
Extending R2RML with Support for RDF Collections 
and Containers to Generate MADS-RDF Datasets 

Christophe Debruyne, Lucy McKenna, and Declan O’Sullivan 

ADAPT Centre, Trinity College Dublin, College Green, Dublin 2, Ireland 
{firstname.lastname}@adaptcentre.ie 

Abstract. It is a best practice to avoid the use of RDF collections and contain-
ers when publishing Linked Data, but sometimes vocabularies such as MADS-
RDF prescribe these constructs. The Library of Trinity College Dublin is build-
ing a new asset management system backed by a relational database and wants 
to publish their metadata according to these vocabularies. We chose to use the 
W3C Recommendation R2RML to relate the database to RDF datasets, but 
R2RML unfortunately does not provide support for collections and containers. 
In this paper, we propose an extension to R2RML to address this problem. We 
support gathering collections and containers from different fields in a row of a 
(logical) table as well as across rows. We furthermore prescribe how the ex-
tended R2RML engine deals with named graphs in the RDF dataset as well as 
empty sets. Examples and our demonstration on a part of the Library’s database 
prove the feasibility of our approach.  

Keywords. R2RML, Linked Data Publishing, MODS, MADS 

1 Introduction  

The Digital Resources and Imaging Services (DRIS) department of the Library of 
Trinity College Dublin (TCD) hosts the Digital Collections Repository of the univer-
sity, providing open access to the university’s growing collection of digitized cultural 
heritage materials. DRIS hopes to move towards publishing the bibliographic data of 
their digital collections as Linked Data (LD) as to increase their materials’ visibility. 
To this end, a bespoke tool backed by a relational database has been developed that 
accepted URIs to other Linked Data datasets. The Library decided1 that records 
should follow the Metadata Object Description Schema (MODS) as this standard was: 
suitable for cataloguing DRIS resources to the required level of detail, compatible 
with existing MAchine-Readable Cataloging (MARC) records in other catalogues and 
also less complex than MARC, and available as an RDF vocabulary.  

Given that the information was stored in a relational database, adopting the RDB to 
RDF Mapping Language (R2RML) [1], a vocabulary for declaring customized map-
pings from relational databases to RDF datasets, is a sensible approach. During the 
creation of R2RML mappings, a challenge arose: complete RDF records could not be 

                                                             
1 Which explains why no other models such as CIDOC-CRM were considered. 

Christophe Debruyne, Lucy McKenna, and Declan O'Sullivan. Extending R2RML with support for RDF collections and containers to generate MADS-RDF datasets. In Jaap Kamps, Giannis Tsakonas, Yannis Manolopoulos, Lazaros S. Iliadis, and Ioannis Karydis, editors, Research and Advanced Technology for Digital Libraries - 21st International Conference on Theory and Practice of Digital Libraries, TPDL 2017, Thessaloniki, Greece, September 18- 21, 2017, Proceedings, volume 10450 of Lecture Notes in Computer Science, pages 531–536. Springer, 2017
�



generated as, to produce such a record, the use of RDF collections was required by the 
ontology, but were not support by R2RML. 

We thus propose a minimal extension to the R2RML language and algorithm for 
the generation of RDF collections and containers. After elaborating on our approach, 
we demonstrate it on a part of the tool’s database. We discuss our approach with re-
spect to related work prior to concluding this paper and formulating future directions. 

2 Background  

MODS and MADS. Both Metadata Object Description Schema (MODS) and the 
Metadata Authority Description Schema (MADS) are XML schemas to describe bib-
liographic metadata and share quite a few elements. An OWL ontology was devel-
oped for both schemas; MODS-RDF and MADS-RDF. The MODS-RDF ontology, 
however, excluded all elements it had in common with MADS. If one relied on the 
MODS XML schema and wants to generate “semantically” equivalent RDF, MADS-
RDF has to be adopted as well. But, unlike MODS-RDF, where properties are repre-
sented individually, in MADS-RDF properties are grouped in collections.  

Resource Description Framework (RDF) provides two constructs to gather RDF 
terms for use in statements; RDF Containers and Collections. The difference be-
tween RDF containers (rdf:Bag, rdf:Seq, and rdf:Alt) and collections 
(rdf:List) is that the latter has an explicit terminator (rdf:nil, or the empty list) 
and is therefore immutable. One can add additional elements to the former. We note 
that it is generally considered a bad practice to use these constructs in Linked Data 
publishing, but some ontologies rely on it. 

We assume the reader is familiar with R2RML, and otherwise refer to [1]. We 
have chosen to adopt R2RML as it is a W3C Recommendation (i.e., a standard) and 
hence supported by various tools, and also because it provides us with a scalable de-
clarative approach. However, R2RML provides no elegant support for creating such 
mappings. In some cases, one can resort to an additional triples map for creating these 
provided the underlying relational database has support for pivot tables (allowing one 
to “pivot” a table and treat a particular row as the column). We deem this approach 
also too complex. Another approach is to go through several pre-, or post-processing 
stages, but that renders RDF generation not self-contained. 

3 Approach 

In this section, we describe our approach to provide support for generating RDF con-
tainers and collections in R2RML. We will exemplify our approach with a simple 
database (see Fig. 1), and then cover both cases of collecting RDF terms (per row, 
and per column)2 But we first formulate the following requirements: 1) Collecting 
RDF terms per row from various cells with the additional requirement that one 
should be able to specify what type of terms can be collected and that they can differ 
in a collection/container. 2) Collect RDF terms across rows: grouping the RDF 

                                                             
2 Our prototype is available at: https://opengogs.adaptcentre.ie/debruync/r2rml/src/r2rml-col 



terms that are generated from an object map for each subject. 3) Nesting: the ability 
to nest containers and collections, and both approaches. 4) Provide support for 
managing empty collections and containers. 5) Managing named graphs. 

 
BOOK   AUTHOR 
ID TITLE  ID BOOKID TITLE FNAME LNAME 
1 Frankenstein  1 1 NULL Mary Shelley 
2 The Long Earth  2 2 Sir Terry Pratchett 
   3 2 NULL Stephen Baxter 

Fig. 1. Two relational tables representing books and their authors.  

To collect terms for each row in a logical table, we extended R2RML’s vocabulary 
in the following ways: the introduction of a predicate rrf:gather to indicate 
which RDF terms need to be gathered into a collection or a container, and allowing 
the predicate rr:termType to refer to rdf:Bag, rdf:Seq, rdf:Alt, or 
rdf:List. The last is the default when a valid term type is absent. We note that 
these are all part of the RDF namespace, which we reused. The subject of 
rrf:gather must be a list of object maps that generate RDF terms. We thus have 
an object map that is comprised of object maps – which we will call a gather map. 
When none of the object maps generate a term as prescribed by the R2RML W3C 
Recommendation, an empty list or container is generated. One can also use 
rrf:gatherAsNonEmpty to avoid the generation of empty collections/containers. 

The application of this gather-object map g on a row will result in the application 
of each object map part of g to create the container or collection. Using the running 
example described above, the R2RML snippet in Listing 1 (top) generates the RDF 
shown in Listing 1 (bottom) One can see how rows in the person table generates a 
bag only containing a first- and last name when a title is non-existent. 

 
rr:predicateObjectMap [ 
 rr:predicate ex:name; 
 rr:objectMap [  
  rrf:gather ([ rr:column "TITLE" ] [ rr:column "FNAME" ] [ rr:column "LNAME" ]); 
  rr:termType rdf:Bag; 
  ]; 
] 
person:2 ex:name [ a rdf:Bag; rdf:_1 "Sir"; rdf:_2 "Terry"; rdf:_3 "Pratchett" ]. 
person:1 ex:name [ a rdf:Bag; rdf:_1 "Mary"; rdf:_2 "Shelley" ]. 
person:3 ex:name [ a rdf:Bag; rdf:_1 "Stephen"; rdf:_2 "Baxter" ]. 

Listing 1. Collecting RDF terms for each row.  

The fifth requirement will be covered here as it necessitates prescribing how dif-
ferent named graphs across rows that are gathered should be treated as the target 
graphs in the subject and predicate-object maps may differ for each row. While gath-
ering collections or containers per row is fairly straightforward as it introduced a new 
object map that needs to be applied to each row of a logical table, collecting RDF 
terms per column is a bit more challenging in terms of coming up with an appropriate 
extension of the vocabulary and the algorithm, especially the latter as one needs to 
keep track of the rows that need to be grouped in order to generate the collection or 
container. We extended the algorithm as follows: the implementation keeps track of 



all object maps with a rr:collectAs (See Listing 2) statement. The algorithm 
generates a subject for each row in the logical table (or join in case of reference-object 
maps). A special data structure keeps track of the RDF terms generated by the graph- 
and predicate-maps for each row – and thus also subject – whilst collecting the ob-
jects for the creation of the collection or container. Since each row may generate dif-
ferent predicates or graphs, but objects are collected across them, we have decided to 
store the collection or container in all possible combinations of graphs and predicates 
related to a particular subject. Though we think that this would be an unlikely use 
case, we deemed it important to think this aspect of the extension through.  
 
rr:predicateObjectMap [ 
  rr:predicate ex:writtenby; 
  rr:objectMap [  
    rr:parentTriplesMap <#AuthorsTriplesMap>;  
    rr:joinCondition [ rr:child "ID"; rr:parent "BOOKID"; ]; 
    rrf:collectAs rdf:List; 
  ]; 
]; 
book:1 ex:writtenby ( person:1 ). 
book:2 ex:writtenby ( person:2 person:3 ). 

Listing 2. Collecting RDF terms across rows.  

We allow nesting in the following ways: i) gather maps may be nested with gather 
maps; and ii) one may collect (nested) gather maps with rrf:collectAs. Since 
we have created an object map of object maps to tackle the case of gathering RDF 
terms for each row to cover the first case, it is fairly straightforward to nest them. For 
obvious reasons, however, no “cycles” are permitted in nested object maps. Due to 
space limitations, we will not be able to provide examples and refer to the documenta-
tion instead. What we do not allow is the use of rrf:collectAs in nested object 
maps; it does not make sense to start aggregating, for each row, terms across rows. 

4 Demonstration  

Here, we demonstrate our approach to generate a MADS-RDF dataset from the rela-
tional database of The Library’s cataloguing system. Concepts in MODS, such as 
mods:Title, are related to a collection of mads:Element instances. Elements, 
which act as an abstract concept for something that has a label, are attributed such a 
label with the predicate mads:elementValue whose range is an xsd:string. 
The concept mads:Element is then specialized into a number of subclasses such as 
mads:TitleElement, which itself is an abstract concept for all elements one can 
find in a title. One needs to use instances of “concrete” concepts such as 
mads:MainTitleElement, and mads:PartNameElement in that list. 

In the database, a record must have at least one TitleInfo – terminology adopted 
from MODS XML, which acts as a “container for all subelements related to title in-
formation. The table TitleInfo thus has a foreign key to a record in the table 
Record. In TitleInfo, all subelements are captured in the fields nonSort, 
partName, partNumber, subtitle, and title. Due to space limitations and 
since the structure of these mappings are the same for all subelements, we will only 



describe one. We also leave out the mapping for Record (and also how records are 
then related to TitleInfo), and focus on the creation of title elements instead. We 
note a mapping was created for the whole database (including other elements). The 
evaluation of our approach’s performance was not within the scope of this study. 

Our mapping is shown in Listing 3 (top), we use HTTP URIs for TitleInfo, but 
URNs for the individual elements. We chose URNs as we do not (yet) foresee a rea-
son why users want to engage with these resources via resolvable HTTP URIs, but we 
also wanted to avoid the use of blank nodes. Since the actual value of the title ele-
ments are not suitable for creating URNs as they can contain illegal characters, we 
provided specific IDs for each element when they exist. These conditionals appear in 
the SQL query. The title info and title element are linked by reusing the same URN 
template (highlighted in yellow). Listing 3 (bottom) contains some RDF statements 
that were generated of one of TCD Library’s assets.  

 
<#TitleInfo> 
  rr:logicalTable [ 
    rr:sqlQuery """SELECT *, IF(nonSort IS NULL, NULL, id) AS nId, IF(subtitle IS 
NULL, NULL, id) AS sId, IF(partNumber IS NULL, NULL, id) AS nuId, IF(partName IS 
NULL, NULL, id) AS naId FROM TitleInfo"""; ]; 
  rr:subjectMap [ 
    rr:template "http://data.library.tcd.ie/resource/titleinfo/{id}"; 
    rr:class madsrdf:Title; 
  ]; 
  # Mapping to generate rdfs:label based on “title” omitted 
  rr:predicateObjectMap [ 
    rr:predicate madsrdf:elementList; 
    rr:objectMap [ 
      rrf:gather ( 
        [ rr:template "urn:tcd:title-nonsort-{nId}" ]  
        [ rr:template "urn:tcd:title-main-{id}" ]  
        [ rr:template "urn:tcd:title-subtitle-{sId}" ]  
        [ rr:template "urn:tcd:title-partname-{naId}" ]  
        [ rr:template "urn:tcd:title-partnumber-{nuId}" ]  
      ); 
    ]; 
    rr:termType rdf:List; 
  ]; 
 . 
<#TitleInfo-Title> 
  rr:logicalTable [ rr:sqlQuery "SELECT id, title FROM TitleInfo"; ]; 
  rr:subjectMap [ 
    rr:template "urn:tcd:title-main-{id}"; rr:class madsrdf:MainTitleElement; 
  ]; 
  rr:predicateObjectMap [ 
    rr:predicate madsrdf:elementValue; rr:objectMap [ rr:column "title"; ]; 
  ]; 
 . 
<http://data.library.tcd.ie/resource/titleinfo/2> a mads:Title; mads:elementList ( 
<urn:tcd:title-nonsort-2> <urn:tcd:title-main-2> <urn:tcd:title-partnumber-2> ). 
<urn:tcd:title-main-2> a mads:MainTitleElement; mads:elementValue  
  "Transactions of the Institution of Civil Engineers of Ireland". 
<urn:tcd:title-nonsort-2> a mads:NonSortElement; mads:elementValue "The". 
<urn:tcd:title-partnumber-2> a mads:PartNumberElement; mads:elementValue "Vol.26". 

Listing 3. Relating TitleInfo to MADS-RDF with our R2RML extension. 

5 Related Work 

We focus on related word of generating RDF datasets from relational databases only. 
To the best of our knowledge, xR2RML [3] is the only initiative that aimed to extend 



R2RML with support for containers and collections. It extends both R2RML for rela-
tional databases and RML [2], itself a superset of R2RML, to handle other source data 
formats such as JSON, XML, and CSV. At the time of writing, the implementation of 
xR2RML provides no support for named graphs, nested collections and containers, 
and different term types in collections and containers.3. We consider the first a non-
implemented feature rather than a real limitation. Interesting about their approach is 
how they handled “representation agnostic” mappings allowing one to mix represen-
tation formats. One can, for instance, treat the contents of a column as JSON. This 
feature allows one to generate collections or containers for tables with such columns.  

6 Conclusions and Future Work 

This paper provides evidence that a minimal extension of R2RML to support the gen-
eration of RDF collections and containers from relational databases is feasible. The 
Library of Trinity College Dublin, who wished to generate RDF from their relational 
database using MADS-RDF, provided the motivation of this study, as those vocabu-
laries prescribe the use of RDF collections for which there is no support in R2RML. 

Our approach furthermore supports a wider range of cases than the one needed for 
our motivating use case; nesting collections/containers, collections/containers across 
rows, and dealing with empty collections and containers. Though the Library did not 
need to gather collections across rows, this could potentially be useful to generate a 
collection of disjoint OWL classes when generating a taxonomy from a table, for 
instance. With respect to existing state of the art, our approach covers a wider range 
of cases, and does not intermix data representation formats. We believe that this 
would ease the maintenance mappings, though evidence for this needs to be gathered. 

Acknowledgements. The ADAPT Centre for Digital Content Technology is funded 
under the SFI Research Centres Programme (Grant 13/RC/2106) and is co-funded 
under the European Regional Development Fund. We also express our gratitude to the 
Library of Trinity College Dublin (TCD) for providing us their data and Garg Ab-
hivan who explored the development of an earlier prototype. 

References 

1. Das, S., Sundara, S, Cyganiak, R.: R2RML: RDB to RDF Mapping Language. W3C Rec-
ommendation (2012) 

2. Dimou, A., Vander Sande, M., Colpaert, P., Verborgh, R., Mannens, E., Van de Walle, R.: 
RML: A generic language for integrated RDF mappings of heterogeneous data. In: Bizer, 
C., Heath, T., Auer, S., Berners-Lee, T. (eds.) Proc. of the Workshop on Linked Data on 
the Web (LDOW 2014), CEUR Workshop Proceedings, vol. 1184. CEUR-WS.org (2014) 

3. Michel, F., Djimenou, L., Faron-Zucker, C., Montagnat, J.: Translation of relational and 
non-relational databases into RDF with xR2RML. In: Monfort, V., Krempels, K., 
Majchrzak, T.A., Turk, Z. (eds.) Proc. of the 11th International Conference on Web Infor-
mation Systems and Technologies (WEBIST 2015). pp. 443–454. SciTePress (2015) 

                                                             
3 See https://github.com/frmichel/morph-xr2rml, last accessed March 23, 2017 


