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ABSTRACT 
Typically tools that map non-RDF data into RDF format rely on 
the technology native to the source of the data when manipulation 
of data during the mapping is required. Depending on the data 
format, data manipulation can be performed using underlying 
technology, such as RDBMS for relational databases or XPath for 
XML. For CSV/Tabular data there is no such underlying technol-
ogy, and instead transforming the source data into another format 
or pre/post-processing techniques are used. As part of this paper, 
we present a comparison framework for the state-of-the-art in 
converting CSV/Tabular data into RDF, where a key feature eval-
uated is transformation functions. We argue that existing ap-
proaches for transformation functions in such tools are complex – 
in number of steps and tools involved – and therefore not as trace-
able and transparent as one would like. We tackle these problems 
by defining a more generic, usable and amenable method to in-
corporate functions into uplift mapping languages, called FunUL. 
As proof of concept, we show an implementation of our method. 
Moreover, by using a real world Digital Humanities case study, 
we compare our approach with other approaches that we have 
identified to include transformation functions as part of the map-
ping for CSV/Tabular data.   

Categories and Subject Descriptors 
D.2.12 [Interoperability]: Data mapping 

E.2 [Data Storage Representations]: Linked representations 

General Terms 
Algorithms, Design, Languages. 

Keywords 
Linked Data, Mapping, Data Manipulation. 

1. INTRODUCTION 
Significant amounts of data on the Web still resides in formats 
other than the Resource Description Framework1 (RDF) data 
model, currently being advocated by the W3C community as the 
means to enable data exchange on the Web, and a variety of inno-
vative applications, such as data integration and others [11]. 
CSV/Tabular data (even though the delimiter is different, we refer 
to such data as CSV data for the rest of this paper) is commonly 
used for data exchange on the Web, but the semantics of the data 
are not made explicit in this data format. In contrast, RDF pro-
vides one means to publish data and its meaning. 

The process of converting data into RDF is called uplift [3]. As 
several solutions have been proposed to uplift CSV data into 
RDF, we have developed a framework to compare these. For this 
comparison framework, we have drawn inspiration from a similar 
framework to evaluate the mapping of relational databases into 
RDF presented in [9]. We have applied our comparison frame-
work to those state-of-start uplift tools that have support for CSV 
data. 

One of the key features evaluated in our framework is the support 
for transformation functions, as data manipulation is typically 
needed during the uplift process [14]. These functions can be used 
to capture both domain knowledge (e.g., transforming units) and 
other, more syntactic, data manipulation tasks (e.g., transforming 
values to create valid URIs). For some data formats this can be 
more-or-less straightforward. For example, with uplift tools for 
relational databases, such as R2RML [5] implementations, one 
can rely on SQL to provide the necessary transformation func-
tions, whereas with RML [8], an R2RML extension with support 
for multiple data formats, XPath is used to transform XML data 
and JSONPath is used for JSON data. In many cases, however, 
relying on underlying technology2 to undertake transformation 
might not be possible [6]. One such case is for CSV data, where 
there is no such underlying technology. The general approach to 
manipulate CSV data is the transformation of the source data into 
another format or the use of pre/post-processing techniques. The 

 
1 http://www.w3.org/TR/rdf11-concepts/ 
2 We define “underlying technology” in this paper as technology 

native to the source of the data.  
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use of these techniques, however, increases complexity – in rela-
tion to number of steps and tools involved. Furthermore, it renders 
the data process pipeline less transparent and traceable. 

One example of data transformation is the conversion of years. A 
historical dataset might use BCE/CE notation to refer to years, but 
an RDF representation of this data may use the XML data type 
xsd:gYear (XML Schema specification3) for representing years 
in a Gregorian calendar. The year “31 BCE” in the dataset would 
thus need to be transformed into "-30"^^xsd:gYear.  

To overcome these problems, we have, in previous work [4], pro-
posed a method to include data transformations by the way of 
functions into Uplift Mapping Languages4 in a generic, reusable 
and amenable way, here defined as FunUL. Our method integrates 
functions and mapping definitions. This allows data transfor-
mation and uplift of data into RDF to happen in a unified step. In 
addition, function definitions are reusable, being possible to call 
the same function multiple times with different parameters; and 
traceable. It is also possible to annotate them with provenance 
information, descriptions of the transformations defined and oth-
ers. Moreover, functions can be applied to any data format.  

In this paper we describe how we have implemented the proposed 
method by extending R2RML’s vocabulary and RML’s engine. 
We present an evaluation of our method by comparing, using a 
real world dataset, our approach with the only other approach that 
we have identified to include transformation functions in the 
mapping (that is KR2RML [16]).  

The main contributions of this paper can be summarized as fol-
lows: 

• a comparison framework for evaluating uplift tools in the pro-
cess of converting CSV data into RDF; 

• an evaluation of the state-of-the-art in CSV uplift tools using the 
proposed framework; 

• a method to incorporate functions into uplift mapping languages 
and an implementation;  

• evaluation of the method by comparing our approach to 
KR2RML. 

The remainder of this paper is organized as follows: in Section 2 
we present the state-of-the-art in CSV uplift. Section 3 shows a 
comparison and discussion of tools presented in Section 2. Section 
4 presents FunUL, a method to incorporate functions into map-
ping languages and an implementation of the method. The evalua-
tion is presented in Section 5. Section 6 concludes the paper. 

2. STATE-OF-THE-ART IN CSV UPLIFT  
Several solutions have been developed to uplift CSV data into 
RDF. In this section, we briefly introduce some of the tools in the 
state of the art that have support for CSV.  

Uplift techniques can be described at a high level as to the type of 
approach that they support: mapping languages and additional 
software. Mapping Languages (ML) are declarative languages 
used to express customized mappings defining how non-RDF data 

 
3 https://www.w3.org/TR/xmlschema-2/  
4 We adapt the definition of Uplift Mapping Languages from [1] 

and define it as declarative languages for mapping non-RDF da-
ta sources into RDF vocabularies and OWL ontologies. 

should be represented in RDF. An engine is usually associated 
with a mapping language, being a software processor that uses the 
mapping file and the input data to generate an RDF dataset. Addi-
tional Software (AS) support represents applications that have an 
interface or API where it is possible to convert data into RDF. 
Some uplift tools have support for both approaches. Table 1 
shows a brief description of each tool and the support provided. 

Table 1: State-of-the-Art in CSV Uplift. 

Description AS ML 

DataLift [15] is a tool where one needs to con-
vert data into raw RDF as a first step. After that, 
it is possible to explore and transform the RDF 
representation.  

P  

The Virtuoso Universal Server5 has an exten-
sion where CSV datasets can be imported into 
relational databases. After loading the data, map-
ping into RDF can be done using a wizard or 
R2RML mappings. 

P P 

TopBraid Composer Maestro Edition6 con-
verts data into RDF with no customizations in a 
first step. A second step transforms the RDF data 
using SPARQL7 queries and SPIN8 rules. 

P  

DataOps [13] is described as a semantic Any-
thing-to-RDF Extract Transform Load (ETL) 
data integration tool. DataOps works in three 
main steps. The first step allows one to access 
data in different formats. The second allows the 
mapping into RDF, where data can be manipu-
lated. Finally, the tool offers options for inter-
linking the RDF dataset with other existing da-
tasets. 

P  

OpenRefine9 has support for cleaning and trans-
formation functions for many data formats. The 
uplift to RDF is available through RDF Refine10, 
an extension to OpenRefine, allowing the map-
ping and interlinking of RDF datasets through a 
web interface. 

P  

KR2RML [16] is an extension to the W3C rec-
ommendation R2RML. KR2RML is developed 
on top of Karma, a data integration tool with 
support for many data formats as input, data 
cleaning and transformation functions.  

P P 

RML [8] is defined as a superset of R2RML, a 
W3C recommendation for mapping relational 
databases into RDF. RML extends R2RML’s 
vocabulary to support a broader set of possible 
input data formats, including CSV. RML also has 
an additional software tool to define RML map-

P P 

 
5 http://virtuoso.openlinksw.com/ 
6 http://www.topquadrant.com/ 
7 https://www.w3.org/TR/sparql11-query/ 
8 http://spinrdf.org/ 
9 http://openrefine.org/ 
10 http://refine.deri.ie 



pings, RMLEditor [10]. 

xR2RML [12], following RML, extends 
R2RML’s vocabulary to support the uplift of 
various data formats into RDF.  

 P 

SML [17] currently supports relational databases 
and CSV datasets. SML is a mapping language 
based on SQL CREATE VIEWS and SPARQL 
construct queries.  

 P 

CSV2RDF11 applies the use of a template file to 
determine how one row of the CSV dataset will 
be converted to RDF. The template file follows a 
Turtle like syntax. 

 P 

RDF-Tabular12 is an implementation of the 
CSVW specifications, a W3C recommendation 
for dealing with CSV datasets. In summary, the 
W3C CSWV Working group defined a Model for 
Tabular Data 13 as an abstract model. This model 
also allows the use of metadata through the 
Metadata Vocabulary for Tabular Data14. The 
metadata provides one ways of annotating tabu-
lar data, defining the structure of this data. To-
gether, these specifications define ways to pro-
cess tabular data for many purposes, such as 
conversions, validation and others. 

 P 

CSV 2 RDF15 is another fully compliant imple-
mentation of the CSVW specifications for the 
uplift of CSV data into RDF. 

 P 

Tarql16 is a mapping language based on 
SPARQL CONSTRUCT queries to convert CSV 
datasets into RDF.  

 P 

Vertere-RDF17 is a mapping language that uses 
a turtle syntax template file to define how CSV 
data should be represented in RDF. 

 P 

 

The next section presents a framework that allows for a more 
detailed comparison of the tools presented in this section. 

3. COMPARING THE STATE-OF-THE-
ART IN CSV UPLIFT 
In this section, we introduce a comparison framework to evaluate 
the state-of-the-art in CSV uplift, which was presented in Section 
2. In [9], a comparison framework to evaluate relational databases 
to RDF tools on a feature-by-feature basis was proposed. We have 
adapted these features into the CSV uplift context, and propose 2 
new features. One feature specific for CSV data: filtering; and a 
second important feature for the uplift process: reusability. The 

 
11 https://github.com/clarkparsia/csv2rdf 
12 https://github.com/ruby-rdf/rdf-tabular 
13 https://www.w3.org/TR/tabular-data-model/ 
14 https://www.w3.org/TR/tabular-metadata/ 
15 https://github.com/theodi/csv2rdf 
16 https://github.com/tarql/tarql 
17 https://github.com/mmmmmrob/Vertere-RDF 

features are enumerated as follows; with new features annotated 
with (N): 

• F1: M:N Relationships. A CSV dataset may contain col-
umn-related information. In this case, two columns are 
mapped as resources. An uplift tool should support the defi-
nition of relationships between resources. 

• F2: Additional Data. In some cases, it is necessary to pro-
vide additional information about resources or the RDF data 
that will be generated (e.g. provenance information). This 
feature allows the definition of new additional data during 
the uplift process. 

• F3: Select. A dataset may contain attributes that should not 
be a part of the RDF representation. Regarding CSV data, 
this feature allows the selection of columns to be converted 
into RDF. 

• F4: Filter (N). A dataset may contain invalid information or 
specific information that should not be part of the RDF rep-
resentation. A mapping language should support the defini-
tion of filters to decide whether particular information is val-
id to the RDF representation. For relational databases, this 
feature is available through SQL queries with a WHERE 
clause (specifying conditions). R2RML, for instance, pre-
scribes that Term Maps applied on a NULL value do not 
generate an RDF term. In other words, for R2RML, a NULL 
value is an indicator that no information should be generated. 

• F5: Literal to URI. This feature allows the transformation of 
literals into valid URI’s for the RDF representation. For ex-
ample, a dataset may contain a literal for an ISSN number 
that needs to be transformed into a valid URI. 

• F6: Vocabulary Reuse. The vocabulary used in an RDF 
dataset can be created, generated automatically based on the 
source data, or existing vocabularies can be reused when de-
fining the RDF representation. This feature allows the reuse 
of existing vocabularies. 

• F7: Transformation Functions. Some attributes may re-
quire a different representation in RDF (e.g. different unit 
measurements). Data transformation functions allow data to 
be manipulated and transformed before generating RDF tri-
ples. 

• F8: Datatypes. CSV data does not contain data types. Every 
value in a CSV file is of type string. This feature allows the 
attribution of XML datatypes to attributes when mapping da-
ta into RDF. 

• F9: Named Graphs. Named graphs are RDF datasets identi-
fied using an URI [11]. Applications to uplift data to RDF 
should support the conversion into a particular named graph.  

• F10: Blank Nodes. Blank nodes are RDF statements with no 
RDF URI reference [11]. This feature allows the generation 
of blank nodes. 

• F11: Reusability (N). This feature allows the serialization of 
the uplift process for further reuse. 

To evaluate the tools presented in Table 1, we analyzed papers, 
documentation and tested a working implementation against the 
features defined in the comparison framework. In other words, we 
used the information and implementation available to define a 
simple uplift process covering the feature. In the analysis of F1, 
for example, we would examine the paper, documentation and 
execute the tool trying to define the mapping of two related col-
umns.  



We note that we were unable to evaluate xR2RML. The mapping 
language has support for multiple data formats, but the available 
implementation only supports relational and NoSQL databases. 

Our comparison framework applied to CSV uplift tools can be 
seen in Table 2. 

Table 2: Comparison summary for the state-of-the-art in CSV uplift. 

 

P = full support   (P) = partial support   Ò = no support

3.1 Discussion 
In this section we discuss the state-of-the-art in CSV uplift using 
our comparison framework. The discussion is structured accord-
ing to the features. In general, if an uplift tool is not mentioned, it 
means that the tool supports the feature.  
• F1 M:N Relationships. DataOps does not have support for 

this feature. OpenRefine supports this feature by creating a 
new IRI with an existing IRI value, as it is not possible to se-
lect existing resources. DataLift has support for this feature 
but it can be very complex to redefine the RDF dataset after 
the direct mapping process. Top Braid Composer has support 
through SPARQL CONSTRUCT queries. Overall, this fea-
ture is supported by most tools but some offer more amena-
ble ways to define M:N relationships, as with RML, where 
mapping definitions may have references to other mapping 
definition.  

• F2 Additional Data. Vertere-RDF and DataOps have no 
support for this feature. DataOps allows one to define predi-
cates but subjects have to come from the dataset. As with F1, 
it might be complex to use this feature with some tools, for 
example, in OpenRefine, it is necessary to define nodes, 
types, predicates and values manually using a web interface. 

• F3 Select. All tools analyzed have support for the selection 
of attributes that should be converted into RDF.  

• F4 Filter. RML supports filters depending on the data for-
mat, so it is possible to use filters based on underlying tech-
nology. XPath is used for XML, for example. For CSV data, 
RML does not support filters, as there is no such underlying 
technology. SML, DataOps, CSV2RDF and OpenRefine 
have no support for filters when applied to CSV datasets. 
KR2RML can be used for data cleaning and data manipula-
tion. Hence, filters can be applied by the use of transfor-
mation functions. DataLift supports this feature using 
SPARQL CONSTRUCT queries. Virtuoso uploads data into 

a relational database first and then applies mappings to con-
vert it into RDF, where SQL queries with WHERE state-
ments can be used to support this feature. RDF-Tabular and 
csv2rdf have partial support. For example, it is possible to 
apply regular expression to string types, other validation are 
also available for other data types, but it does not cover other 
filter options, such as comparing or combining different val-
ues from the dataset. Vertere-RDF also has partial support 
using regular expressions. Tarql supports this feature partial-
ly by defining a filter to skip rows. Note that all the values in 
the row will be skipped. A bad row is defined using 
SPARQL filters. For example, if an attribute has a minimum 
value of 10 in the RDF representation, this filter can be ap-
plied FILTER (?value >= 10). Generally, most tools 
that support this feature rely on other technologies, such as 
SPARQL CONSTRUCT queries or regular expressions. 

• F5 Literal to URI. This feature is supported by all applica-
tions, but it can be complex to define it using some tools. For 
example, in Datalift, you need to select an option for such 
transformation. Inside this option, it is necessary to define 
the dataset, options for reference data and the data to be mod-
ified. RML, as a R2RML extension, on the other hand, has a 
simpler approach where a template Term Map can be used to 
define an URI. 

• F6 Vocabulary Reuse. All analyzed tools have support for 
the reuse of RDF vocabularies and OWL ontologies. 

• F7 Transformation Functions. As with F4, RML has sup-
port for some transformation function depending on the un-
derlying technology used for data processing. No underlying 
technology is available when converting CSV data. There-
fore, transformation functions are not supported for this data 
format. SML and Vertere-RDF have partial support for func-
tions, as custom functions are not supported without extend-
ing the code. KR2RML have support for user-defined func-
tions as Python scripts. DataOps, CSV2RDF, Tarql have no 

 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 
DataLift P P P P P P (P) P P P Ò 

Virtuoso P P P P P P (P) P P P (P) 
TopBraid Composer Maestro Edition P P P P P P P P (P) P (P) 

DataOps Ò Ò P Ò P P Ò (P) Ò Ò Ò 

OpenRefine P P P Ò P P P P Ò P Ò 

KR2RML P P P P P P P P P P (P) 
RML P P P Ò P P Ò P Ò P P 

SML P P P Ò P P Ò P Ò P P 

CSV2RDF P P P Ò P P Ò P Ò P P 

RDF-Tabular P P P (P) P P (P) P Ò P P 

CSV 2 RDF P P P (P) P P (P) P Ò P P 

Tarql P P P (P) P P (P) P Ò P P 

Vertere-RDF P Ò P Ò P P (P) P Ò P P 



support for transformation functions. DataLift has partial 
support relying on SPARQL construct queries for this fea-
ture. Virtuoso relies on SQL queries for this feature as the 
data is imported into a relational database in the first step of 
the uplift process. Tarql supports some transformation func-
tions through SPARQL queries. Most tools with additional 
software have support for transformation functions, such as 
OpenRefine and some mapping languages have pre-defined 
functions. KR2RML is the only tool with support for user-
defined transformation functions as part of the mapping lan-
guage. 

• F8 Datatypes. DataOps has partial support as it is possible to 
define only basic XML datatypes, for example, 
xsd:dateTimeStamp and others are not supported. All 
other tools have support for XML datatypes. Together with 
XML datatypes, some tools allow the definition of custom 
datatypes, such as OpenRefine.  

• F9 Named Graphs. The specifications for RML, SML and 
xR2RML have support for named graphs but their implemen-
tations do not. Top Braid Composer Maestro Edition sup-
ports this feature by exporting RDF data into a specific exist-
ing named graph. KR2RML allows one to publish data into a 
specific named graph or existing ones inside their tool. 
KR2RML is the only mapping language to support this fea-
ture.  

• F10 Blank Nodes. DataOps is the only tool that does not 
support this feature. In some applications the definition of 
blank nodes is straightforward such as RML and SML. How-
ever, using DataLift or Top Braid Composer the definition of 
blank nodes is more complex with the use of SPARQL con-
struct queries to refine the dataset. Only one tool has no sup-
port for this feature, as most RDF datasets would rely on 
blank nodes to represent different data structures.  

• F11 Reusability. KR2RML allows the serialization of the 
process as an extended R2RML mapping. In this sense, the 
mapping contains one extra predicate with structured infor-
mation as a string, making it difficult to create or modify the 
mapping without their editor. Furthermore, as shown in F7, 
transformation functions are not reusable. Virtuoso and Top 
Braid Composer support this feature partially as parts of the 
process, such as SPIN functions for Top Braid Composer 
Maestro Edition, are reusable but not the whole process. 
DataLift and OpenRefine do not support the serialization of 
the uplift process. All mapping languages are reusable, as it 
is possible to use the same mapping file multiple times with 
new or updated data. KR2RML mapping language serializes 
the whole process applied to the input data as a string, what 
makes some parts of the mapping not reusable and the whole 
process dependent on their editor. 

 
KR2RML is the tool with support for most features, with partial 
support for reusability. As mentioned before, the whole process 
can be serialized and reused using their editor, but several prob-
lems can be observed with the mapping. First, to reuse the map-
ping, you have to load the data again into the editor. Second, the 
creation of mappings is difficult without their editor as structured 
information is stored as a string, requiring parsing of the mapping 
and the string. Finally, data transformation functions are not reus-
able. It is not possible to use the same function, as functions in 
KR2RML do not have names or parameters. In this sense, a func-

tion update becomes difficult and prone to error  – what we will 
show in Section 5.  
The comparison framework allows the discussion of features 
needed for the uplift of data into RDF. In this paper we focus on 
tools with support for CSV files. A key feature analyzed by our 
comparison framework is transformation functions. As shown in 
our discussion, there is no underlying technology for CSV data 
and current approaches are not reusable or traceable. Current ap-
proaches rely on pre/post-processing techniques or on converting 
the data into another format when data transformation is needed. 
In this paper, we define a method to allow data transformation 
functions to be incorporated into current uplift mapping lan-
guages. The analysis and definition of approaches to deal with 
other problems identifiable by the use of our comparison frame-
work is left as future work. In the next section, we present FunUL, 
a method to incorporate functions as part of uplift mapping lan-
guages. 

4. FunUL - FUNCTIONS INTO UPLIFT 
MAPPING LANGUAGES 
In this section, we describe FunUL, a method to incorporate data 
transformation by the way of functions into uplift mapping lan-
guages. Our method defines functions to be part of the mapping in 
a generic, reusable and amenable way. These functions can be 
used to capture both domain knowledge (e.g., transforming units) 
and other – more syntactic – data manipulation tasks (e.g., trans-
forming values to create valid URIs). In this paper, we elaborate 
upon previous work presented in [4].  

The definition of functions as part of the mapping allows data 
transformation and uplift into RDF to happen in a unified step. 
Furthermore, functions are defined independently of the data 
mapping, being possible to call the same function multiple times 
with different parameters. These characteristics make the uplift 
process into RDF more traceable, transparent and reusable. In 
addition, because functions are part of the mapping, it is possible 
to annotate them with provenance information, such as creator, 
creation date, and other information, such as descriptions of the 
transformation defined in the function and others. It is also possi-
ble to discern that a certain RDF value was generated by a certain 
function. Moreover, functions can be shared between different 
mappings.  

In our method, functions have a name and a body. Each function 
declaration must have one function name and one function body. 
Function names are unique. Function bodies define a function 
using a standardized programming language. In this sense, a func-
tion body has a signature and a set of parameters. A function body 
can perform data transformation and data validation tasks. The 
definition of parameters is optional. Every function defined in a 
function body must have a return statement. It is possible to return 
NULL or empty strings. An empty string should not generate any 
triples, as the semantic value of an empty string is NULL in CSV 
data format [18]. For example, as mentioned in Section 1, a func-
tion can be defined to transform years in BCE/CE notation from a 
dataset to use the XML data type xsd:gYear. We could define 
the name of this function as yearTransformation, the func-
tion body would have the implementation needed in a standard 
programming language.  

The method also includes notions for calling and passing parame-
ters to functions. A function call refers to a function. Parameters 
are optional and can be passed as references to values from the 
input data or as fixed values. The possibility of passing fixed val-



ues allows the declaration of generic functions. For example, to 
call the function yearTransformation, there would be a 
reference to the function and a list of possible parameters (see 
Section 5.2). 

The method does not rely on a specific implementation or editor. 
Functions in our method can perform complex data transfor-
mation, are reusable, as they can be called multiple times, and 
work with any data type. 

4.1 Method Implementation 
Our proof-of-concept extends R2RML’s vocabulary and RML’s 
engine by introducing construct for describing functions, function 
calls and parameter bindings. A specification18 and an implemen-
tation19 are available.  

Figure 1 shows an extended diagram with properties of term 
maps from R2RML and our method definitions (prefixed “rrf”). 
The class rrf:Function defines a function. A function defi-
nition has two properties defining the name, 
rrf:functionName, and the function body, 
rrf:functionBody. A function can be called using the prop-
erty rrf:functionCall. This property refers to a 
rrf:Function using the property rr:function. Parameters 
are defined using rrf:parameterBindings. Examples of 
function definitions and function calls can be seen in Section 5.2. 

 

 
Figure 1. Properties of term maps based on the image from [5] 

 

In RML – as an R2RML extension – a Term Map generates RDF 
terms. An RDF term can be an IRI, a blank node or a literal. Term 
Maps can be values of a constant, a column or a template. To 
implement FunUL, we introduce a Function Valued Term Map 
(see [5]). A function call generates an RDF Term based on the 
function return statement defined in the function body. For exam-
ple, a function can be defined to convert years in BCE/CE nota-
tion to use xsd:gYear XML data type. A function call would 
refer to this function with a parameter value, the year. The return 
statement of this function would be used to generate a literal. 

Analyzing the features from our comparison framework defined in 
Section 3, this implementation has support for the features F4 
Filters and F7 Transformation Functions. F4 is supported by the 
use of functions. By extending RML, feature F9 Named Graphs, 
is still not supported by our implementation. We note that RML’s 
specification, by extending R2RML, supports named graphs. 

 
18 https://www.scss.tcd.ie/~crottija/funul/ 
19 https://github.com/CNGL-repo/RMLProcessor 

Therefore, it would be possible to implement named graphs in a 
RML processor. 

The implementation loads functions using Java’s Nashorn20 Ja-
vaScript engine available in the javax.script package. We have 
chosen JavaScript for this implementation (even though functions 
in our method could be defined in any programming language) 
because it is freely available, widely used and its specification is 
an ISO standard. Any errors loading or executing the function are 
reported back to the user. Currently there is no support for moni-
toring functions, relying on Nashorn and the Java Runtime Envi-
ronment to handle any problems related to memory management 
and correctness of the code.  

In our implementation, functions can be used for predicates 
(rr:predicateMap) or objects (rr:objectMap). By ex-
tending the implementation, functions could also be applied to 
subjects (rr:subjectMap). Because we represent functions 
using RDF, these can be shared. Furthermore, by extending 
RML’s engine, functions defined using our implementation can be 
applied and reused for other input formats supported by RML.  

5. EVALUATION 
To evaluate the implementation, we compared our method with 
that of KR2RML using a real world Digital Humanities case 
study. This comparison evaluated how well both approaches could 
implement the required mappings.  

5.1 The dataset 
The dataset used in this evaluation comes from a project called 
Seshat: Global History Databank [19]. This international project 
led by the Evolution Institute (USA) and the University of Oxford 
is developing a knowledge base to describe human societies over 
the last 15,000 years as a set of time series. This knowledge base 
is structured according to a social sciences “codebook” or schema 
specified by an editorial board of domain experts in structured 
natural language and re-engineered into an OWL ontology by 
knowledge engineers at Trinity College Dublin [1]. The codebook 
specifies over 1,000 data variables of interest cover topics such as 
social complexity measures, warfare, technology, ritual and so on. 
Two main units of data collection and analysis are specified – the 
Polity (society) and the Natural Geographical Area (NGA) but 22 
distinct units of collection are currently used and this number 
continues to expand as the project matures. Each variable is not 
modeled as a simple value or object instance and is subject to 
uncertainty, temporal and geographical bounds for its validity. All 
of this must be explicitly modeled in the final OWL representa-
tion. 
The initial data collection effort (2011 – 2016) used a wiki struc-
tured according to the codebook. The natural language codebook 
or a sub-set was used as a template for each wiki page to be com-
pleted describing a single unit of analysis, typically a temporally 
bounded Polity (human society). Within Seshat there is a hierar-
chical distribution of effort between teams of research assistants 
(typically about 10-15 active at any one time in 3-5 data collection 
locations) who manually research and enter data, Seshat research-
ers who evolve the codebook and direct the data collection effort 
to particular geo-temporal entities based (typically 20 qualified to 
at least PhD level) and over 60 external domain experts who vali-
date data (drawn from the worldwide pool of domain experts, 
typically full professors). At present the dataset contains over 

 
20 https://blogs.oracle.com/nashorn/ 



120,000 expert-curated “facts” but each one of these is qualified 
in terms of uncertainty, disagreement, academic sources so that it 
may require 100 triples to describe it fully. The current collection 
effort is focused on an initial 30 NGAs distributed across the 
globe to maximize the distribution of societies examined. These 
facts form time series at a sample rate of 100 years that describe 
all human societies in the 30 NGAs from approximately 10,000 
BC to the industrial revolution. The current wiki MySQL DB is 
over 4GB, with 1081 pages describing units of collection such as 
Polities and NGAs. Each page typically has over 1000 variables 
describing the Polity.  
To facilitate data collection and analysis the pages use structured 
natural language with a well-defined syntax for describing varia-
bles, values, uncertainty, temporal bounds and annotations. In 
May 2014, Trinity College Dublin developed a web scraper tool 
that is aware of this syntax and can either validate a page to detect 
syntactic errors (for use by the RAs during data entry) or dump 
the page as a TSV file. A bulk export mode is also available 
whereby the entire wiki or scoped sub-sets can be dumped into a 
TSV file. The TSV files are then used by statisticians to model 
human societies based on the data in the wiki. Although not de-
signed with this purpose in mind, these TSV files can provide a 
starting point for uplifting the wiki to RDF based on the new 
Seshat OWL Ontology. 

5.2 Our approach 
One of the issues in the uplift of the Seshat dataset into RDF is 
that predicates in the data differ from the predicates defined in the 
OWL ontology. Another issue was already mentioned in Section 
1. Years in the dataset follow a BCE/CE notation, but the ontolo-
gy uses the XML datatype xsd:gYear. Another example of 
transformation would be the use of a split function. In the dataset, 
some values are stored in one attribute, but the ontology defines 
different predicates for each part of the value. Listing 1 shows a 
fragment of the dataset. 
NGA,Polity,Variable,Value From,Value To,Date From,Date To 
Latium,ItRomPr,RA,Edward A L Turner,,, 
Latium,ItRomPr,Expert,Garrett Fagan,,, 
Latium,ItRomPr,Peak Date,117 CE,,, 
Latium,ItRomPr,Duration,31 BCE - 284 CE,,, 
Latium,ItRomPr,Polity territory,4500000,,14CE, 

Listing 1: Fragment of the Seshat dataset 

Transformation functions can be defined to overcome these is-
sues. “RA” and “Expert” have specific predicates so it is possible 
to use a function to evaluate if it the triple should be generated. 
The function to do so, using our method, is defined in Listing 2. 
This function has three parameters and it returns the value only if 
the first two parameters are equals. For example, a mapping to 
generate the predicate seshat:ra for the Seshat dataset, would 
call this function with parameters rml:reference "Varia-
ble", rr:constant "RA" and rml:reference "Value 
From". As mentioned before, the semantic value of an empty 
string is NULL. In this sense, the triple will be generated only 
when the attribute “Variable” has value “RA”.  
<#Check> 
 rrf:functionName "check" ; 
 rrf:functionBody """  
     function check(var1, var2, value) { 
       if(var1 == var2) {  
          return value;  
       }  
       return ""; 
     } 
""" ; . 

Listing 2: Function to check if a value should be generated 

For the attribute “Peak Date”, the value needs to be transformed to 
use the XML datatype xsd:gYear. This function is shown in 
Listing 3. As functions are resources in the same RDF file, it is 
possible to reuse it many times. Note that the mapping will define 
the datatype xsd:gYear - as it is shown in Listing 6 with the 
use of the predicate rr:datatype. 
<#YearTransformation> 
 rrf:functionName "yearTransformation" ; 
 rrf:functionBody """  
     function yearTransformation (year) { 
        year = year.trim();  
        if(year.indexOf("BCE") > -1){  
            return String(parseInt("-" + 
year.replace("BCE", "")) + 1); 
        } 
        return year.replace("CE", "").trim(); 
     } 
""" ; . 

Listing 3: Function to transform the year  

For the attribute “Duration”, one would need to split the value 
first and then apply the data transformation. As it is shown in 
Listing 4, in our implementation, it is possible to call other func-
tions inside a function. This function only applies the year trans-
formation function for a specific attribute, in this case “Duration”. 
For the last line of the dataset showed in Listing 1, we reuse the 
function used for the attribute “Peak Date”. Note that this function 
deals with blank spaces as well – in the dataset, not all values are 
separated by spaces. For example, we have the value “117 CE” 
with a space, and then “14CE”. 
<#SplitAndYearTransformation> 
 rrf:functionName "splitAndYearTransformation" ; 
 rrf:functionBody """  
    function  
       split(variable, value, check, index, separator) { 
          if(variable == check) {  
          var str = value.split(separator)[index].trim(); 
          return yearTransformation(str);  
        } 
        return ""; 
     } 
""" ; . 

Listing 4: Function to split a value and transform the year  

Listing 5 shows how to call a function using our method. This 
function has five parameters, two parameters come from the da-
taset using rml:reference, the others are constants, 
rr:constant. In this sense, the function called is generic and 
could be reused passing other parameters.  
<#DurationBeginning> 
 rml:logicalSource [  
    rml:source "data.csv";  
    rml:referenceFormulation ql:CSV  
 ]; 
 rr:subjectMap [  
    rr:termType rr:BlankNode;  
    rr:class owltime:DateTimeDescription  
 ]; 
 rr:predicateObjectMap [ 
    rr:predicate owltime:year; 
    rr:objectMap [  
      rr:termType rr:Literal; 
      rr:datatype xsd:gYear; 
      rrf:functionCall [ 
        rrf:function <#SplitAndYearTransformation> ;  
        rrf:parameterBindings (  
          [ rml:reference "Variable" ] 
          [ rml:reference "Value From" ] 
          [ rr:constant "Duration" ] 
          [ rr:constant "0" ] 
          [ rr:constant "-" ] 
       ) ; 
      ] ; 
    ]; 



 ]. 

Listing 5: Calling the function yearTransformation 

The output of the uplift process using these functions applied to 
the dataset showed in Listing 1 can be in Listing 6. 
@base         <http://dacura.cs.tcd.ie/data/seshat> . 
@prefix xsd:  <http://www.w3.org/2001/XMLSchema#> . 
@prefix time: <http://www.w3.org/2006/time#> . 
<seshat/ItRomPr> <#RA> "Edward A L Turner" . 
<seshat/ItRomPr> <#Expert> "Garrett Fagan" . 
<seshat/ItRomPr> <#peakDate> _:lLA98YAitY . 
_:lLA98YAitY a <#TemporalInstantVariable> . 
_:lLA98YAitY <#definiteValue> _:TERpMusPG9 . 
_:TERpMusPG9 a <#Instant> . 
_:TERpMusPG9 <#atDateTime> _:P3qgpVj36x . 
_:P3qgpVj36x a time:DateTimeDescription . 
_:P3qgpVj36x time:year "117"^^xsd:gYear . 
_:P3qgpVj36x time:unitType time:unitYear . 
<seshat/ItRomPr> <#duration> _:awMl8Sww0N . 
_:awMl8Sww0N a <#DurationVariable> . 
_:awMl8Sww0N <#definiteValue> _:HzsjbPE9RU . 
_:HzsjbPE9RU a <#Interval> . 
_:HzsjbPE9RU <#hasBeginning> _:wUMzVkWduq . 
_:wUMzVkWduq a time:DateTimeDescription . 
_:wUMzVkWduq time:unitType time:unitYear . 
_:wUMzVkWduq time:year "-30"^^xsd:gYear . 
_:HzsjbPE9RU <#hasEnd> _:B1hn2AyEdl . 
_:B1hn2AyEdl a time:DateTimeDescription . 
_:B1hn2AyEdl time:year "284"^^xsd:gYear . 
_:B1hn2AyEdl time:unitType time:unitYear . 
<seshat/ItRomPr> <#territory> _:IL9hDo2Izd . 
_:IL9hDo2Izd a <#TerritoryVariable> . 
_:IL9hDo2Izd a <#Instant> . 
_:IL9hDo2Izd <#definiteValue> "4500000"^^xsd:unsignedLong 
. 
_:IL9hDo2Izd <#atDateTime> _:kzsZr2yrBX . 
_:kzsZr2yrBX a time:DateTimeDescription . 
_:kzsZr2yrBX time:unitType time:unitYear . 
_:kzsZr2yrBX time:year "14"^^xsd:gYear . 

Listing 6: RDF output 

5.3 KR2RML’s approach 
The same functions defined using our method could be created 
using KR2RML. For this comparison, we will use KR2RML’s 
editor to define a function similar to the one presented in Listing 
2. Functions in KR2RML are defined in Python. This function 
generates a specific predicate when the attribute “Variable” has 
the value “RA”. The function exported as a KR2RML mapping is 
shown in Listing 7. One can see that – next to the RDF file – 
structured information is contained as a literal in the file. In 
KR2RML, three things need to be parsed: the RDF file, the struc-
tured information in the literal, and finally the functions in Py-
thon. 
@prefix km-dev: <http://isi.edu/integration/karma/dev#> .  
_:node1afgfa0n8x1 a km-dev:R2RMLMapping ;  
  ... 
  km-dev:hasWorksheetHistory """[{  
  ... 
  {              
    \"name\": \"transformationCode\",              
    \"type\": \"other\",              
    \"value\": \"return getValue(\\\"Value From\\\") if 
getValue(\\\"Variable\\\") == \\\"RA\\\" else \\\"\\\"\"          
  },  
  ... 
}]""" . 

Listing 7: Function in a KR2RML mapping 

5.4 Discussion 
In both approaches data transformation functions can be defined 
within mapping definitions, but KR2RML’s functions are not 
reusable. It is possible to reapply a function by accessing all used 
functions using the editor, but is it not possible to call the same 
function multiple times. In this sense, a function needs to be im-

plemented for every possible parameter value. In contrast, func-
tions in our method can be reused many times with different pa-
rameters. More specifically, for example, in our method we call 
the function defined in Listing 2 twice, with different parameters. 
Firstly, with the constant parameter “RA” to create a specific 
predicate. The same function is called a second time to define the 
predicate for the value “Expert”. In KR2RML, another function, 
similar to the one defined in Listing 7, needs to be defined for the 
second case, changing the value “RA” to “Expert”. As mentioned 
before, this characteristic makes function updates complex and 
prone to error. Moreover, we note that, for our use case and many 
others, transformations functions would be reused in the mapping.  
Other problems with functions in KR2RML include, as it can be 
seen in Listing 7, the definition of other structured information 
together with functions as strings. This requires the mapping file 
to be parsed three times. Furthermore, the mapping file becomes 
complex and the mapping language heavily dependent on their 
editor.  

6. CONCLUSION 
In this paper, we proposed a comparison framework to evaluate 
uplift tools applied to CSV datasets. Relying on one of the fea-
tures – transformation functions – evaluated by our framework, 
we proposed a method to incorporate functions into uplift map-
ping languages. The general approach for data manipulation dur-
ing the uplift process to convert CSV data into RDF relies on 
converting the source data into another format or on pre/post-
processing techniques. In contrast, functions in our method are 
defined as part of the mapping, integrating transformation func-
tions and mapping definitions. This makes the uplift process more 
transparent and traceable. We showed an implementation of our 
method by extending R2RML’s vocabulary and RML’s engine. 
Our evaluation applied the method to a real world use case and 
compared the use of functions as part of the mapping to 
KR2RML, the only other uplift tool identified to have this feature. 
Our evaluation showed that even though the whole process can be 
serialized using KR2RML, their functions are not reusable, mak-
ing function updates complex and prone to error. Furthermore, 
KR2RML’s mappings are stored as strings, what makes the map-
ping file complex (i.e., parsing the RDF file and parsing the 
strings that relate fields to functions), relying heavily on their 
editor and making the creation of mappings difficult using other 
tools. In contrast, our method and implementation define func-
tions as resources that can be used multiple times, with different 
parameters – what facilitates function updates – and it does not 
rely on a specific editor. 
Future work includes extending the method to better describe 
functions; implementing the method by either extending another 
mapping language, as we did with RML, or implementing our 
own mapping language; investigating the use of other programing 
languages to define functions as part of the mapping; and addi-
tional experiments and use cases, such as the use of functions to 
generate provenance information during the uplift process (see 
[7]). Future work also includes the analysis of other features cov-
ered by our comparison framework and ways of dealing with such 
problems.  
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