

where one needs to convert data into raw RDF in a first step.
Following this step, it is possible to explore and transform
the raw RDF representation. OpenRefine8 is an ETL tool that
supports cleaning and transformation functions for many input
data formats. The uplift to RDF is available through RDF
Refine9, an extension to OpenRefine, allowing the mapping
and interlinking of RDF datasets through its web interface.

Karma [22] is a web-based application where data is loaded
before it can be mapped into RDF. The ontologies used during
the mapping process are represented in a tree structure and
the data as a table. The mapping is represented using a graph.
The creation of mappings using Karma can be troublesome
because of the data-centric approach, where every input is
shown in a different table. This makes the interlinking between
tables unnecessarily complex. Lembo et al. [23] uses a graph
representation for R2RML mappings. However, the creation
and/or editing of mappings are undertaken through text editing,
which make the mapping process prone to errors. RMLeditor
[2] has support for R2RML and RML mapping languages. The
RMLeditor also uses a graph representation for the mapping.
The input data and RDF output are shown as tables. MapOn
[24] is yet another graph representation tool with support for
R2RML mappings. SQuaRE [25] is a tool that provides a
visual environment for the creation of R2RML mappings. This
tool also uses a graph visual representation for mappings. In
a first step, users need to select the tables that are going to be
mapped. Ontologies and RDF vocabularies that will be used
in the mapping process are shown as trees.

These tools either offer interfaces to guide users in the
creation of mappings or represent them as graphs, since the
RDF model is itself one. We argue that these approaches may
not be as intuitive for non-expert users.

In contrast to the state of the art editors, the Juma approach
aims to represent mappings using the block metaphor targeting
different types of stakeholders. Our previous implementation,
Juma R2RML, is closely tied to the R2RML mapping lan-
guage, representing each R2RML construct as a block. In
this paper, we describe a new implementation that has been
developed, which abstracts away from R2RML to provide an
uplift mapping block editor capable of generating a variety of
mapping languages.

III. R2RML

In this section, we briefly explain the main concepts related
to the W3C Recommendation R2RML for the purpose of
this paper. For more information, we refer the reader to the
W3C Recommendation [5]. Each R2RML mapping definition
consists of one or more triples maps. Looking at Listing 1,
we can see that a triples map has (1) one logical table, (2)
one subject map and (3) zero or more predicate object maps,
where:

1) Logical Table: the table or a SQL query from which
RDF will be generated.

8http://openrefine.org/, accessed in September 2017.
9http://refine.deri.ie, accessed in September 2017

https://github.com/antidot/db2triples
http://d2rq.org/d2rq-language
https://github.com/tarql/tarql
http://ontop.inf.unibz.it
https://virtuoso.openlinksw.com
http://openrefine.org/
http://refine.deri.ie

2) Subject Map: subject maps define the subjects of the
RDF triples. These subjects can be IRIs or blank nodes.
You may also specify zero or more URI class types.

3) Predicate Object Map: each predicate object map
defines the predicates, using predicate maps, and objects,
using object maps, of the RDF triples. Each predicate
object map must have at least one predicate map and
one object map. Predicates must be valid IRIs. Objects
can be IRIs, blank nodes or literals. For literal values,
it is possible to define a data type or a language. You
may link triples maps using parent triples map. A parent
triples map can have zero or more join conditions.

In Listing 1, we map the table (or view) per-
son. A triples map defines subjects to have the IRI
http://example.org/person/{id} and to be in-
stances the class foaf:Person. A predicate object map
relates the subjects with the predicate foaf:name to values
in the column name.

Listing 1: Example of an R2RML mapping
@prefix rr: <http://www.w3.org/ns/r2rml#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<#TripleMap1>
rr:logicalTable [rr:tableName "person";];
rr:subjectMap [

rr:template "http://example.org/person/{id}";
rr:class foaf:Person;];

rr:predicateObjectMap [
rr:predicate foaf:name;
rr:objectMap [rr:column "name";];];.

IV. SML

In this section, we explain the main concepts related to
Sparqlification Mapping Language (SML) (see [9] for more
information).This mapping language is based on SQL CRE-
ATE VIEWS and SPARQL CONSTRUCT queries. An SML
mapping is composed of the following parts:

• Construct: this clause consists of triple patterns, similar
to SPARQL CONSTRUCT queries. These are used as
templates for the construction of the triples;

• From: is used to define the logical table. As in R2RML,
these can be table names or SQL queries;

• Variable definition: this clause is used to specify vari-
ables whose values are RDF terms from rows of the
relation. These variables can be used in the construct
clause;

• Constraints: these are optional constraints about the vari-
ables on the RDF level. It is used for query optimization.

Listing 2 shows the SML version of the mapping presented
in Listing 1.

Listing 2: Example of an SML mapping
Prefix foaf: <http://xmlns.com/foaf/0.1/>

Create View view1 As Construct {
?s1 a foaf:Person.
?s1 foaf:name ?o1. }

With

?s1 = uri(concat(’http://example.org/person/’, ?id
))

?o1 = plainLiteral(?name)
From person

V. JUMA: JIGSAW PUZZLES FOR REPRESENTING MAPPINGS

In previous work, we have presented a method called
Jigsaw puzzles for representing mappings, Juma10. The Juma
method in general focuses on facilitating the creation, man-
agement, and ”understandability” of mappings, by making the
technology available to a wider set of stakeholders. In [6],
we showed how we applied the approach to the R2RML
mapping language, creating an implementation called Juma
R2RML. A user evaluation of this implementation suggested
that the visual representation was helpful to both expert and
non-experts useres alike, and that accurate uplift mappings
were created with sufficient quality demonstrated in standard
usability tests [4]. Fig 1 shows the mapping presented in
Listing 1 represented in Juma R2RML.

Fig. 1: Juma R2RML visual representation.

This paper proposes a new implementation of the Juma
method for uplift mappings, called Juma Uplift11. Our new
implementation has been developed to support a higher level
of abstraction in order to have the capability to generate
different mapping languages, as per user choice. The new
implementation is also based on Google's Blockly API12.
Google Blockly is a visual programming language that uses
blocks to facilitate code creation. These blocks are shaped
like jigsaw puzzle pieces that show how the language works
by abstracting the languages syntax. Furthermore, Blockly has
been successfully used in many projects, such as code.orgs13

introduction courses to Computer Science and for the con-
struction of SPARQL queries [8].

The main interface has menu options on the left-hand side
and a workspace on the right-hand side. The menu option
provide users with all blocks that can be used in our visual
representation. From this menu, users can drag new blocks into
the workspace. The workspace represents the uplift mapping.
The visual representation guides users in the creation of valid

10Juma at https://www.scss.tcd.ie/∼crottija/juma/
11Juma Uplift video at https://www.youtube.com/watch?v=Q97YeZtu tA
12https://developers.google.com/blockly/, accessed in September 2017.
13https://code.org/about, accessed in September 2017.

https://www.scss.tcd.ie/~crottija/juma/
https://www.youtube.com/watch?v=Q97YeZtu_tA
https://developers.google.com/blockly/
https://code.org/about

mappings by highlighting and only allowing the connection
of blocks that would create a valid mapping. The visual
representation also uses colors to identity the type of structure
that is being created. For example, subjects use the same
colour and so on. Other features of the visual representation
are the possibility of zooming in and out, duplication of
blocks, disable/enable them (disabled blocks are visible in the
workspace but not used in the generation of the mapping) or
add comments to them. The menu options (see Fig. 2) are
defined as follows:

• Mapping: this option defines a block to map an input
source (a table, view or a SQL query). Each mapping
block maps one input source to one or more subject
definition blocks using zero or more vocabularies;

• Vocabularies: the vocabularies that are going to be used
can be found under this option. There are two types of
vocabulary blocks. One with common predefined vocab-
ularies and another customizable one;

• Subject: the menu option for subjects define ways of
generating the subject, defining it as a blank node, and as
instances of classes. Subjects can be defined as templates,
constants or columns. Subject blocks have an id (that
is used to relate subjects) and are associated with the
mapping block, which defines the input source;

• Predicate/Object: the block to define predicate and ob-
jects is defined under this menu option. Just like subjects,
predicates and objects can be defined using using tem-
plates, constants or columns. Objects can also be defined
as IRI’s, blank nodes, literals, to have a datatype or a
language tag. These blocks are associated with a subject
definition block. Each predicate/object block defines a
new triple for the associated subject;

• Linking: this option defines a block to link subjects
defined within a mapping through their ids. This block
also allows users to define how the subjects being linked
are related. This relation translates to SQL joins in
the mapping. Linking blocks can only be associated to
subject ones;

• Functions: under this menu option, we have built-in
functions. A few examples of functions available are
concatenation, replace and summation. The loading of
custom functions is also available. Moreover, others can
be added in future implementations. Functions can be
used to generate subjects, predicates or objects;

• Graph: this menu option defines an optional block to
generate the RDF triples in a specific named graph
(these can also be templates, constants or columns).
Graph blocks are associated to subjects, defining in which
named graph the triples associated to the subject will be
generated.

To be compatible with the R2RML mapping language, we
have decided to design the blocks for subjects, predicates, ob-
jects and graphs using the R2RML constructs types: templates,
constants and columns. Templates are string templates. These
can also refer to columns using curly brackets. For exam-

ple, the template http://example.org/person/{id}
refers to the column id of the input source being mapped.
Constants are values that do not change; e.g. a property such
as foaf:name or a string value s̈ome value.̈ Columns refer
to attributes of the data source being mapped; e.g. id or name.

The reason for supporting R2RML (an RDF-based mapping
language) being that it is a W3C Recommendation with many
implementations available. We also support the SPARQL-
based SML mapping language. SML has support for SPARQL
to SQL query rewriting and has been used in many projects
such as LinkedGeoData14 and PanLex: RDF15. Another reason
for supporting R2RML and SML is to demonstrate that the
visual representation is expressive enough to support syntac-
tically distinct mapping languages.

The support for functions within Juma Uplift is made avail-
able through R2RML-F [11]. R2RML-F defines an extension
to the R2RML vocabulary to define functions as resources
within the mapping. This R2RML-F implementation defines
functions using JavaScript. In this sense, new functions can
be added to Juma together with its JavaScript implementation.
All functions defined in Juma are supported by this R2RML-F
implementation. SML only has support for the concatenation
function, however, the language is extensible to more func-
tions.

In our tool, the interface used to create/edit mappings has
4 tabs (see Fig. 2). In the first tab, Mapping, we show the
Juma visual representation. In Configuration, one can define
the properties of the configuration file. The configuration file
is used as input to an R2RML processor together with the
R2RML mapping file. SML configurations are set through the
command line. In the R2RML-Mapping tab, the user can see
the R2RML mapping generated from the visual representation.
In SML-Mapping tab, the same mapping is represented using
the SML mapping language. These show a live view of the
mapping. In other words, users can see changes in the map-
ping as blocks are being dragged and dropped. Nonetheless,
disconnected blocks are not used to generate the mappings
since these would result in an invalid mapping.

Fig 2 shows the same mapping in Juma Uplift imple-
mentation as that shown in Fig 1 Juma R2RML imple-
mentation. In this example, we are mapping the table (or
view) ”person” to the vocabulary FOAF16. The subjects of
the triples are defined as a string template with the URI
http://example.org/person/{id}. The block with
classes define the triples as instances of foaf:Person. The
mapping also defines a predicate to have the constant value
foaf:name related to the column value from name.

14http://linkedgeodata.org, accessed in September 2017.
15http://ld.panlex.org/rdf.html, accessed in September 2017.
16http://xmlns.com/foaf/0.1/, accessed in September 2017.

http://linkedgeodata.org
http://ld.panlex.org/rdf.html
http://xmlns.com/foaf/0.1/

Fig. 2: Juma Uplift visual representation.

The SML engine and some R2RML implementations have
support for CSV files. In this sense, the mappings created
using Juma Uplift implementation can also be used to uplift
CSV files as well as relational databases.

VI. COMPARISON OF JUMA IMPLEMENTATIONS

In this section, we will compare essential features of Juma
R2RML and Juma Uplift.

The fundamental block of Juma R2RML relates prefixes (or
vocabularies being used in the mapping) to triples maps. Juma
Uplift’s main block relates logical tables and vocabularies.

Fig. 3 shows a side-by-side mapping of both imple-
mentations representing the same mapping. This mapping
converts two tables into RDF. The mapping is using the
vocabularies FOAF and a fictional one (http://example.
org/). The table person is generating subjects with the IRI
http://example.org/person/{id}. This table is also
being mapped as instances of the class foaf:Person.
The mapping also defines the predicate foaf:name to be
related to values of the column name from the logical ta-
ble person. The predicate foaf:based_near is used to
related these subjects to the subjects generated from the
logical table city. The table city is mapped to have the IRI
http://example.org/city/{id’} as subjects. These
subjects are instances of the class ex:City with the predicate
foaf:name related to objects from the column name of the
logical table city.

A. Defining logical tables

The definition of logical tables is similar in both implemen-
tations. Users can define the logical table as a table (or view)
or a SQL query. In Juma R2RML the logical table is related to
a triples map. Juma Uplift defines the logical table as part of
the mapping block. In Juma Uplift, it is possible to generate
multiple subjects from the same logical table. To do the same
in Juma R2RML, one needs to define a new triples map with
a new subject map from the same logical table.

B. Defining the vocabularies

In Juma R2RML, vocabularies are defined in the main
block, separated from triples maps. Juma Uplift defines vo-
cabularies to each mapping block. In Juma Uplift, users map
a logical table to vocabularies.

C. Creating RDF terms

Both implementations rely on R2RML’s constructs for
defining RDF terms from logical tables (templates, constants
and columns). Juma R2RML uses distinct blocks for the
definition of blank nodes, datatypes, languages and so on. In
Juma Uplift this is contained within the RDF term block using
the option as/with for the objects of the triples. Users can relate
subjects to a block defining it as a blank node.

D. Forming triples

Juma R2RML uses subject maps to specify how to generate
the subject. To define it as a blank node or to be instances
of classes, users must related subject maps to its respective
blocks. One for the definition of its type, and one other per
class being defined. Juma Uplift has one block to define
subjects as a blank node and one other for the definition of
classes.

Juma R2RML relies on predicate object maps to define
predicates and objects. Predicates and objects are defined using
predicate object maps. Each predicate object map must define
at least one predicate map and one object map. For example, if
a predicate object map has two predicate maps and one object
map then the RDF output will relate these two predicates
to the same object. However, users need to understand the
R2RML algorithm to be able to define this construct. For this
reason, Juma Uplift defines one block that relates predicates
and objects. This block only allows one predicate and one
object definition. To relate two predicates to the same object,
two predicate object blocks must be defined.

E. Functions

Juma Uplift has support for data transformation functions,
while Juma R2RML does not. As mentioned before, functions
are defined using R2RML-F’s vocabulary. The implementation
offers some built-in functions while still being extensible to
others.

F. Linking

Both implementations allow for the definition of linking. As
mentioned before, this allows users to relate subjects within
a mapping. The underlying mapping uses SQL joins for the
definition of these links. Juma R2RML uses parent triples map
and join conditions (relating parent and child columns). Juma
Uplift has a new block to define these links. Users can select
the mapping using their id. The definition of parent and child
columns is done with new labels: from this table or from
selected table. We believe that these will help users in the
definition of these SQL joins. It is worth noting that R2RML
offers a model for the expressions of joins (parent triples map)
while SML does not. To allow for the definition of linking
using SML, Juma Uplift applies the R2RML algorithm and
generates a corresponding SQL query in the SML mapping.

http://example.org/
http://example.org/

Fig. 3: Juma R2RML and Juma Uplift side-by-side.

G. Assigning Triples to Named Graphs

In Juma R2RML users can define in which named graph
the triples will be generated for subjects and predicate object
maps. Juma Uplift allows for the definition of named graphs
for subjects only. We argue that this is more intuitive to users
and for specific cases different mapping definitions can be used
to generate triples in distinct named graphs.

VII. EVALUATION

This section describes the evaluation of the expressiveness
of Juma Uplift.

A. Hypothesis

The hypothesis related to this evaluation is: It is possible
to apply Juma Uplift to generate accurate mappings for the
mapping languages R2RML and SML for common uplift use
cases.

B. Mapping use cases

For this experiment, we have defined 10 uplift mapping
use cases. These use cases were based on the RDB mapping
patterns presented in [26]. In this sense, these mappings were
defined to cover common cases when uplifting data into RDF
and also to explore the visual representation.

C. Database

We have created a relational database with two tables for
this experiment (Tables II and III). Based on the mapping use
cases presented we defined the expected RDF output.

TABLE II: Table person diagram

Person
id name age city fk
1 Ana 29 100
2 John 25 100
3 Mary 30 200

TABLE I: Mapping use cases

Mapping Description
#1 Mapping one table to one class
#2 Mapping one table to two classes
#3 Mapping two tables to one class each
#4 Mapping one table and one attribute
#5 Mapping one table and two attributes
#6 Mapping one table and one attribute with a language tag
#7 Mapping one table and one attribute as a resource
#8 Mapping two tables and one attribute each

#9 Mapping one table and one attribute as a data
transformation function

#10 Mapping two tables with one class and one attribute each
and a link between them

TABLE III: Table city diagram

City
id name
100 Dublin
200 London

D. Method

For each use case a mapping was created by the authors of
this paper using Juma Uplift. The R2RML and SML mappings
generated by the visual representation were then executed17.
The generated RDF datasets were compared to an expected
RDF output (based on the mapping use cases) using Jena18.
The full experiment data is available19.

E. Example: Mapping use case #10

Mapping use case #10 covers mapping of tables to classes
and attributes with a link between them. The vocabularies used
are FOAF and a fictional one (http://example.org/). Listing 3

17SML engine available at https://github.com/AKSW/Sparqlify. R2RML
engine available at https://opengogs.adaptcentre.ie/debruync/r2rml.

18https://jena.apache.org/, accessed in September 2017.
19https://www.scss.tcd.ie/∼crottija/juma-uplift/experiment-data

http://example.org/
https://github.com/AKSW/Sparqlify
https://opengogs.adaptcentre.ie/debruync/r2rml
https://jena.apache.org/
https://www.scss.tcd.ie/~crottija/juma-uplift/experiment-data

shows the expected RDF output. This use case represented in
Juma R2RML and Juma Uplift can be seen in Fig. 3. Listing
4 and 5 show the corresponding R2RML and SML mappings.

Listing 3: RDF output of use case mapping #10
<http://example.org/person/1>

a <http://xmlns.com/foaf/0.1/Person> ;
<http://xmlns.com/foaf/0.1/based_near>

<http://example.org/city/100> ;
<http://xmlns.com/foaf/0.1/name> "Ana" .

<http://example.org/person/2>
a <http://xmlns.com/foaf/0.1/Person> ;
<http://xmlns.com/foaf/0.1/based_near>

<http://example.org/city/100> ;
<http://xmlns.com/foaf/0.1/name> "John" .

<http://example.org/person/3>
a <http://xmlns.com/foaf/0.1/Person> ;
<http://xmlns.com/foaf/0.1/based_near>

<http://example.org/city/200> ;
<http://xmlns.com/foaf/0.1/name> "Mary" .

<http://example.org/city/100>
a <http://example.org/City> ;
<http://xmlns.com/foaf/0.1/name> "Dublin" .

<http://example.org/city/200>
a <http://example.org/City> ;
<http://xmlns.com/foaf/0.1/name> "London" .

Listing 4: R2RML use case mapping #10
@prefix rr: <http://www.w3.org/ns/r2rml#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix ex: <http://example.org/> .

<#TriplesMap1>
rr:logicalTable [rr:tableName "person";];
rr:subjectMap [

rr:template "http://example.org/person/{id}";
rr:class foaf:Person;];

rr:predicateObjectMap [
rr:predicateMap [rr:constant foaf:name;];
rr:objectMap [rr:column "name";];];

rr:predicateObjectMap [
rr:predicateMap [rr:constant foaf:based_near;];
rr:objectMap [

rr:parentTriplesMap <#TriplesMap2>;
rr:joinCondition [

rr:child "city_id";
rr:parent "city_fk";

];];];.

<#TriplesMap2>
rr:logicalTable [rr:tableName "city";];
rr:subjectMap [

rr:template "http://example.org/city/{city_id}";
rr:class ex:City;];

rr:predicateObjectMap [
rr:predicateMap [rr:constant foaf:name;];
rr:objectMap [rr:column "name";];];.

Listing 5: SML use case mapping #10
Prefix foaf: <http://xmlns.com/foaf/0.1/>
Prefix ex: <http://example.org/>

Create View view1 As Construct {
?s1 a foaf:Person.
?s1 foaf:name ?o1. }
With
?s1 = uri(concat(’http://example.org/person/’, ?id

))
?o1 = plainLiteral(?name)
From person

Create View view2 As Construct {
?s1 a ex:City.
?s1 foaf:name ?o1. }

With
?s1 = uri(concat(’http://example.org/city/’, ?

city_id))
?o1 = plainLiteral(?name)
From city

Create View view3 As Construct {
?s1 foaf:based_near ?o1 . }
With
?s1 = uri(concat(’http://example.org/person/’, ?id)

)
?o1 = uri(concat(’http://example.org/city/’, ?

city_id))
From
[[SELECT * FROM city AS child, person AS parent

WHERE child.city_id = parent.city_fk]]

F. Results and Analysis

It was found that Juma Uplift was able to create R2RML
and SML mappings that generates the expected RDF output.
This confirms our hypothesis that Juma is expressive enough
to generate accurate R2RML and SML mappings for the
designed use cases.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a new implementation
of the Juma method, a visual representation based on the
block metaphor, called Juma Uplift. This implementation has
support for distinct mapping languages. We have decided to
support the RDF-based W3C Recommendation R2RML and
the SPARQL-based mapping language SML.

Through an experiment, we have defined common use cases
when uplifting data from relational databases into RDF. For
every use case a mapping was created using Juma Uplift.
The visual representation automatically generates R2RML and
SML mappings. These mappings were then executed using
their respective uplift engines and compared to an expected
RDF output. The results showed that Juma was able to
create mappings that generate the expected RDF output. This
confirmed our hypothesis that Juma Uplift implementation has
the capability to generate accurate mappings for the R2RML
and SML mapping languages.

The success of this initial evaluation has provided us with
confidence that Juma Uplift is extensible to other mapping
languages. The current implementation supports R2RML, an
RDF-based mapping language. In this sense, a possible ex-
tension to undertake would be to support RML. RML sup-
ports heterogeneous input formats, such as XML and JSON.
Juma Uplift also supports SML, a SPARQL-based mapping
language, therefore, we believe that it should be possible to
support SPARQL-Generate. Which is another SPARQL-based
mapping language with support for various data formats.

Future development includes implementing the loading of
mappings, extending the support for functions (for example,
use of the Function Ontology [27]). We also plan on applying
the Juma method in the representation of ontology mappings
and interlinking of Linked Data.

Future evaluation includes an extensive user experiment to
validate the usability and usefulness of Juma Uplift. As part of
this evaluation we intend to assess and compare the cognitive
load of our approach with others.

ACKNOWLEDGEMENTS

This paper was supported by CNPQ, National Counsel
of Technological and Scientific Development Brazil and
by the Science Foundation Ireland (Grant 13/RC/2106) as
part of the ADAPT Centre for Digital Content Technology
(http://www.adaptcentre.ie/) at Trinity College Dublin.

REFERENCES

[1] P. Hitzler, M. Krötzsch, and S. Rudolph, Foundations of Semantic Web
Technologies. Chapman & Hall/CRC, 2009.

[2] P. Heyvaert, A. Dimou, A. Herregodts, R. Verborgh, D. Schuurman,
E. Mannens, and R. V. de Walle, “RMLEditor: A graph-based
mapping editor for linked data mappings,” in The Semantic
Web. Latest Advances and New Domains - 13th International
Conference, ESWC 2016, Heraklion, Crete, Greece, May 29 -
June 2, 2016, Proceedings, 2016, pp. 709–723. [Online]. Available:
https://doi.org/10.1007/978-3-319-34129-3 43

[3] C. Pinkel, C. Binnig, P. Haase, C. Martin, K. Sengupta, and J. Trame,
“How to best find a partner? an evaluation of editing approaches
to construct R2RML mappings,” in The Semantic Web: Trends and
Challenges - 11th International Conference, ESWC 2014, Anissaras,
Crete, Greece, May 25-29, 2014. Proceedings, 2014, pp. 675–690.
[Online]. Available: https://doi.org/10.1007/978-3-319-07443-6 45

[4] A. C. Junior, C. Debruyne, and D. O’Sullivan, “Using a Block
Metaphor for Representing R2RML Mappings,” in Proceedings of
the Third International Workshop on Visualization and Interaction for
Ontologies and Linked Data co-located with the 16th International
Semantic Web Conference, VOILA@ISWC 2017, Vienna, Austria,
October 22, 2017., 2017, pp. 1–12. [Online]. Available: http:
//ceur-ws.org/Vol-1947/paper01.pdf

[5] S. Das, S. Sundara, and R. Cyganiak, “R2RML: RDB to RDF mapping
language,” 2012.

[6] A. C. Junior, C. Debruyne, and D. O’Sullivan, “Juma: an Editor that
Uses a Block Metaphor to Facilitate the Creation and Editing of
R2RML Mappings,” in The Semantic Web - ESWC 2017 Satellite Events,
Portotoz, Slovenia, May 28 - June 1, 2017, 2017.

[7] N. Fraser, “Google Blockly: A visual programming editor,” 2014.
[8] P. Bottoni and M. Ceriani, “SPARQL playground: A block programming

tool to experiment with SPARQL,” in Proceedings of the International
Workshop on Visualizations and User Interfaces for Ontologies
and Linked Data co-located with 14th International Semantic Web
Conference (ISWC 2015), Bethlehem, Pennsylvania, USA, October 11,
2015., 2015, p. 103. [Online]. Available: http://ceur-ws.org/Vol-1456/
paper12.pdf

[9] C. Stadler, J. Unbehauen, P. Westphal, M. A. Sherif, and J. Lehmann,
“Simplified RDB2RDF mapping,” in Proceedings of the Workshop
on Linked Data on the Web, LDOW 2015, co-located with the
24th International World Wide Web Conference (WWW 2015),
Florence, Italy, May 19th, 2015., 2015. [Online]. Available: http:
//ceur-ws.org/Vol-1409/paper-09.pdf

[10] F. Priyatna, Ó. Corcho, and J. F. Sequeda, “Formalisation and
experiences of r2rml-based SPARQL to SQL query translation using
morph,” in 23rd International World Wide Web Conference, WWW
’14, Seoul, Republic of Korea, April 7-11, 2014, 2014, pp. 479–490.
[Online]. Available: http://doi.acm.org/10.1145/2566486.2567981

[11] C. Debruyne and D. O’Sullivan, “R2RML-F: Towards Sharing and
Executing Domain Logic in R2RML Mappings,” in Proceedings of the
Workshop on Linked Data on the Web, LDOW 2016, co-located with
25th International World Wide Web Conference (WWW 2016), 2016.
[Online]. Available: http://ceur-ws.org/Vol-1593/article-13.pdf

[12] A. Dimou, M. V. Sande, J. Slepicka, P. A. Szekely, E. Mannens,
C. A. Knoblock, and R. V. de Walle, “Mapping hierarchical sources
into RDF using the RML mapping language,” in 2014 IEEE
International Conference on Semantic Computing, Newport Beach,
CA, USA, June 16-18, 2014, 2014, pp. 151–158. [Online]. Available:
https://doi.org/10.1109/ICSC.2014.25

[13] F. Michel, L. Djimenou, C. Faron-Zucker, and J. Montagnat,
“Translation of relational and non-relational databases into RDF with
xr2rml,” in WEBIST 2015 - Proceedings of the 11th International
Conference on Web Information Systems and Technologies, Lisbon,
Portugal, 20-22 May, 2015, 2015, pp. 443–454. [Online]. Available:
https://doi.org/10.5220/0005448304430454

[14] J. F. Sequeda and D. P. Miranker, “Ultrawrap: SPARQL execution
on relational data,” J. Web Sem., vol. 22, pp. 19–39, 2013. [Online].
Available: https://doi.org/10.1016/j.websem.2013.08.002

[15] M. Lefrançois, A. Zimmermann, and N. Bakerally, “A SPARQL
extension for generating RDF from heterogeneous formats,” in The
Semantic Web - 14th International Conference, ESWC 2017, Portorož,
Slovenia, May 28 - June 1, 2017, Proceedings, Part I, 2017, pp. 35–50.
[Online]. Available: https://doi.org/10.1007/978-3-319-58068-5 3

[16] S. Bischof, S. Decker, T. Krennwallner, N. Lopes, and A. Polleres,
“Mapping between RDF and XML with XSPARQL,” J. Data
Semantics, vol. 1, no. 3, pp. 147–185, 2012. [Online]. Available:
https://doi.org/10.1007/s13740-012-0008-7

[17] K. Sengupta, P. Haase, M. Schmidt, and P. Hitzler, “Editing R2RML
mappings made easy,” in Proceedings of the ISWC 2013 Posters &
Demonstrations Track, Sydney, Australia, October 23, 2013, 2013, pp.
101–104. [Online]. Available: http://ceur-ws.org/Vol-1035/iswc2013
demo 26.pdf

[18] M. Rodriguez-Muro, J. Hardi, and D. Calvanese, “Quest: Effcient
sparql-to-sql for RDF and OWL,” in Proceedings of the ISWC 2012
Posters & Demonstrations Track, Boston, USA, November 11-15, 2012,
2012. [Online]. Available: http://ceur-ws.org/Vol-914/paper 59.pdf

[19] N. F. Noy, M. Sintek, S. Decker, M. Crubézy, R. W. Fergerson, and
M. A. Musen, “Creating semantic web contents with protégé-2000,”
IEEE Intelligent Systems, vol. 16, no. 2, pp. 60–71, 2001. [Online].
Available: https://doi.org/10.1109/5254.920601

[20] L. E. T. Neto, V. M. P. Vidal, M. A. Casanova, and J. M. Monteiro,
“R2RML by assertion: A semi-automatic tool for generating customised
R2RML mappings,” in The Semantic Web: ESWC 2013 Satellite Events
- ESWC 2013 Satellite Events, Montpellier, France, May 26-30, 2013,
Revised Selected Papers, 2013, pp. 248–252. [Online]. Available:
https://doi.org/10.1007/978-3-642-41242-4 33

[21] F. Scharffe, G. Atemezing, R. Troncy, F. Gandon, S. Villata, B. Bucher,
F. Hamdi, L. Bihanic, G. Képéklian, F. Cotton et al., “Enabling linked-
data publication with the datalift platform,” 2012.

[22] C. A. Knoblock, P. A. Szekely, J. L. Ambite, A. Goel, S. Gupta,
K. Lerman, M. Muslea, M. Taheriyan, and P. Mallick, “Semi-
automatically mapping structured sources into the semantic web,”
in The Semantic Web: Research and Applications - 9th Extended
Semantic Web Conference, ESWC 2012, Heraklion, Crete, Greece, May
27-31, 2012. Proceedings, 2012, pp. 375–390. [Online]. Available:
https://doi.org/10.1007/978-3-642-30284-8 32

[23] D. Lembo, R. Rosati, M. Ruzzi, D. F. Savo, and E. Tocci, “Visualization
and management of mappings in ontology-based data access (progress
report),” in Informal Proceedings of the 27th International Workshop
on Description Logics, Vienna, Austria, July 17-20, 2014., 2014, pp.
595–607. [Online]. Available: http://ceur-ws.org/Vol-1193/paper 77.pdf

[24] Á. Sicilia, G. Nemirovski, and A. Nolle, “Map-On: A web-based
editor for visual ontology mapping,” Semantic Web, vol. 8, no. 6, pp.
969–980, 2017. [Online]. Available: https://doi.org/10.3233/SW-160246

[25] M. Blinkiewicz and J. Bak, “SQuaRE: A visual support for OBDA
approach,” in Proceedings of the Second International Workshop on
Visualization and Interaction for Ontologies and Linked Data co-located
with the 15th International Semantic Web Conference, VOILA@ISWC
2016, Kobe, Japan, October 17, 2016., 2016, pp. 41–53. [Online].
Available: http://ceur-ws.org/Vol-1704/paper4.pdf

[26] J. F. Sequeda, F. Priyatna, and B. Villazón-Terrazas, “Relational
database to RDF mapping patterns,” in Proceedings of the 3rd
Workshop on Ontology Patterns, Boston, USA, November 12, 2012,
2012. [Online]. Available: http://ceur-ws.org/Vol-929/paper9.pdf

[27] B. D. Meester, A. Dimou, R. Verborgh, and E. Mannens, “An ontology
to semantically declare and describe functions,” in The Semantic Web -
ESWC 2016 Satellite Events, Heraklion, Crete, Greece, May 29 - June
2, 2016, Revised Selected Papers, 2016, pp. 46–49. [Online]. Available:
https://doi.org/10.1007/978-3-319-47602-5 10

https://doi.org/10.1007/978-3-319-34129-3_43
https://doi.org/10.1007/978-3-319-07443-6_45
http://ceur-ws.org/Vol-1947/paper01.pdf
http://ceur-ws.org/Vol-1947/paper01.pdf
http://ceur-ws.org/Vol-1456/paper12.pdf
http://ceur-ws.org/Vol-1456/paper12.pdf
http://ceur-ws.org/Vol-1409/paper-09.pdf
http://ceur-ws.org/Vol-1409/paper-09.pdf
http://doi.acm.org/10.1145/2566486.2567981
http://ceur-ws.org/Vol-1593/article-13.pdf
https://doi.org/10.1109/ICSC.2014.25
https://doi.org/10.5220/0005448304430454
https://doi.org/10.1016/j.websem.2013.08.002
https://doi.org/10.1007/978-3-319-58068-5_3
https://doi.org/10.1007/s13740-012-0008-7
http://ceur-ws.org/Vol-1035/iswc2013_demo_26.pdf
http://ceur-ws.org/Vol-1035/iswc2013_demo_26.pdf
http://ceur-ws.org/Vol-914/paper_59.pdf
https://doi.org/10.1109/5254.920601
https://doi.org/10.1007/978-3-642-41242-4_33
https://doi.org/10.1007/978-3-642-30284-8_32
http://ceur-ws.org/Vol-1193/paper_77.pdf
https://doi.org/10.3233/SW-160246
http://ceur-ws.org/Vol-1704/paper4.pdf
http://ceur-ws.org/Vol-929/paper9.pdf
https://doi.org/10.1007/978-3-319-47602-5_10

	Introduction
	Related Work
	Mapping Languages
	Graphical Editors

	R2RML
	SML
	Juma: Jigsaw puzzles for representing mappings
	Comparison of Juma Implementations
	Defining logical tables
	Defining the vocabularies
	Creating RDF terms
	Forming triples
	Functions
	Linking
	Assigning Triples to Named Graphs

	Evaluation
	Hypothesis
	Mapping use cases
	Database
	Method
	Example: Mapping use case #10
	Results and Analysis

	Conclusions and Future Work
	References

