
A Semi-Automated Methodology for Extracting access control rules from
the European Data Protection Directive

Kaniz Fatema, Christophe
Debruyne, Dave Lewis, Declan

O'Sullivan
ADAPT Centre,

Trinity College Dublin, Ireland
{first.last}@scss.tcd.ie

John P. Morrison
IC4,

University College Cork
Ireland

j.morrison@cs.ucc.ie

Abdullah-Al Mazed
Next Gen Security,

F-Secure,
Finland,

abdullah.al.mazed@f-secure.com

Abstract—Handling personal data in a legally compliant way
is an important factor for ensuring the trustworthiness of a ser-
vice provider. The EU data protection directive (EU DPD) is built
in such a way that the outcomes of rules are subject to explana-
tions, contexts with dependencies, and human interpretation.
Therefore, the process of obtaining deterministic and formal
rules in policy languages from the EU DPD is difficult to fully
automate. To tackle this problem, we demonstrate in this paper
the use of a Controlled Natural Language (CNL) to encode the
rules of the EU DPD, in a manner that can be automatically con-
verted into the policy languages XACML and PERMIS. We also
show that forming machine executable rules automatically from
the controlled natural language grammar not only has the benefit
of ensuring the correctness of those rules but also has potential of
making the overall process more efficient.

Keywords — Legal PDP, Access Control, Rules, Conflict
Resolution, EU Data Protection Directive, Controlled Natural
Language.

I. INTRODUCTION
Although there are a number of legal instruments aiming to

protect the personal data of individuals [2, 5-8], the enforce-
ment of these laws in data management systems is often lack-
ing. If the access control rules contained in these laws could be
integrated in authorization infrastructures, this would arguably
make the enforcement of data protection requirements more
efficient and effective [9].

Prior research on the use of policy based systems to protect
personal data mainly focused on obtaining and enforcing ac-
cess control policies from the data subject only [10-13]. When
developing a privacy preserving system, it is important to keep
in mind i) the rights of the data subject, ii) the legitimate rights
of the stakeholders mentioned in the law, iii) the rights of the
issuer or controller of personal data and iv) the responsibilities
arising from enforcing those rights. This balance of rights and
responsibility is critical and other researchers have often over-
looked this balance when designing policy based authorization
systems to protect the privacy of personal data [11, 12]. In
comparison, we have attempted in our previous research to
support this balance by including independent preferences in
terms of policies from all the authorities into the authorization
system [14]. The system is designed to include access control
and conflict resolution polices [15, 16] from different authors,

possibly written in different policy languages. A one size fits
all policy language is not suitable for constructing policies sat-
isfying all types of requirements. Today we have many exam-
ples of different policy languages XACMLv2 [3], XACMLv3
[17], PERMIS [4], P3P [18], and so on and hence many differ-
ent PDP implementations. For example, XACMLv2 does not
support delegation of authority whilst XACMLv3 and PERMIS
do. The XACML policy language cannot support state based
policy rules such as separation of duties (SoD), whilst PERMIS
does. The design of our system supports Policy Decision Points
(PDPs) in multiple policy languages; for the demonstration that
capability we chose XACML and PERMIS due to the availa-
bility of implementation for being open-sourced.

For each item of personal data, we consider the following
four types of policies: provided by the law (the access control
rules extracted from legislation forms a Legal PDP), provided
by the data issuer (e.g. for a degree certificate the university is
the issuer, whilst for a personal diary the data subject is the
issuer), provided by the data subject (i.e. the individual to
whom the data relates), and those of the data controller (i.e. the
organization that is legally responsible for the personal data
processing). When the controller’s (or processor’s) system re-
ceives a request to access a data item, it first retrieves all the
policies related to the data item. The conflict resolution policies
are prioritized in the order of law, issuer, data subject and con-
troller, the rationale for the ordering is presented in [26]. The
policy that has the highest priority and is applicable to the cur-
rent request is used by the Master PDP to resolve any conflict-
ing decisions from the access control policies of the various
authors. In a previous work we demonstrated the use cases
where the dynamic conflict resolution based on request context
and combining obligations from different authors are not pos-
sible keeping the policies in a single PDP [16]. Therefore, we
argued to keep the policies separate for different authorities in
independent PDPs.

We conducted an experiment on obtaining enforceable ac-
cess control rules from the EU DPD for the Legal PDP to en-
force. The manual extraction of access control rules and con-
flict resolution rules from the EU DPD to infer legally compli-
ant decisions was demonstrated in [1]. The drawback discov-
ered was that the manual process was tedious, time consuming
and error prone. This study aims to tackle these problems by

Kaniz Fatema, Christophe Debruyne, Dave Lewis, Declan O'Sullivan, John P. Morrison, and Abdullah-Al Mazed. A semi-automated methodology for extracting access control rules from the european data protection directive. In 2016 IEEE Security and Privacy Workshops, SP Workshops 2016, San Jose, CA, USA, May 22-26, 2016, pages 25–32. IEEE Computer Society, 2016.�

proposing a Controlled Natural Language (CNL) to encode the
policies and propose a mapping from the CNL to policy lan-
guages. The main contributions of this paper are: firstly, intro-
ducing a Controlled Natural Language (CNL) grammar into
which the natural language rules from the EU DPD can be en-
coded; and secondly demonstrating a process to obtain machine
executable rules automatically from the CNL rules. The addi-
tion of the CNL rules in the previously presented process of
extracting machine executable rules from the EU DPD [1] will
reduce the time of manual transformation and eliminate the
possibility of error introduced by manual extraction done by
human; in other words the process will be more efficient.

The rest of this paper is structured as follows; Section II
discusses related work; Section III describes the various steps
of the methodology; Section IV describes the CNL grammar
and the CNL encoded rules; Section V presents the conversion
process of CNL rules into PDP rules; Section VI presents the
implementation; Section VII presents how the implementation
was evaluated; Section VIII provides the discussion and finally
Section IX describes the conclusions that were drawn.

II. RELATED WORK
Sadeh et al. [19] presented a way to leverage crowdsourc-

ing and Natural Language Processing (NLP) techniques to
semi-automatically extract key features from website’s privacy
policy. However, their technique is not appropriate for legal
texts, which are complex in structure and ambiguous by design
to maximize the scope of application. The NEURONA [20, 21]
project provided a semi-automated way to determine whether
some aspects of the current state of a company's personal data
files did not comply with regulations. The focus of our work
varies from theirs as we process the EU DPD with a structured
methodology to get all possible access control rules, whereas
their scope is restricted to security measurements on files to
measure the compliance with requirements rather than with
legal text. Travis et al. [22-25] undertook research to automate
the derivation of security requirements from regulations. They
applied their method to the Health Insurance Portability and
Accountability Act (HIPAA) regulations. To have data access
rules they considered six properties for access related activities,
such as, subject, action, modality, object, target and purpose. In
contrast, we aim to get enforceable access control rules that not
only include elements such as subject, action, resource and
environment attributes, but also the conditions that must be
satisfied in order to get access decisions (grant/deny) and the
obligations to execute along with the decision. Bekara et al.
[37] presented a semantic information model that formalizes
legal requirements. However, not all the legislative rules were
possible to express with this ontology. For example, “the data
subject can access the personal data if there is no legal objec-
tion” was not possible to express with this model, however it
was successfully modelled in ours.

Controlled Natural Language (CNL) is well used in a wide
range of areas to facilitate human-human communication and
human-machine communication [30]. Several researchers have
applied CNLs to privacy and access control problems.
Matteucci et al. [31] used CNL to present a Data Sharing
Agreement (DSA) among contracting parties to assure privacy
of data exchanged on the Web, for example, by helping intelli-

gent agents negotiating privacy requirements on behalf of hu-
man users. Ferré introduced SQUALL, a CNL for querying and
updating RDF graphs [32]. Cregan et al. described a syntax to
write and read ontologies in the standardized description logic
language OWL to/from CNL [33]. Shi et al. implemented a
user interface that enables novice users to write their own ac-
cess control policies using a CNL interface [34]. Although
these pieces of research show promising approaches that can be
used, as yet no prior research has demonstrated the use of CNL
for encoding the access control rules from the EU DPD.

III. METHODOLOGY
We adopt and extend a methodology we developed to ex-

tract access control and conflict resolution rules from the EU
DPD that was first introduced in [1] and was successfully test-
ed for the manual extraction of machine executable rules from
EU DPD [26]. Here we present an improved methodology that
consists of the following steps:

1. List the Legal provisions that are directly related to au-
thorisation. This step ensures that the legal rules that
are not related to access control/authorisation are elim-
inated from our consideration.

2. Analyse the Legal provisions obtained from step 1 with
the aid of a legal expert to see if they can form en-
forceable access control/authorisation rules (in natural
language). In this step the Legal provisions are exam-
ined one by one in order to form a set of enforceable
access control rules/authorisation rules for each provi-
sion. The Legal rules that are not capable of giving au-
tomated independent decisions are discarded at this
stage. The elaborate explanations can be found in [26].

3. Refine the natural language rules by grouping similar
rules together and ordering them in terms of the excep-
tions that need to be evaluated before the ones without
exceptions. For example, data subjects are allowed un-
conditional access to their personal data that are held
by a data controller, but not if law enforcement would
be jeopardised by this. Consequently the rule that con-
cerns law enforcement must be evaluated before the
rule that grants the data subject unconditional access.

4. Formalize the natural language rules manually into the
form of an Access Control Rule (ACR) and a Conflict
Resolution Rule (CRR) using a controlled natural lan-
guage (CNL). The formalization helps to determine
various subject, resource, action or environment attrib-
utes, as well as obligations.

5. Convert the controlled natural language rules into exe-
cutable rules with XML based policy languages such
as XACML [3] and PERMIS [4].

6. Validate the obtained Legal rules.

The conversion from the rule set into machine executable
rules described in steps 4 and 5 was conducted manually in the
research reported upon in [1]. In this paper, we introduce a
CNL that is machine processable and map these to the XML
based policy languages for which mappings have to be defined.
The grammar of the CNL is specified in Section IV.

IV. THE CONTROLLED NATURAL LANGUAGE GRAMMAR
Controlled natural language (CNL) is a well-defined subset

of natural language that uses restricting grammar and vocabu-
lary to reduce ambiguity. CNLs can be accurately and effi-
ciently processed by a computer [27]. The grammar that we
developed for encoding the natural language into CNL is de-
scribed in Augmented Backus-Naur Form (ABNF) [28] in Fig.
1. Note that the notation “|” indicates alternate values and *
indicates 0 or more repetitions.
rule-definition=("ACR" wp rule-id wp ":" wp rule-statement
".") | ("CRR" wp rule-id wp ":" wp crr-statement ".") ;
crr-statement = "If" wp conditions wp "then" wp "DCR=" DCR;
rule-id = STRING;
rule-statement = "If" wp conditions wp "then" wp GrantOr-
Deny wp *prep wp article wp actions *(wp prep wp) *(wp
article wp) *(wp ResourceType wp) *(wp "with obliga-
tions to" wp obligations) ;
conditions = (condition wp operator wp conditions) | (con-
dition wp operator wp "(" wp conditions wp ")" wp
*(conditions)) | (condition);
condition = (article attributes wp relationalOperator wp
article attributes) | (wp "there is" article booleanAt-
tributes) / (wp "there is no" wp booleanAttributes);
attributes = attribute | values ;
attribute = category ":" name ":" type;
category = "Subject"|"Resource"|"Action"|"Environment";
name= STRING;
type = "string"|"boolean"|"integer"|"double"|"time"|
"date"|"dateTime";
article= (wp "a" wp) | (wp "an" wp) | (wp "the" wp) |
(wp);
values= (value wp "|" wp values) | (value);
value= DQUOTE STRING DQUOTE;
relationalOperator= "is equal to" | "is "| "is not equal
to"| "is not" | "is greater than" | "is less than";
operator= "AND"|"OR";
actions = action *(wp "|" wp action);
action = word;
ResourceType = word;
prep = "to"| "on"| "at" | "for";
booleanAttributes= (booleanAttribute wp "|" wp booleanAt-
tributes) | (booleanAttribute);
booleanAttribute= category ":" name ":boolean" ;
obligations= (obligation wp "," wp obligations) | (obliga-
tion);
obligation=STRING;
DCR= "DenyOverrides" | "GrantOverrides" | "FirstApplicable"
| "SpecificOverrides"| "MajorityWins";
GrantOrDeny = "Deny" | "Grant" |"BreakTheGlass";
word=*(%x41-5A|%x61-7A|%x30-39);
STRING= *(%x41-5A|%x61-7A|%x30-
39|%x20|%x2D|%x27|%x91|%x92);
wp = *(%x20 | %x09 | (%x0D %x0A));
DQUOTE = %x22;
Fig 1. The CNL grammar for encoding the access control rules from the EU
DPD

The CNL grammar allows an Access Control Rule (ACR)
or a Conflict Resolution Rule (CRR) to be specified. An ACR
is comprised of a set of conditions on Subjects, Actions, Re-
sources and the Environment, an Effect
(Grant/Deny/BreakTheGlass (BTG)) and an optional set of
Obligations. A CRR has the same terms as an ACR except that
the Effect is always a Permit, and the Obligation is to always
use a specific Decision Combining Algorithm (DCA). The rule
conditions are specified in terms of attributes, and attribute
names can contain any combination of String. Nevertheless, the
conversion has to ensure that the same attributes are used in
both request contexts which is passed to the authorisation sys-
tem for requesting access to data and the specified rules (oth-
erwise matching would never occur).

Each Legal ACR rule is also converted into a matching

CRR to make sure that the Legal rule gets precedence over any
other authority’s rules. The difference between the CRR and its
corresponding ACR is that the effect of the CRR is always a
Permit and the obligation always returns the DCA that is appli-
cable. If an ACR has an effect of Deny, the corresponding
DCA is DenyOverrides and if an ACR has an effect of Permit
the corresponding DCA is GrantOverrides. If the ACR has an
effect of BTG, the CRR’s DCA is GrantOverrides, since a
Grant from another PDP should not require the requester to
first break the glass before gaining access.

In the next section we present some procedural steps to ob-
tain the machine executable rules from the CNL rules so that
they can be executed by a Policy Decision Point (PDP) [14].

V. CONVERSION OF CNL RULES TO PDP RULES
Since the authorization system [14, 15] we used for enforc-

ing the Legal access control and conflict resolution policies is
capable of executing policies both in XACMLv2 [3] and
PERMIS [4] policy languages, we implemented the policies in
both the policy languages. How XACML and PERMIS work is
described in [3, 4]. Here, we only focus on the complication we
faced while encoding the access control rules from the EU
DPD and the steps we followed for converting the CNL rules
into XACML (subsection A) and PERMIS (subsection B).

A. Conversion of CNL rules to XACMLv2
In XACML, if any of the attributes specified in the <Tar-

get> element of the <PolicySet>, <Policy> or <Rule> is miss-
ing in the request context, the evaluation of the <Target> be-
comes “Indeterminate” and eventually the effects of the
<Rule>, <Policy> and <PolicySet> containing the target evalu-
ates to “Indeterminate”, meaning something is wrong in the
request context. The XACML encoded legal rules will have a
number of alternate attributes and only one set of them will be
present in the request context at a time and the absence of such
an alternate set of attributes should be evaluated to “NotAppli-
cable”, to mean this rule does not apply to the presented re-
quest context.

For example, let us consider the implementation of a simple
Legal rule saying that the data subject can submit a policy for
his/her personal data, where the data subject can be identified
by either an {emailAddress}, or a {NHS Number}.1 The re-
quester is expected to provide any one of these sets of attributes
to identify him or herself. If these identity attributes are written
inside the <Target> element of the rule then they all are needed
to be present in the request context for the requester to be
granted access. If any of the attributes are missing from the
request context, then an “Indeterminate” decision is returned.
However, the requester only needs to be identified by one of
these sets of attributes at a time and the other sets of attributes
need not be present in the request context. Therefore, a single
<Target> element is not the correct answer to encode these
alternate attribute sets. Instead either three separate policies or
rules with one set of identity attributes in each target element

1 This example with two sets of attributes will be used as a

running example throughout the paper. We note, however,
that this is a simplified version of a typical scenario and
that any arbitrary number of attribute sets are supported.

should be used, or one policy or rule with an empty target ele-
ment and a <Condition> element needs to be used.

The <Condition> element represents a Boolean expression.
When the <Target> element of an XACML policy evaluates to
“Match” and the condition element evaluates to “True”, the
rule evaluates to “Effect”. Or, when the <Target> element of an
XACML policy evaluates to “Match” and the condition ele-
ment evaluates to “False”, the rule evaluates to “NotApplica-
ble” [3]. XACML has a collection of functions that provide a
powerful way to compare attribute values. The XACML func-
tion type-at-least-one-member-of takes two argu-
ments that are both a bag of “type” values. It returns a Boolean
value. The function evaluates to "True" if and only if at least
one element of the first argument is contained in the second
argument as determined by type-is-in. In this case the
<Condition> element containing the function evaluates to
“True” and eventually the rule evaluates to the “effect”. Oth-
erwise the function returns “False” and the <Condition> evalu-
ates to “False” and consequently the rule evaluates to “NotAp-
plicable”. Hence this strategy is used to match the subject at-
tributes. Fig. 2 presents the aforementioned rule in XACML.
<Rule RuleId="3" Effect="Permit">
 <Description> ACR 3: If the Subject:Email:string is equal
to the resource:DataSubject'sE-mail:string OR the Sub-
ject:NHSNumber:string is equal to the Re-
source:DataSubject'sNHSNumber:string then Grant the Submit-
Policy for PersonalData. </Description>
 <Target/>
 <Condition>
 <Apply FunctionId="X:and">
 <Apply FunctionId="X:or">
 <Apply FunctionId="X:string-at-least-one-member-of">
 <SubjectAttributeDesignator At-tributeId="E-mail"
DataType="Y#string"/>
 <ResourceAttributeDesignator At-
tributeId="DataSubjects’E-mail"
DataType="Y#string"/>
 </Apply>
 <Apply FunctionId="X:string-at-least-one-member-of">
 <SubjectAttributeDesignator At-tributeId="NHSNumber"
DataType="Y#string"/>
 <ResourceAttributeDesignator At-
tributeId="DataSubjects’NHSNumber"
DataType="X#string"/>
 </Apply>
 </Apply>
 <Apply FunctionId="X:any-of">
 <Function FunctionId="X:string-equal"/>
 <ActionAttributeDesignator DataType="Y#string" At-
tributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"/>
 <AttributeValue
DataType="Y#string">SubmitPolicy</AttributeValue>
 </Apply>
 <Apply FunctionId="X:any-of">
 <Function FunctionId="X:string-equal"/>
 <ActionAttributeDesignator DataType="Y#string" At-
tributeId="ResourceType"/>
 <AttributeValue
DataType="Y#string">PersonalData</AttributeValue>
 </Apply>
 </Apply>
 </Condition>
</Rule>
Fig 2. Example of a Legal rule in XACML v2.2

The CNL rules written according to the ABNF grammar
(presented in Section IV) are converted into XACML accord-
ing to the following steps:

1. The initial string of a rule “ACR” indicates that the

2 In this figure, the X stands for
“urn:oasis:names:tc:xacml:1.0:function” and Y stands for
“http://www.w3.org/2001/XMLSchema”.

rule is an access control rule and the initial string
“CRR” indicates that the rule is a CRR.

2. The ABNF grammar element <rule-id> becomes the
<PolicyId> and <Rule-Id> of the XACML policy.

3. The ABNF grammar element <GrantOrDeny> be-
comes the <effect> of XACML rule.

4. Depending on the value of <GrantOrDeny> the rule-
combining algorithm is chosen for XACML. If the
value of <GrantOrDeny> is “Grant” then the rule-
combining algorithm is permit-overrides and if the
value is Deny or BreakTheGlass then rule combining
algorithm is deny-overrides. Note: the policy-
combining algorithm for Legal PDP is first applicable.

5. The whole rule is copied to the <Description> element
of the XACML rule.

6. All the <relationaloperator> of the ABNF grammar are
translated into corresponding XACML functions.

7. Each <attribute> of a <condition> element of the
ABNF grammar consists of <category>, <name> and
<type>. The value of <category> becomes the prefix
(i.e. Subject /Resource /Action /Environment) of the
AttributeDesignator of XACML, the value of <name>
becomes the AttributeId and the <type> becomes the
<DataType> of the AttributeDesignator of XACML.

8. The attribute <value> of ABNF becomes the <At-
tributeValue> of XACML.

9. The ABNF <operator> “AND” / “OR” becomes the
XACML FunctionId = “and” / “or” [Note: the
XACML FunctionId= “not” comes from the ABNF
<relationaloperator> “is not” and “is not equal to”.]

10. The <action> element of the ABNF grammar becomes
the <AttributeValue> in XACML against which the
<ActionAttributeDesignator> with AttributeId= action-
id is matched.

11. The <obligations> of the ABNF element becomes the
XACML <Obligations>.

B. Conversion of CNL rules to PERMIS
Here we consider the conversion of the same example of

the rule mentioned in Section V.A to PERMIS. The data sub-
ject can submit a policy for his/her personal data, where the
data subject can be identified by either an {emailAddress}, or a
{NHS Number}. While encoding into PERMIS policies, we
faced problem due to the unavailability of a way to define arbi-
trary subject’s or resource’s attributes. So the identity attributes
of requesters and subjects are passed as environment attributes
as presented in Fig. 3.

Similar to XACML, the CNL rules are written according to
the ABNF grammar and converted into PERMIS using the
following steps:

1. The initial of a rule “ACR” indicates that the rule is an
access control rule and the initial “CRR” indicates that
the rule is a CRR.

2. The ABNF grammar element <rule-id> becomes the
OID of the PERMIS policy.

3. If the value of <GrantOrDeny> is Grant then the value
of DenyBased attribute of PERMIS policy is “false”,
otherwise it is “true”.

4. All the <relationaloperator> of the ABNF grammar are
translated into the corresponding PERMIS functions
<EQ> (equal to), <GT> (greater than), <LT> (less
than), <NOT> (not).

5. Each <attribute> of a <condition> element of the
ABNF grammar consists of <category>, <name> and
<type>. As no arbitrary subject/resource attributes can
be defined in PERMIS all the attributes are presented
as Environment attributes. The value of <name> be-
comes the value of Parameter and the <type> becomes
the Type of the Environment attribute of PERMIS.

<TargetAccess>
 <RoleList> </RoleList>
 <TargetList>
 <Target>
 <TargetDomain ID="PersonalData"/>
 <AllowedAction ID="SubmitPolicy"/>
 </Target>
 </TargetList>
 <IF>
 <OR>
 <EQ>
 <Environment Parameter="E-mail" Type="String"/>
 <Environment Parameter="DataSubjects’E-mail"
Type="String"/>
 </EQ>
 <EQ>
 <Environment Parameter="NHSNumber" Type="String"/>
 <Environment Parameter="DataSubjects’NHSNumber"
Type="String"/>
 </EQ>
 </OR>
 </IF>
</TargetAccess>

Fig 3. Example of a Legal rule in PERMIS

6. The attribute <value> of the ABNF becomes the Con-
stant Value against which the environment attributes
are compared according to the PERMIS function.

7. The ABNF <operator> of “AND” / “OR” becomes the
<AND> / <OR> function of PERMIS.

8. The value of the <action> element of the ABNF
grammar becomes the Action Name and ID of the
PERMIS policy.

9. The <obligations> of the ABNF element becomes the
PERMIS <Obligations>.

C. Conversion of CRR rules to XACMLv2 and PERMIS
All the ACRs are also converted into CRRs. While convert-

ing the ACR into CRR the <effect> of XACML is always
“permit” and the <Obligation> of XACML becomes “permit-
overrides” or “deny-overrides” depending on the value of
<GrantOrDeny> of the ABNF (see Section IV).

The conversion of a CRR presented according to the ABNF
grammar of Section IV to an XACML/PERMIS policy follows
the steps similar to the conversion of an ACR. However, the
new element DCR becomes an <obligation>.

In XACMLv2 the smallest element on which the <Obliga-
tion> can be applied is <Policy>. Hence in XACML the Con-
flict Resolution Rules are implemented as separate <Policy>
elements inside a <PolicySet> element. The <Obligation> re-
turns the DCA to use [15, 16]. In PERMIS each CRR is written
as a separate Target Access Rules (TAR) with an obligation to
use a DCA. As an example of conversion we use the same Le-
gal rule used earlier (i.e. the data subject can submit a policy
for his/her personal data, where the data subject can be identi-
fied by either an {emailAddress}, or a {NHS Number}) as a
CRR to convert into XACML v2 and PERMIS. This is shown
in Appendix 1 of [38].

VI. IMPLEMENTATION
For automating the generation of rules from CNL, we used

only XACML, due to the availability of open access code of
the parser. The conversion process is performed in two stages
as shown in Fig. 4 and described next.

Fig 4. Automated conversion process from CNL rules to XACML rules.

<rule-definition>ACR
<rule-id><STRING>3</STRING></rule-id>:
<rule-statement>If
<conditions><condition>
<article>the</article>
<attributes><attribute>
<category>Environment</category>:
<name><STRING>RequestTime</STRING>
</name>:<type>date</type>
</attribute></attributes>
<relationalOperator>is less than</relationalOperator>
<attributes><attribute>
<category>Resource</category>:
<name><STRING>ValidityTime</STRING>
</name>:<type>date</type></attribute></attributes>
</condition></conditions> then
<GrantOrDeny>Deny</GrantOrDeny><article>the</article>
<actions><action><word>Access</word></action></actions>
<prep>to</prep><article>the</article>
<Resource-
Type><word>PersonalData</word></ResourceType></rule-
statement>.</rule-definition>

Fig 5. Example intermediate.xml produced from the input.txt

Stage1: Parsing the input (containing the CNL rules) ac-
cording to the ABNF grammar (passed by grammar) produces
an intermediate.xml file. Intermediate.xml is XML whose
structure follows the ABNF grammar rules. Fig. 5 shows for
example the intermediate.xml3 produced from this input.txt
containing “ACR 3: If the Environment:RequestTime:date is
less than Resource:ValidityTime:date then Deny the Access to
the PersonalData.” For implementing Stage 1, we used a freely
avalable general purpose tool aParse4 to convert the CNL rules

3 All <whitespace> (<wp>) elements have been removed from

the produced output for readability.
4 http://www.parse2.com/

Input

Grammar BNF parser (Stage 1)

Intermediate

Conversion (XPath, JAXB) (Stage 2)

Policy

into XACML.

Stage 2: Converts the intermediate.xml into policy.xml us-
ing XPath and JAVA Architecture for XML binding. A Java
object representation of XACML is created first. Java Archi-
tecture for XML binding (JABX) is used to convert the Java
classes into XML.
// Create a policy object, which will be converted to
xml using JAXB
Policy policy = factory.createPolicy();
// get ruleId using XPath
String ruleId = inputHelper.getNodeValue("//rule-
definition/rule-id/STRING/text()");
// Set ruleId to policy
Rule rule = factory.createRule();
rule.setRuleId(ruleId);
policy.setRule(rule);
// prepare marshaling to xml
JAXBContext jaxbContext = JAXBCon-
text.newInstance(Policy.class);
Marshaller jaxbMarshaller = jaxbCon-
text.createMarshaller();
// write to file
File file = new File(convertedFile);
jaxbMarshaller.marshal(policy, file);

Fig 6. Example source code of stage2

Fig. 6 shows some example source code of stage 2 of the
XACMLConverter

VII. EVALUATION
Evaluation of the implementation involved (a) validating

whether the rules generated were accurate; and (b) measuring
the speed of the conversion process.

A PHP implemented web service and SoapUI5 were used
for the validation tests. The XACMLConverter tool was in-
stalled on an Amazon Web Service EC2 instance of type
t2.micro. This gives us a setup with variable EC2 Compute
Unit (ECUs), 1 64 bit vCPUs, 2.5 GHz, Intel Xeon Family, 1
GiB memory, Elastic Block Store (EBS) only. We have chosen
Amazon Machine Image named as Amazon Linux AMI
2015.03 (HVM), SSD Volume Type - ami-e7527ed7. The Java
SDK that we used for our test was java-1.7.0-openjdk.x86_64.

The aim of the validation tests of the Legal policy rules was
to determine whether the generated rules derived from the EU
DPD give the desired responses or not. In order to do this, we
constructed a set of test cases based on determining each rule
one by one. Each Legal rule is a combination of conditions and
each condition consists of either an attribute-attribute pair or
attribute-value pair and their relationship. Each condition can
evaluate to true or false. A condition is related to other condi-
tions by a binary operator (AND, OR). Exhaustive test cases
were generated based on each condition where each condition
in each rule had two test cases created for it, one where the
condition was known to be true and one where the condition
was known to be false. For generating the test cases a Multi-
terminal binary decision diagram (MTBDD) was generated
where each condition becomes a node in the binary tree [29].
For example, Fig. 7 shows the MTBDD of the test cases for the
Legal rule “If the requested purpose of processing does not

5 http://www.soapui.org/

match with the original purpose of collection or is not for a
historical purpose/statistical purpose / scientific purpose then
Deny the request”. This formed the CNL “If the Ac-
tion:Purpose:string is not the Re-
source:PurposesOfCollection:string OR the Ac-
tion:Purpose:string is not a "historical purpose" / "statistical
purpose" / "scientific purpose" then Deny the Access to the
PersonalData.”

Fig 7. Presentation of rule in the form of MTBDD where the results form

terminal nodes and each condition becomes a decision node.

A request context was prepared for each test case. For each
request context the responses of the Legal access control and
conflict resolution PDPs were compared with the desired out-
comes. For performing the validation tests the system was first
configured with only the Legal Conflict Resolution PDP and
the decisions obtained like any normal PDP decisions. The
DCA was obtained as a part of the returned obligation. Then
the system was configured with only the Legal Access Control
PDP to see the response. The same set of tests were conducted
for it as well. More than 100 test cases were generated in total
and they are fully described in [26]. Here we exemplify the test
case for one rule in Appendix 3 in [38]. We observed the out-
comes for all rules for the given request contexts were as ex-
pected, i.e. the obtained decisions are accurate for the given
circumstances. However, since the policy is matched against
the request context, any single mismatch in the attribute repre-
sentation or a typo in the request context can provide an incor-
rect outcome. Therefore a high degree of caution was required
in presenting the right attributes in the request contexts while
doing the tests. In our previous manual process of writing ma-
chine readable rules required high cautiousness for errors for
typo. The automatically translated machine executable rules
from the CNL required no such cautiousness and reduces the
human effort and time to a great extent.

To measure the average time of the conversion process, we
ran the same script 10 times on the above-mentioned Amazon
EC2 instance. Fig. 8 presents the results. As a sample CNL
rule, we have used the same rule as demonstrated in Section V.

The average time taken to convert the selected CNL rule
with two conditions (start of plot), separated by “OR”, into
intermediate XML is 0.1035 second and from the intermediate
xml to XACML based rules is 0.3734 second, which in total
comes to 0.4769 seconds for converting the CNL rule into
XACML. We then observed the time taken by the tool to con-
vert the CNL to XACML for increasing complexity of rules.
To do this, we increased the number of conditions in a CNL
rule as a way of incrementally increasing the complexity of a
rule, and measured the time it takes to convert the CNL into
XACML for various size of complex rules containing 1-30

conditions (separated by “OR” or “AND”).

Fig 8. Processing time in second for the conversion of CNL into XACML

for increasing complexity of rule

We can observe from Fig. 8 that a linear progression in

processing time results when we incremented the complexity in
a rule. For the current implementation of the legal rules the
maximum number of conditions found was 10. In summary the
evaluation indicates that if we add more complex conditions in
the rules the processing time would increase linearly.

VIII. DISCUSSION
From our evaluation of the mapping of CNL to XACML

and PERMIS we have concluded that the conversion from
CNL to an executable policy language needs to consider not
only the structure of the policy language, but also the execution
process of the policy language, in order to ensure the construct-
ed policy will return the expected decision when executed.

We have demonstrated the feasibility of transcribing poli-
cies with a CNL that will generate executable rules. The exam-
ples derived from the EU DPD were simple enough for the
algorithm to scale well and indicates that the approach holds
great promise. Inclusion of more complex rules and the analy-
sis of the algorithm’s performance on such rules are part of
future work. Although we have demonstrated our approach’s
feasibility and promise, we have been unable as yet to compare
the effectiveness and efficiency of transcribing policies in our
CNL with the manual process presented in [1]. Our hypothesis
however is that the process would help reduce the issues out-
lined earlier in the paper.

 We applied our approach on 53 rules of the EU DPD. Alt-
hough the addition of CNL has made the process of extraction
of access control rules from EU DPD semi-automated, the
complexity and nature of some of its rules does not allow the
conversion of it into deterministic rules to be fully automated.
From the 53 rules of the EU DPD that were considered for
analysis in step 2 (since they mentioned some actions on per-
sonal data) 27 of them could contribute to the construction of
enforceable authorisation rules. However, 14 rules among these
53 are found to be guidelines or instructions only and did not
therefore map into authorisation rules. For example, Article
6.1.(a) states that personal data must be processed fairly and
lawfully, Article 17.1 says that controller must implement ap-
propriate technical and organisational measures to protect per-
sonal data against accidental or unlawful destruction or acci-
dental loss. These guidelines set out the overall requirements
for privacy protection. Within an operational data management
system, these guidelines may need to be auditably instantiated

in data protection compliance processes. Access control is one
of the important aspects of privacy protection but it does not
cover all such aspects. Data compliance tasks would require
however extension to the CNL and their mapping to data man-
agement workflows that enforce decision making and reporting
beyond access control. However, three other rules can be sup-
ported by our system design, explained in details in [26]. The
remaining 9 rules are found to be too dependent on other laws
or human judgement to be turned into access control rules by
themselves, for example, Article 7(f) “processing of personal
data for legitimate interest are allowed except where such in-
terests are overridden by the fundamental rights and freedom of
data subject” presents an extremely complex condition where
the balance of interests are not feasible to be presented in an
access control policy. Supporting decision-making and report-
ing around these broader concerns requires further work to
combine access control rules and compliance decision-making
and reporting obligations with enterprise governance rules and
national interpretation of EU data protection law. We plan to
investigate the role of CNL for supporting different stakehold-
ers, but with the focus on the requirements for data manage-
ment under the emerging EU General Data Protection Regula-
tions (GDPR).

IX. CONCLUSIONS
 Transcribing EU DPD into executable rules to support ac-
cess policies has been undertaken manually in the past [1]. The
process, however, has been deemed time consuming and error
prone in terms of possibility of having typo [35, 36]. However,
even with the limited capabilities of not having full set of au-
tomatically enforceable access control rules, the automation of
Legal policy enforcement significantly reduces the effort re-
quired to ensure compliance [9]. In this paper, we have suc-
cessfully demonstrated our approach that uses Control Natural
Language to transcribe these policies, and in turn transform
them into executable rules in PERMIS and XACML. We
would argue that the adoption of a CNL not only renders the
transcription process more efficient, but that the rules in CNL
are more accessible to the user (in terms of usability and under-
standing) than XML formats. The extent that these are more
accessible however does need to be investigated further with
appropriate user trials. In particular, differentials in accessibil-
ity to the different stakeholder types, i.e. data subjects, issuers
and controllers, may indicate that different, but consistent
forms of CNLs may be required for the different cohorts.

 We have implemented and evaluated our approach by con-
verting 27 of the 53 rules in the EU DPD. Some of the rules
were impossible to convert. Several requirements may be far
more complex to model in practice, due to the divergences of
national or sector specific laws from the European Directive or
uncertainty of how these map to a given operational context.
We aim to develop rules that can better accommodate this
greater complexity using semantic modelling techniques in-
cluding description logics in the future.

 In summary, we would argue that the approach developed,
demonstrated and evaluated as reported upon in this paper
holds significant promise in ensuring EU DPD rules are encod-
ed in a manner that will be efficient and ensure correct execu-
tion of the rules within systems. Our future work will investi-

0

0.5

1

1.5

1 5 10 15 20 25 30

Ti
m

e
in

 se
co

nd
 ta

ke
n

to

co
nv

er
t f

ro
m

 C
N

L
to

XA

CM
L

Number of conditions in rules

gate whether these benefits can be extended to data protection
compliance regimes anticipated as Europe moves from the
DPD to the GDPR era. We further plan to automate the 1st step
using natural language processing technique to aid legal ex-
perts to analyse the legal texts.

X. ACKNOWLEDGEMENTS
This paper is based on work funded by the EU TAS3 pro-

ject, and is partially supported by the ADAPT Centre for Digi-
tal Content Technology, which is funded under the SFI Re-
search Centres Programme (Grant 13/RC/2106) and is co-
funded under the European Regional Development Fund.

REFERENCES
[1] K. Fatema, D.W. Chadwick and B.V. Alsenoy, “Extracting Access Con-

trol and Conflict Resolution Policies from European Data Protection
Law,” in Privacy and Identity Management for Life, Springer, Heidel-
berg, 2012, pp. 59-72.

[2] Directive 95/46/EC of the European Parliament and of the Council of 24
October 1995 on the protection of individuals with regard to the pro-
cessing of personal data and on the free movement of such data.

[3] OASIS XACML 2.0. eXtensible Access Control Markup Language
(XACML)Version 2.0, Oct, 2005,
http://www.oasisopen.org/committees/tc_home.php?wg_abbrev=xacml#
XACML20.

[4] D. Chadwick, G. Zhao, S. Otenko, R. Laborde, L. Su, and T. A. Nguyen,
“PERMIS: a modular authorization infrastructure,” Concurrency And
Computation: Practice And Experience, vol 20, issue 11, pp 1341-1357.
2008.

[5] Health Information Privacy, HIPAA 1996 privacy and Security Rules,
http://www.hhs.gov/ocr/privacy/

[6] Protection of personal information in the private sec-
tor,http://www2.parl.gc.ca/HousePublications/Publication.aspx?pub=bill
&doc=C-6&parl=36&ses=2&language=E&File=32#4

[7] Australian Govt. Com Law, Privacy Act
1988,http://www.comlaw.gov.au/Series/C2004A03712

[8] OECD, Privacy and Personal Data Control,
http://www.oecd.org/dataoecd/30/32/37626097.pdf

[9] N. Papanikolaou, S. Pearson, and M.C. Mont. “Towards natural-
language understanding and automated enforcement of privacy rules and
regulations in the cloud: survey and bibliography,” in Secure and Trust
Computing, Data Management, and Applications, Springer, 2011, pp.
166-173.

[10] G. Karjoth, M. Schunter and M. Waidner, “Privacy-enabled services for
enterprises,” in 13th International Workshop on Database and Expert
Systems Applications, IEEE Computer Society, Washington DC, 2002,
pp. 483-487.

[11] M. C. Mont, “Dealing with Privacy Obligations: Important Aspects and
Technical Approaches,” in International conference on trust and privacy
in digital business, Zaragoza, 2004.

[12] C. A. Ardagna, L. Bussard, S. D. C. Vimercati, G. Neven, S. Paraboschi,
E. Pedrini, F-S. Preiss, D. Raggett, P. Samarati, S. Trabelsi and M. Ver-
dicchio, “PrimeLifePolicy Language,” in Workshop on Access Control
Application Scenarios, W3C, 2009.

[13] S. Trabelsi, A Njeh, L. Bussard, and G. Neven, “PPL Engine: A Sym-
metric Architecture for Privacy Policy Handling,” in W3C Workshop on
Privacy and data usage control, October, 2010.

[14] D. W. Chadwick and K. Fatema, “An advanced policy based authorisa-
tion infrastructure,” in Proceedings of the 5th ACM workshop on Digital
identity management, DIM’09, Chicago, Illinois, USA, 2009, pp.81-84.

[15] K. Fatema, D.W. Chadwick and S. Lievens, “A Multi Privacy Policy
Enforcement System,” in Privacy and Identity 2010, IFIP AICT 352,
2011, pp. 297–310.

[16] K. Fatema and D. Chadwick, “Resolving Policy Conflicts - Integrating
Policies from Multiple Authors,” in CAiSE International Workshops,
Thessaloniki, Greece, 2014.

[17] OASIS XACML 3.0. eXtensible Access Control Markup Language
(XACML) Version 3.0, 16 April, 2009,
http://docs.oasisopen.org/xacml/3.0/xacml-3.0-core-spec-en.html.

[18] W3C: The Platform for Privacy Preferences 1.0 (P3P 1.0), Technical
Report, 2002.

[19] N. Sadeh, A. Acquisti, T.D. Breaux, L.F. Cranor, A.M. McDonald, J.
Reidenberg, N.A. Smith, F. Liu, N.C. Russell, F. Schaub, S. Wilson, J.T.
Graves, P.G. Leon, R. Ramanath, A. Rao, “Towards Usable Privacy Pol-
icies: Semi-automatically Extracting Data Practices From Websites’ Pri-
vacy Policies,” FTC PrivacyCon, Jan 2016.

[20] N. Casellas, M. R. D. L Mozos, P.Casanovas, “Ontology-Enhanced
Legal Decision-Support Tools: The NEURONA Data Protection Com-
pliance Application,” Eleventh International Conference on Substantive
Technology in Legal Education and Practice, University of Zaragoza,
July 2010.

[21] N. Casellas, J-E. Nieto, A. Merono, A. Roig, S. Torralba, M. Reyes, P.
Casanovas, “Ontology Semantics for Data Privacy Compliance: the
NEURONA Ontology,” in AAAI Spring Symposium Series Technical
Reports (Intelligent Information Privacy Management), Stanford, March
2010.

[22] T. D. Breaux, A. I. Antón, “Analyzing Regulatory Rules for Privacy and
Security Requirements,” in IEEE Transactions on Software Engineering,
Special Issue on Software Engineering for Secure Systems (IEEE TSE),
vol 34, Issue 1, pp 5-20, 2008.

[23] T. D. Breaux, A. I. Antón, “A Systematic Method for Acquiring Regula-
tory Requirements: A Frame-Based Approach,” in Proc. 6th Interna-
tional Workshop on Requirements for High Assurance Systems (RHAS-
6), Delhi, India, Sep. 2007.

[24] T. D. Breaux, A. I. Antón, “Analyzing Goal Semantics for Rights, Per-
missions and Obligations,” in Proc. IEEE 13th International Require-
ments Engineering Conference (RE'05), Paris, France, Aug. 2005, pp.
177-186.

[25] N. Kiyavitskaya, N. Zeni, T.D. Breaux, A.I. Antón, J.R. Cordy, L. Mich,
J. Mylopoulos, “Automating the Extraction of Rights and Obligations
for Regulatory Compliance,” in: proc. 27th International Conference on
Conceptual Modelling (ER'08), Barcelona, Spain, Oct. 2008, pp 154-
168.

[26] K. Fatema, “Adding Privacy Protection to Policy Based Authorisation
Systems,” PhD thesis, University of Kent, UK, 2013.

[27] N. E. Fuchs, & R. Schwitter, “Specifying logic programs in controlled
natural language,” in: arXiv preprint cmp-lg/9507009, 1995.

[28] D. Crocker & P. Overell, “Augmented BNF for syntax specifications:
ABNF,” RFC 5234, 2005.

[29] K. Fisler, S. Krishnamurthi, L. A. Meyerovich, M. C. Tschantz, “Verifi-
cation and change-impact analysis of access-control policies,” in 27th
International Conference on Software engineering. ACM, 2005, pp.
196-205. ().

[30] A. Wyner, K. Angelov, G. Barzdins, D. Damljanovic, B. Davis, N.
Fuchs & J. Sowa, “On controlled natural languages: Properties and pro-
spects,” in Controlled Natural Language, Springer Berlin Heidelberg,
2010, pp 281-289.

[31] I. Matteucci, M. Petrocchi, & M. L. Sbodio, “CNL4DSA: a controlled
natural language for data sharing agreements,” in: Proceedings of the
2010 ACM Symposium on Applied Computing, 2010, pp 616-620, ACM.

[32] S. Ferré, “SQUALL: A controlled natural language for querying and
updating RDF graphs,” in: Controlled Natural Language, Springer, Ber-
lin, Heidelberg, 2012, pp. 11-25.

[33] A. Cregan, R. Schwitter & T. Meyer, “Sydney OWL Syntax-towards a
Controlled Natural Language Syntax for OWL 1.1,” in: OWLED. Vol.
258, 2007.

[34] L Shi, and D.W. Chadwick, “A controlled natural language interface for
authoring access control policies,” in: proceedings of the 2011 ACM
Symposium on Applied Computing, ACM, 2011.

[35] K. K. Waterman, “Pre-processing legal text: policy parsing and
isomorphic intermediate representation,” in: AAAI Spring Symposium:
Intelligent Information Privacy Management, 2010.

[36] M.C. Mont, S. Pearson, S. Creese, M. Goldsmith and N. Papanikolaou.
“EnCoRe: towards a conceptual model for privacy policies.”
PrimeLife/IFIP Summer School 2010: Privacy and Identity Management
for Life. Helsingborg, Sweden: Springer, 2010.

[37] K. Bekara, and M. Laurent. “A semantic information model based on the
privacy legislation.” IEEE Conference on Network and Information
Systems Security (SAR-SSI). IEEE, 2011, pp.1-6.

[38] Appendix, available at https://db.tt/e8hcGxsR .

