
FunUL: A Method to Incorporate Functions into Uplift
Mapping Languages

Ademar Crotti Junior
Trinity College Dublin

College Green
Dublin 2

crottija@scss.tcd.ie

Rob Brennan
ADAPT Centre

Trinity College Dublin
College Green

Dublin 2
rob.brennan@scss.tcd.ie

Christophe Debruyne
ADAPT Centre

Trinity College Dublin
College Green

Dublin 2
debruync@scss.tcd.ie

Declan O’Sullivan
ADAPT Centre

Trinity College Dublin
College Green

Dublin 2
declan.osullivan@scss.tcd.ie

ABSTRACT
Typically tools that map non-RDF data into RDF format rely on
the technology native to the source of the data when manipulation
of data during the mapping is required. Depending on the data
format, data manipulation can be performed using underlying
technology, such as RDBMS for relational databases or XPath for
XML. For CSV/Tabular data there is no such underlying technol-
ogy, and instead transforming the source data into another format
or pre/post-processing techniques are used. As part of this paper,
we present a comparison framework for the state-of-the-art in
converting CSV/Tabular data into RDF, where a key feature eval-
uated is transformation functions. We argue that existing ap-
proaches for transformation functions in such tools are complex –
in number of steps and tools involved – and therefore not as trace-
able and transparent as one would like. We tackle these problems
by defining a more generic, usable and amenable method to in-
corporate functions into uplift mapping languages, called FunUL.
As proof of concept, we show an implementation of our method.
Moreover, by using a real world Digital Humanities case study,
we compare our approach with other approaches that we have
identified to include transformation functions as part of the map-
ping for CSV/Tabular data.

Categories and Subject Descriptors
D.2.12 [Interoperability]: Data mapping

E.2 [Data Storage Representations]: Linked representations

General Terms
Algorithms, Design, Languages.

Keywords
Linked Data, Mapping, Data Manipulation.

1. INTRODUCTION
Significant amounts of data on the Web still resides in formats
other than the Resource Description Framework1 (RDF) data
model, currently being advocated by the W3C community as the
means to enable data exchange on the Web, and a variety of inno-
vative applications, such as data integration and others [11].
CSV/Tabular data (even though the delimiter is different, we refer
to such data as CSV data for the rest of this paper) is commonly
used for data exchange on the Web, but the semantics of the data
are not made explicit in this data format. In contrast, RDF pro-
vides one means to publish data and its meaning.

The process of converting data into RDF is called uplift [3]. As
several solutions have been proposed to uplift CSV data into
RDF, we have developed a framework to compare these. For this
comparison framework, we have drawn inspiration from a similar
framework to evaluate the mapping of relational databases into
RDF presented in [9]. We have applied our comparison frame-
work to those state-of-start uplift tools that have support for CSV
data.

One of the key features evaluated in our framework is the support
for transformation functions, as data manipulation is typically
needed during the uplift process [14]. These functions can be used
to capture both domain knowledge (e.g., transforming units) and
other, more syntactic, data manipulation tasks (e.g., transforming
values to create valid URIs). For some data formats this can be
more-or-less straightforward. For example, with uplift tools for
relational databases, such as R2RML [5] implementations, one
can rely on SQL to provide the necessary transformation func-
tions, whereas with RML [8], an R2RML extension with support
for multiple data formats, XPath is used to transform XML data
and JSONPath is used for JSON data. In many cases, however,
relying on underlying technology2 to undertake transformation
might not be possible [6]. One such case is for CSV data, where
there is no such underlying technology. The general approach to
manipulate CSV data is the transformation of the source data into
another format or the use of pre/post-processing techniques. The

1 http://www.w3.org/TR/rdf11-concepts/
2 We define “underlying technology” in this paper as technology

native to the source of the data.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
iiWAS2013, 2-4 December, 2013, Vienna, Austria.
Copyright 2013 ACM 978-1-4503-2113-6/13/12 …$15.00.

Ademar Crotti Junior, Christophe Debruyne, Rob Brennan, and Declan O'Sullivan. Funul: a method to incorporate functions into uplift mapping languages. In Gabriele Anderst-Kotsis, editor, Proceedings of the 18th International Conference on Information Integration and Web-based Applications and Services, iiWAS 2016, Singapore, November 28-30, 2016, pages 267–275. ACM, 2016�

use of these techniques, however, increases complexity – in rela-
tion to number of steps and tools involved. Furthermore, it renders
the data process pipeline less transparent and traceable.

One example of data transformation is the conversion of years. A
historical dataset might use BCE/CE notation to refer to years, but
an RDF representation of this data may use the XML data type
xsd:gYear (XML Schema specification3) for representing years
in a Gregorian calendar. The year “31 BCE” in the dataset would
thus need to be transformed into "-30"^^xsd:gYear.

To overcome these problems, we have, in previous work [4], pro-
posed a method to include data transformations by the way of
functions into Uplift Mapping Languages4 in a generic, reusable
and amenable way, here defined as FunUL. Our method integrates
functions and mapping definitions. This allows data transfor-
mation and uplift of data into RDF to happen in a unified step. In
addition, function definitions are reusable, being possible to call
the same function multiple times with different parameters; and
traceable. It is also possible to annotate them with provenance
information, descriptions of the transformations defined and oth-
ers. Moreover, functions can be applied to any data format.

In this paper we describe how we have implemented the proposed
method by extending R2RML’s vocabulary and RML’s engine.
We present an evaluation of our method by comparing, using a
real world dataset, our approach with the only other approach that
we have identified to include transformation functions in the
mapping (that is KR2RML [16]).

The main contributions of this paper can be summarized as fol-
lows:

• a comparison framework for evaluating uplift tools in the pro-
cess of converting CSV data into RDF;

• an evaluation of the state-of-the-art in CSV uplift tools using the
proposed framework;

• a method to incorporate functions into uplift mapping languages
and an implementation;

• evaluation of the method by comparing our approach to
KR2RML.

The remainder of this paper is organized as follows: in Section 2
we present the state-of-the-art in CSV uplift. Section 3 shows a
comparison and discussion of tools presented in Section 2. Section
4 presents FunUL, a method to incorporate functions into map-
ping languages and an implementation of the method. The evalua-
tion is presented in Section 5. Section 6 concludes the paper.

2. STATE-OF-THE-ART IN CSV UPLIFT
Several solutions have been developed to uplift CSV data into
RDF. In this section, we briefly introduce some of the tools in the
state of the art that have support for CSV.

Uplift techniques can be described at a high level as to the type of
approach that they support: mapping languages and additional
software. Mapping Languages (ML) are declarative languages
used to express customized mappings defining how non-RDF data

3 https://www.w3.org/TR/xmlschema-2/
4 We adapt the definition of Uplift Mapping Languages from [1]

and define it as declarative languages for mapping non-RDF da-
ta sources into RDF vocabularies and OWL ontologies.

should be represented in RDF. An engine is usually associated
with a mapping language, being a software processor that uses the
mapping file and the input data to generate an RDF dataset. Addi-
tional Software (AS) support represents applications that have an
interface or API where it is possible to convert data into RDF.
Some uplift tools have support for both approaches. Table 1
shows a brief description of each tool and the support provided.

Table 1: State-of-the-Art in CSV Uplift.

Description AS ML

DataLift [15] is a tool where one needs to con-
vert data into raw RDF as a first step. After that,
it is possible to explore and transform the RDF
representation.

P

The Virtuoso Universal Server5 has an exten-
sion where CSV datasets can be imported into
relational databases. After loading the data, map-
ping into RDF can be done using a wizard or
R2RML mappings.

P P

TopBraid Composer Maestro Edition6 con-
verts data into RDF with no customizations in a
first step. A second step transforms the RDF data
using SPARQL7 queries and SPIN8 rules.

P

DataOps [13] is described as a semantic Any-
thing-to-RDF Extract Transform Load (ETL)
data integration tool. DataOps works in three
main steps. The first step allows one to access
data in different formats. The second allows the
mapping into RDF, where data can be manipu-
lated. Finally, the tool offers options for inter-
linking the RDF dataset with other existing da-
tasets.

P

OpenRefine9 has support for cleaning and trans-
formation functions for many data formats. The
uplift to RDF is available through RDF Refine10,
an extension to OpenRefine, allowing the map-
ping and interlinking of RDF datasets through a
web interface.

P

KR2RML [16] is an extension to the W3C rec-
ommendation R2RML. KR2RML is developed
on top of Karma, a data integration tool with
support for many data formats as input, data
cleaning and transformation functions.

P P

RML [8] is defined as a superset of R2RML, a
W3C recommendation for mapping relational
databases into RDF. RML extends R2RML’s
vocabulary to support a broader set of possible
input data formats, including CSV. RML also has
an additional software tool to define RML map-

P P

5 http://virtuoso.openlinksw.com/
6 http://www.topquadrant.com/
7 https://www.w3.org/TR/sparql11-query/
8 http://spinrdf.org/
9 http://openrefine.org/
10 http://refine.deri.ie

pings, RMLEditor [10].

xR2RML [12], following RML, extends
R2RML’s vocabulary to support the uplift of
various data formats into RDF.

 P

SML [17] currently supports relational databases
and CSV datasets. SML is a mapping language
based on SQL CREATE VIEWS and SPARQL
construct queries.

 P

CSV2RDF11 applies the use of a template file to
determine how one row of the CSV dataset will
be converted to RDF. The template file follows a
Turtle like syntax.

 P

RDF-Tabular12 is an implementation of the
CSVW specifications, a W3C recommendation
for dealing with CSV datasets. In summary, the
W3C CSWV Working group defined a Model for
Tabular Data 13 as an abstract model. This model
also allows the use of metadata through the
Metadata Vocabulary for Tabular Data14. The
metadata provides one ways of annotating tabu-
lar data, defining the structure of this data. To-
gether, these specifications define ways to pro-
cess tabular data for many purposes, such as
conversions, validation and others.

 P

CSV 2 RDF15 is another fully compliant imple-
mentation of the CSVW specifications for the
uplift of CSV data into RDF.

 P

Tarql16 is a mapping language based on
SPARQL CONSTRUCT queries to convert CSV
datasets into RDF.

 P

Vertere-RDF17 is a mapping language that uses
a turtle syntax template file to define how CSV
data should be represented in RDF.

 P

The next section presents a framework that allows for a more
detailed comparison of the tools presented in this section.

3. COMPARING THE STATE-OF-THE-
ART IN CSV UPLIFT
In this section, we introduce a comparison framework to evaluate
the state-of-the-art in CSV uplift, which was presented in Section
2. In [9], a comparison framework to evaluate relational databases
to RDF tools on a feature-by-feature basis was proposed. We have
adapted these features into the CSV uplift context, and propose 2
new features. One feature specific for CSV data: filtering; and a
second important feature for the uplift process: reusability. The

11 https://github.com/clarkparsia/csv2rdf
12 https://github.com/ruby-rdf/rdf-tabular
13 https://www.w3.org/TR/tabular-data-model/
14 https://www.w3.org/TR/tabular-metadata/
15 https://github.com/theodi/csv2rdf
16 https://github.com/tarql/tarql
17 https://github.com/mmmmmrob/Vertere-RDF

features are enumerated as follows; with new features annotated
with (N):

• F1: M:N Relationships. A CSV dataset may contain col-
umn-related information. In this case, two columns are
mapped as resources. An uplift tool should support the defi-
nition of relationships between resources.

• F2: Additional Data. In some cases, it is necessary to pro-
vide additional information about resources or the RDF data
that will be generated (e.g. provenance information). This
feature allows the definition of new additional data during
the uplift process.

• F3: Select. A dataset may contain attributes that should not
be a part of the RDF representation. Regarding CSV data,
this feature allows the selection of columns to be converted
into RDF.

• F4: Filter (N). A dataset may contain invalid information or
specific information that should not be part of the RDF rep-
resentation. A mapping language should support the defini-
tion of filters to decide whether particular information is val-
id to the RDF representation. For relational databases, this
feature is available through SQL queries with a WHERE
clause (specifying conditions). R2RML, for instance, pre-
scribes that Term Maps applied on a NULL value do not
generate an RDF term. In other words, for R2RML, a NULL
value is an indicator that no information should be generated.

• F5: Literal to URI. This feature allows the transformation of
literals into valid URI’s for the RDF representation. For ex-
ample, a dataset may contain a literal for an ISSN number
that needs to be transformed into a valid URI.

• F6: Vocabulary Reuse. The vocabulary used in an RDF
dataset can be created, generated automatically based on the
source data, or existing vocabularies can be reused when de-
fining the RDF representation. This feature allows the reuse
of existing vocabularies.

• F7: Transformation Functions. Some attributes may re-
quire a different representation in RDF (e.g. different unit
measurements). Data transformation functions allow data to
be manipulated and transformed before generating RDF tri-
ples.

• F8: Datatypes. CSV data does not contain data types. Every
value in a CSV file is of type string. This feature allows the
attribution of XML datatypes to attributes when mapping da-
ta into RDF.

• F9: Named Graphs. Named graphs are RDF datasets identi-
fied using an URI [11]. Applications to uplift data to RDF
should support the conversion into a particular named graph.

• F10: Blank Nodes. Blank nodes are RDF statements with no
RDF URI reference [11]. This feature allows the generation
of blank nodes.

• F11: Reusability (N). This feature allows the serialization of
the uplift process for further reuse.

To evaluate the tools presented in Table 1, we analyzed papers,
documentation and tested a working implementation against the
features defined in the comparison framework. In other words, we
used the information and implementation available to define a
simple uplift process covering the feature. In the analysis of F1,
for example, we would examine the paper, documentation and
execute the tool trying to define the mapping of two related col-
umns.

We note that we were unable to evaluate xR2RML. The mapping
language has support for multiple data formats, but the available
implementation only supports relational and NoSQL databases.

Our comparison framework applied to CSV uplift tools can be
seen in Table 2.

Table 2: Comparison summary for the state-of-the-art in CSV uplift.

P = full support (P) = partial support Ò = no support

3.1 Discussion
In this section we discuss the state-of-the-art in CSV uplift using
our comparison framework. The discussion is structured accord-
ing to the features. In general, if an uplift tool is not mentioned, it
means that the tool supports the feature.
• F1 M:N Relationships. DataOps does not have support for

this feature. OpenRefine supports this feature by creating a
new IRI with an existing IRI value, as it is not possible to se-
lect existing resources. DataLift has support for this feature
but it can be very complex to redefine the RDF dataset after
the direct mapping process. Top Braid Composer has support
through SPARQL CONSTRUCT queries. Overall, this fea-
ture is supported by most tools but some offer more amena-
ble ways to define M:N relationships, as with RML, where
mapping definitions may have references to other mapping
definition.

• F2 Additional Data. Vertere-RDF and DataOps have no
support for this feature. DataOps allows one to define predi-
cates but subjects have to come from the dataset. As with F1,
it might be complex to use this feature with some tools, for
example, in OpenRefine, it is necessary to define nodes,
types, predicates and values manually using a web interface.

• F3 Select. All tools analyzed have support for the selection
of attributes that should be converted into RDF.

• F4 Filter. RML supports filters depending on the data for-
mat, so it is possible to use filters based on underlying tech-
nology. XPath is used for XML, for example. For CSV data,
RML does not support filters, as there is no such underlying
technology. SML, DataOps, CSV2RDF and OpenRefine
have no support for filters when applied to CSV datasets.
KR2RML can be used for data cleaning and data manipula-
tion. Hence, filters can be applied by the use of transfor-
mation functions. DataLift supports this feature using
SPARQL CONSTRUCT queries. Virtuoso uploads data into

a relational database first and then applies mappings to con-
vert it into RDF, where SQL queries with WHERE state-
ments can be used to support this feature. RDF-Tabular and
csv2rdf have partial support. For example, it is possible to
apply regular expression to string types, other validation are
also available for other data types, but it does not cover other
filter options, such as comparing or combining different val-
ues from the dataset. Vertere-RDF also has partial support
using regular expressions. Tarql supports this feature partial-
ly by defining a filter to skip rows. Note that all the values in
the row will be skipped. A bad row is defined using
SPARQL filters. For example, if an attribute has a minimum
value of 10 in the RDF representation, this filter can be ap-
plied FILTER (?value >= 10). Generally, most tools
that support this feature rely on other technologies, such as
SPARQL CONSTRUCT queries or regular expressions.

• F5 Literal to URI. This feature is supported by all applica-
tions, but it can be complex to define it using some tools. For
example, in Datalift, you need to select an option for such
transformation. Inside this option, it is necessary to define
the dataset, options for reference data and the data to be mod-
ified. RML, as a R2RML extension, on the other hand, has a
simpler approach where a template Term Map can be used to
define an URI.

• F6 Vocabulary Reuse. All analyzed tools have support for
the reuse of RDF vocabularies and OWL ontologies.

• F7 Transformation Functions. As with F4, RML has sup-
port for some transformation function depending on the un-
derlying technology used for data processing. No underlying
technology is available when converting CSV data. There-
fore, transformation functions are not supported for this data
format. SML and Vertere-RDF have partial support for func-
tions, as custom functions are not supported without extend-
ing the code. KR2RML have support for user-defined func-
tions as Python scripts. DataOps, CSV2RDF, Tarql have no

 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11
DataLift P P P P P P (P) P P P Ò

Virtuoso P P P P P P (P) P P P (P)
TopBraid Composer Maestro Edition P P P P P P P P (P) P (P)

DataOps Ò Ò P Ò P P Ò (P) Ò Ò Ò

OpenRefine P P P Ò P P P P Ò P Ò

KR2RML P P P P P P P P P P (P)
RML P P P Ò P P Ò P Ò P P

SML P P P Ò P P Ò P Ò P P

CSV2RDF P P P Ò P P Ò P Ò P P

RDF-Tabular P P P (P) P P (P) P Ò P P

CSV 2 RDF P P P (P) P P (P) P Ò P P

Tarql P P P (P) P P (P) P Ò P P

Vertere-RDF P Ò P Ò P P (P) P Ò P P

support for transformation functions. DataLift has partial
support relying on SPARQL construct queries for this fea-
ture. Virtuoso relies on SQL queries for this feature as the
data is imported into a relational database in the first step of
the uplift process. Tarql supports some transformation func-
tions through SPARQL queries. Most tools with additional
software have support for transformation functions, such as
OpenRefine and some mapping languages have pre-defined
functions. KR2RML is the only tool with support for user-
defined transformation functions as part of the mapping lan-
guage.

• F8 Datatypes. DataOps has partial support as it is possible to
define only basic XML datatypes, for example,
xsd:dateTimeStamp and others are not supported. All
other tools have support for XML datatypes. Together with
XML datatypes, some tools allow the definition of custom
datatypes, such as OpenRefine.

• F9 Named Graphs. The specifications for RML, SML and
xR2RML have support for named graphs but their implemen-
tations do not. Top Braid Composer Maestro Edition sup-
ports this feature by exporting RDF data into a specific exist-
ing named graph. KR2RML allows one to publish data into a
specific named graph or existing ones inside their tool.
KR2RML is the only mapping language to support this fea-
ture.

• F10 Blank Nodes. DataOps is the only tool that does not
support this feature. In some applications the definition of
blank nodes is straightforward such as RML and SML. How-
ever, using DataLift or Top Braid Composer the definition of
blank nodes is more complex with the use of SPARQL con-
struct queries to refine the dataset. Only one tool has no sup-
port for this feature, as most RDF datasets would rely on
blank nodes to represent different data structures.

• F11 Reusability. KR2RML allows the serialization of the
process as an extended R2RML mapping. In this sense, the
mapping contains one extra predicate with structured infor-
mation as a string, making it difficult to create or modify the
mapping without their editor. Furthermore, as shown in F7,
transformation functions are not reusable. Virtuoso and Top
Braid Composer support this feature partially as parts of the
process, such as SPIN functions for Top Braid Composer
Maestro Edition, are reusable but not the whole process.
DataLift and OpenRefine do not support the serialization of
the uplift process. All mapping languages are reusable, as it
is possible to use the same mapping file multiple times with
new or updated data. KR2RML mapping language serializes
the whole process applied to the input data as a string, what
makes some parts of the mapping not reusable and the whole
process dependent on their editor.

KR2RML is the tool with support for most features, with partial
support for reusability. As mentioned before, the whole process
can be serialized and reused using their editor, but several prob-
lems can be observed with the mapping. First, to reuse the map-
ping, you have to load the data again into the editor. Second, the
creation of mappings is difficult without their editor as structured
information is stored as a string, requiring parsing of the mapping
and the string. Finally, data transformation functions are not reus-
able. It is not possible to use the same function, as functions in
KR2RML do not have names or parameters. In this sense, a func-

tion update becomes difficult and prone to error – what we will
show in Section 5.
The comparison framework allows the discussion of features
needed for the uplift of data into RDF. In this paper we focus on
tools with support for CSV files. A key feature analyzed by our
comparison framework is transformation functions. As shown in
our discussion, there is no underlying technology for CSV data
and current approaches are not reusable or traceable. Current ap-
proaches rely on pre/post-processing techniques or on converting
the data into another format when data transformation is needed.
In this paper, we define a method to allow data transformation
functions to be incorporated into current uplift mapping lan-
guages. The analysis and definition of approaches to deal with
other problems identifiable by the use of our comparison frame-
work is left as future work. In the next section, we present FunUL,
a method to incorporate functions as part of uplift mapping lan-
guages.

4. FunUL - FUNCTIONS INTO UPLIFT
MAPPING LANGUAGES
In this section, we describe FunUL, a method to incorporate data
transformation by the way of functions into uplift mapping lan-
guages. Our method defines functions to be part of the mapping in
a generic, reusable and amenable way. These functions can be
used to capture both domain knowledge (e.g., transforming units)
and other – more syntactic – data manipulation tasks (e.g., trans-
forming values to create valid URIs). In this paper, we elaborate
upon previous work presented in [4].

The definition of functions as part of the mapping allows data
transformation and uplift into RDF to happen in a unified step.
Furthermore, functions are defined independently of the data
mapping, being possible to call the same function multiple times
with different parameters. These characteristics make the uplift
process into RDF more traceable, transparent and reusable. In
addition, because functions are part of the mapping, it is possible
to annotate them with provenance information, such as creator,
creation date, and other information, such as descriptions of the
transformation defined in the function and others. It is also possi-
ble to discern that a certain RDF value was generated by a certain
function. Moreover, functions can be shared between different
mappings.

In our method, functions have a name and a body. Each function
declaration must have one function name and one function body.
Function names are unique. Function bodies define a function
using a standardized programming language. In this sense, a func-
tion body has a signature and a set of parameters. A function body
can perform data transformation and data validation tasks. The
definition of parameters is optional. Every function defined in a
function body must have a return statement. It is possible to return
NULL or empty strings. An empty string should not generate any
triples, as the semantic value of an empty string is NULL in CSV
data format [18]. For example, as mentioned in Section 1, a func-
tion can be defined to transform years in BCE/CE notation from a
dataset to use the XML data type xsd:gYear. We could define
the name of this function as yearTransformation, the func-
tion body would have the implementation needed in a standard
programming language.

The method also includes notions for calling and passing parame-
ters to functions. A function call refers to a function. Parameters
are optional and can be passed as references to values from the
input data or as fixed values. The possibility of passing fixed val-

ues allows the declaration of generic functions. For example, to
call the function yearTransformation, there would be a
reference to the function and a list of possible parameters (see
Section 5.2).

The method does not rely on a specific implementation or editor.
Functions in our method can perform complex data transfor-
mation, are reusable, as they can be called multiple times, and
work with any data type.

4.1 Method Implementation
Our proof-of-concept extends R2RML’s vocabulary and RML’s
engine by introducing construct for describing functions, function
calls and parameter bindings. A specification18 and an implemen-
tation19 are available.

Figure 1 shows an extended diagram with properties of term
maps from R2RML and our method definitions (prefixed “rrf”).
The class rrf:Function defines a function. A function defi-
nition has two properties defining the name,
rrf:functionName, and the function body,
rrf:functionBody. A function can be called using the prop-
erty rrf:functionCall. This property refers to a
rrf:Function using the property rr:function. Parameters
are defined using rrf:parameterBindings. Examples of
function definitions and function calls can be seen in Section 5.2.

Figure 1. Properties of term maps based on the image from [5]

In RML – as an R2RML extension – a Term Map generates RDF
terms. An RDF term can be an IRI, a blank node or a literal. Term
Maps can be values of a constant, a column or a template. To
implement FunUL, we introduce a Function Valued Term Map
(see [5]). A function call generates an RDF Term based on the
function return statement defined in the function body. For exam-
ple, a function can be defined to convert years in BCE/CE nota-
tion to use xsd:gYear XML data type. A function call would
refer to this function with a parameter value, the year. The return
statement of this function would be used to generate a literal.

Analyzing the features from our comparison framework defined in
Section 3, this implementation has support for the features F4
Filters and F7 Transformation Functions. F4 is supported by the
use of functions. By extending RML, feature F9 Named Graphs,
is still not supported by our implementation. We note that RML’s
specification, by extending R2RML, supports named graphs.

18 https://www.scss.tcd.ie/~crottija/funul/
19 https://github.com/CNGL-repo/RMLProcessor

Therefore, it would be possible to implement named graphs in a
RML processor.

The implementation loads functions using Java’s Nashorn20 Ja-
vaScript engine available in the javax.script package. We have
chosen JavaScript for this implementation (even though functions
in our method could be defined in any programming language)
because it is freely available, widely used and its specification is
an ISO standard. Any errors loading or executing the function are
reported back to the user. Currently there is no support for moni-
toring functions, relying on Nashorn and the Java Runtime Envi-
ronment to handle any problems related to memory management
and correctness of the code.

In our implementation, functions can be used for predicates
(rr:predicateMap) or objects (rr:objectMap). By ex-
tending the implementation, functions could also be applied to
subjects (rr:subjectMap). Because we represent functions
using RDF, these can be shared. Furthermore, by extending
RML’s engine, functions defined using our implementation can be
applied and reused for other input formats supported by RML.

5. EVALUATION
To evaluate the implementation, we compared our method with
that of KR2RML using a real world Digital Humanities case
study. This comparison evaluated how well both approaches could
implement the required mappings.

5.1 The dataset
The dataset used in this evaluation comes from a project called
Seshat: Global History Databank [19]. This international project
led by the Evolution Institute (USA) and the University of Oxford
is developing a knowledge base to describe human societies over
the last 15,000 years as a set of time series. This knowledge base
is structured according to a social sciences “codebook” or schema
specified by an editorial board of domain experts in structured
natural language and re-engineered into an OWL ontology by
knowledge engineers at Trinity College Dublin [1]. The codebook
specifies over 1,000 data variables of interest cover topics such as
social complexity measures, warfare, technology, ritual and so on.
Two main units of data collection and analysis are specified – the
Polity (society) and the Natural Geographical Area (NGA) but 22
distinct units of collection are currently used and this number
continues to expand as the project matures. Each variable is not
modeled as a simple value or object instance and is subject to
uncertainty, temporal and geographical bounds for its validity. All
of this must be explicitly modeled in the final OWL representa-
tion.
The initial data collection effort (2011 – 2016) used a wiki struc-
tured according to the codebook. The natural language codebook
or a sub-set was used as a template for each wiki page to be com-
pleted describing a single unit of analysis, typically a temporally
bounded Polity (human society). Within Seshat there is a hierar-
chical distribution of effort between teams of research assistants
(typically about 10-15 active at any one time in 3-5 data collection
locations) who manually research and enter data, Seshat research-
ers who evolve the codebook and direct the data collection effort
to particular geo-temporal entities based (typically 20 qualified to
at least PhD level) and over 60 external domain experts who vali-
date data (drawn from the worldwide pool of domain experts,
typically full professors). At present the dataset contains over

20 https://blogs.oracle.com/nashorn/

120,000 expert-curated “facts” but each one of these is qualified
in terms of uncertainty, disagreement, academic sources so that it
may require 100 triples to describe it fully. The current collection
effort is focused on an initial 30 NGAs distributed across the
globe to maximize the distribution of societies examined. These
facts form time series at a sample rate of 100 years that describe
all human societies in the 30 NGAs from approximately 10,000
BC to the industrial revolution. The current wiki MySQL DB is
over 4GB, with 1081 pages describing units of collection such as
Polities and NGAs. Each page typically has over 1000 variables
describing the Polity.
To facilitate data collection and analysis the pages use structured
natural language with a well-defined syntax for describing varia-
bles, values, uncertainty, temporal bounds and annotations. In
May 2014, Trinity College Dublin developed a web scraper tool
that is aware of this syntax and can either validate a page to detect
syntactic errors (for use by the RAs during data entry) or dump
the page as a TSV file. A bulk export mode is also available
whereby the entire wiki or scoped sub-sets can be dumped into a
TSV file. The TSV files are then used by statisticians to model
human societies based on the data in the wiki. Although not de-
signed with this purpose in mind, these TSV files can provide a
starting point for uplifting the wiki to RDF based on the new
Seshat OWL Ontology.

5.2 Our approach
One of the issues in the uplift of the Seshat dataset into RDF is
that predicates in the data differ from the predicates defined in the
OWL ontology. Another issue was already mentioned in Section
1. Years in the dataset follow a BCE/CE notation, but the ontolo-
gy uses the XML datatype xsd:gYear. Another example of
transformation would be the use of a split function. In the dataset,
some values are stored in one attribute, but the ontology defines
different predicates for each part of the value. Listing 1 shows a
fragment of the dataset.
NGA,Polity,Variable,Value From,Value To,Date From,Date To
Latium,ItRomPr,RA,Edward A L Turner,,,
Latium,ItRomPr,Expert,Garrett Fagan,,,
Latium,ItRomPr,Peak Date,117 CE,,,
Latium,ItRomPr,Duration,31 BCE - 284 CE,,,
Latium,ItRomPr,Polity territory,4500000,,14CE,

Listing 1: Fragment of the Seshat dataset

Transformation functions can be defined to overcome these is-
sues. “RA” and “Expert” have specific predicates so it is possible
to use a function to evaluate if it the triple should be generated.
The function to do so, using our method, is defined in Listing 2.
This function has three parameters and it returns the value only if
the first two parameters are equals. For example, a mapping to
generate the predicate seshat:ra for the Seshat dataset, would
call this function with parameters rml:reference "Varia-
ble", rr:constant "RA" and rml:reference "Value
From". As mentioned before, the semantic value of an empty
string is NULL. In this sense, the triple will be generated only
when the attribute “Variable” has value “RA”.
<#Check>
 rrf:functionName "check" ;
 rrf:functionBody """
 function check(var1, var2, value) {
 if(var1 == var2) {
 return value;
 }
 return "";
 }
""" ; .

Listing 2: Function to check if a value should be generated

For the attribute “Peak Date”, the value needs to be transformed to
use the XML datatype xsd:gYear. This function is shown in
Listing 3. As functions are resources in the same RDF file, it is
possible to reuse it many times. Note that the mapping will define
the datatype xsd:gYear - as it is shown in Listing 6 with the
use of the predicate rr:datatype.
<#YearTransformation>
 rrf:functionName "yearTransformation" ;
 rrf:functionBody """
 function yearTransformation (year) {
 year = year.trim();
 if(year.indexOf("BCE") > -1){
 return String(parseInt("-" +
year.replace("BCE", "")) + 1);
 }
 return year.replace("CE", "").trim();
 }
""" ; .

Listing 3: Function to transform the year

For the attribute “Duration”, one would need to split the value
first and then apply the data transformation. As it is shown in
Listing 4, in our implementation, it is possible to call other func-
tions inside a function. This function only applies the year trans-
formation function for a specific attribute, in this case “Duration”.
For the last line of the dataset showed in Listing 1, we reuse the
function used for the attribute “Peak Date”. Note that this function
deals with blank spaces as well – in the dataset, not all values are
separated by spaces. For example, we have the value “117 CE”
with a space, and then “14CE”.
<#SplitAndYearTransformation>
 rrf:functionName "splitAndYearTransformation" ;
 rrf:functionBody """
 function
 split(variable, value, check, index, separator) {
 if(variable == check) {
 var str = value.split(separator)[index].trim();
 return yearTransformation(str);
 }
 return "";
 }
""" ; .

Listing 4: Function to split a value and transform the year

Listing 5 shows how to call a function using our method. This
function has five parameters, two parameters come from the da-
taset using rml:reference, the others are constants,
rr:constant. In this sense, the function called is generic and
could be reused passing other parameters.
<#DurationBeginning>
 rml:logicalSource [
 rml:source "data.csv";
 rml:referenceFormulation ql:CSV
];
 rr:subjectMap [
 rr:termType rr:BlankNode;
 rr:class owltime:DateTimeDescription
];
 rr:predicateObjectMap [
 rr:predicate owltime:year;
 rr:objectMap [
 rr:termType rr:Literal;
 rr:datatype xsd:gYear;
 rrf:functionCall [
 rrf:function <#SplitAndYearTransformation> ;
 rrf:parameterBindings (
 [rml:reference "Variable"]
 [rml:reference "Value From"]
 [rr:constant "Duration"]
 [rr:constant "0"]
 [rr:constant "-"]
) ;
] ;
];

].

Listing 5: Calling the function yearTransformation

The output of the uplift process using these functions applied to
the dataset showed in Listing 1 can be in Listing 6.
@base <http://dacura.cs.tcd.ie/data/seshat> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix time: <http://www.w3.org/2006/time#> .
<seshat/ItRomPr> <#RA> "Edward A L Turner" .
<seshat/ItRomPr> <#Expert> "Garrett Fagan" .
<seshat/ItRomPr> <#peakDate> _:lLA98YAitY .
_:lLA98YAitY a <#TemporalInstantVariable> .
_:lLA98YAitY <#definiteValue> _:TERpMusPG9 .
_:TERpMusPG9 a <#Instant> .
_:TERpMusPG9 <#atDateTime> _:P3qgpVj36x .
_:P3qgpVj36x a time:DateTimeDescription .
_:P3qgpVj36x time:year "117"^^xsd:gYear .
_:P3qgpVj36x time:unitType time:unitYear .
<seshat/ItRomPr> <#duration> _:awMl8Sww0N .
_:awMl8Sww0N a <#DurationVariable> .
_:awMl8Sww0N <#definiteValue> _:HzsjbPE9RU .
_:HzsjbPE9RU a <#Interval> .
_:HzsjbPE9RU <#hasBeginning> _:wUMzVkWduq .
_:wUMzVkWduq a time:DateTimeDescription .
_:wUMzVkWduq time:unitType time:unitYear .
_:wUMzVkWduq time:year "-30"^^xsd:gYear .
_:HzsjbPE9RU <#hasEnd> _:B1hn2AyEdl .
_:B1hn2AyEdl a time:DateTimeDescription .
_:B1hn2AyEdl time:year "284"^^xsd:gYear .
_:B1hn2AyEdl time:unitType time:unitYear .
<seshat/ItRomPr> <#territory> _:IL9hDo2Izd .
_:IL9hDo2Izd a <#TerritoryVariable> .
_:IL9hDo2Izd a <#Instant> .
_:IL9hDo2Izd <#definiteValue> "4500000"^^xsd:unsignedLong
.
_:IL9hDo2Izd <#atDateTime> _:kzsZr2yrBX .
_:kzsZr2yrBX a time:DateTimeDescription .
_:kzsZr2yrBX time:unitType time:unitYear .
_:kzsZr2yrBX time:year "14"^^xsd:gYear .

Listing 6: RDF output

5.3 KR2RML’s approach
The same functions defined using our method could be created
using KR2RML. For this comparison, we will use KR2RML’s
editor to define a function similar to the one presented in Listing
2. Functions in KR2RML are defined in Python. This function
generates a specific predicate when the attribute “Variable” has
the value “RA”. The function exported as a KR2RML mapping is
shown in Listing 7. One can see that – next to the RDF file –
structured information is contained as a literal in the file. In
KR2RML, three things need to be parsed: the RDF file, the struc-
tured information in the literal, and finally the functions in Py-
thon.
@prefix km-dev: <http://isi.edu/integration/karma/dev#> .
_:node1afgfa0n8x1 a km-dev:R2RMLMapping ;
 ...
 km-dev:hasWorksheetHistory """[{
 ...
 {
 \"name\": \"transformationCode\",
 \"type\": \"other\",
 \"value\": \"return getValue(\\\"Value From\\\") if
getValue(\\\"Variable\\\") == \\\"RA\\\" else \\\"\\\"\"
 },
 ...
}]""" .

Listing 7: Function in a KR2RML mapping

5.4 Discussion
In both approaches data transformation functions can be defined
within mapping definitions, but KR2RML’s functions are not
reusable. It is possible to reapply a function by accessing all used
functions using the editor, but is it not possible to call the same
function multiple times. In this sense, a function needs to be im-

plemented for every possible parameter value. In contrast, func-
tions in our method can be reused many times with different pa-
rameters. More specifically, for example, in our method we call
the function defined in Listing 2 twice, with different parameters.
Firstly, with the constant parameter “RA” to create a specific
predicate. The same function is called a second time to define the
predicate for the value “Expert”. In KR2RML, another function,
similar to the one defined in Listing 7, needs to be defined for the
second case, changing the value “RA” to “Expert”. As mentioned
before, this characteristic makes function updates complex and
prone to error. Moreover, we note that, for our use case and many
others, transformations functions would be reused in the mapping.
Other problems with functions in KR2RML include, as it can be
seen in Listing 7, the definition of other structured information
together with functions as strings. This requires the mapping file
to be parsed three times. Furthermore, the mapping file becomes
complex and the mapping language heavily dependent on their
editor.

6. CONCLUSION
In this paper, we proposed a comparison framework to evaluate
uplift tools applied to CSV datasets. Relying on one of the fea-
tures – transformation functions – evaluated by our framework,
we proposed a method to incorporate functions into uplift map-
ping languages. The general approach for data manipulation dur-
ing the uplift process to convert CSV data into RDF relies on
converting the source data into another format or on pre/post-
processing techniques. In contrast, functions in our method are
defined as part of the mapping, integrating transformation func-
tions and mapping definitions. This makes the uplift process more
transparent and traceable. We showed an implementation of our
method by extending R2RML’s vocabulary and RML’s engine.
Our evaluation applied the method to a real world use case and
compared the use of functions as part of the mapping to
KR2RML, the only other uplift tool identified to have this feature.
Our evaluation showed that even though the whole process can be
serialized using KR2RML, their functions are not reusable, mak-
ing function updates complex and prone to error. Furthermore,
KR2RML’s mappings are stored as strings, what makes the map-
ping file complex (i.e., parsing the RDF file and parsing the
strings that relate fields to functions), relying heavily on their
editor and making the creation of mappings difficult using other
tools. In contrast, our method and implementation define func-
tions as resources that can be used multiple times, with different
parameters – what facilitates function updates – and it does not
rely on a specific editor.
Future work includes extending the method to better describe
functions; implementing the method by either extending another
mapping language, as we did with RML, or implementing our
own mapping language; investigating the use of other programing
languages to define functions as part of the mapping; and addi-
tional experiments and use cases, such as the use of functions to
generate provenance information during the uplift process (see
[7]). Future work also includes the analysis of other features cov-
ered by our comparison framework and ways of dealing with such
problems.

7. ACKNOWLEDGMENTS
This study is supported by: (i) CNPQ, National Counsel of Tech-
nological and Scientific Development – Brazil; (ii) the Science
Foundation Ireland ADAPT Centre for Digital Content Technolo-
gy (Grant 13/RC/2106); (iii) John Templeton Foundation grant to

the Evolution Institute [https://evolution-
institute.org/project/seshat/]; (iv) the European Union Horizon
2020 ALIGNED [www.aligned-project.eu] (Grant 644055).

8. REFERENCES
[1] Bizer, C., Seaborne, A.: D2RQ - Treating Non-RDF

databases as virtual RDF graphs. In: Proceedings of the 3rd
international semantic web conference (ISWC2004). Volume
2004., Citeseer Hiroshima (2004).

[2] Brennan, R., Feeney, K., Mendel-Gleason, G., Bozic, B.,
Turchin, P., Whitehouse, H., Francois, P., Currie, T.,
Gohmann, S. Building the Seshat Ontology for a Global His-
tory Databank. In: The Semantic Web: ESWC (2016).

[3] Brennan, R., Feeney, K.C., Gavin, O.: Publishing Social
Sciences Datasets as Linked Data: a Political Violence Case
Study. In: Exploration, Navigation and Retrieval of Infor-
mation in Cultural Heritage workshop (ENRICH 2013), Dub-
lin, Ireland (2013).

[4] Crotti Junior, A., Debruyne, C., O’Sullivan, D.: Incorporat-
ing Functions in Mappings to Facilitate the Uplift of CSV
Files into RDF. In: The Semantic Web: ESWC 2016 Satellite
Events (2016).

[5] Das, S., Sundara, S., Cyganiak, R.: R2RML: RDB to RDF
Mapping Language. (2012) https://www.w3.org/TR/r2rml/.

[6] Debruyne, C., O’Sullivan, D.: R2RML-F: Towards Sharing
and Executing Domain Logic in R2RML Mappings. In:
Workshop on Linked Data on the Web (2016).

[7] Dimou, A., De Nies, T., Verborgh, R., Mannens, E., and Van
de Walle, R.: Automated Metadata Generation for Linked
Data Generation and Publishing Workflows. In: Workshop
on Linked Data on the Web (2016).

[8] Dimou, A., Vander Sande, M., Colpaert, P., Verborgh, R.,
Mannens, E., Van de Walle, R.: RML: A Generic Language
for Integrated RDF Mappings of Heterogeneous Data. In:
Workshop on Linked Data on the Web (2014).

[9] Hert, M., Reif, G., Gall, H.C.: A comparison of RDB-to-RDF
Mapping Languages. In: Proceedings of the 7th International
Conference on Semantic Systems. I-Semantics '11, New
York, NY, USA, ACM (2011) 25-32.

[10] Heyvaert, P., Dimou, A., Herregodts, A.L., Verborgh, R.,
Schuurman, D., Mannens, E., Van de Walle, R.: RMLEditor:

A Graph-based Mapping Editor for Linked Data Mappings.
In: The Semantic Web - Latest Advances and New Domains
(ESWC 2016) (2016).

[11] Hitzler, P., Krotzsch, M., Rudolph, S.: Foundations of se-
mantic web technologies. CRC Press, (2009).

[12] Michel, F., Djimenou, L., Faron-Zucker, C., Montagnat, J.:
Translation of relational and non-relational databases into
RDF with xR2RML. In: 11th Web Information Systems and
Technologies (WEBIST) (2015).

[13] Pinkel, C., Schwarte, A., Trame, J., Nikolov, A., Bastinos,
A.S., Zeuch, T.: Dataops: Seamless end-to-end anything-to-
RDF data integration. In: The Semantic Web: ESWC 2015
Satellite Events (2015).

[14] Purohit, S., Smith, W., Chappell, A., West, P., Lee, B.,
Stephan, E., Fox, P.: Effective Tooling for Linked Data Pub-
lishing in Scientific Research. In: 2016 IEEE Tenth Interna-
tional Conference on Semantic Computing (ICSC) (2016)

[15] Scharffe, F., Atemezing, G., Troncy, F., Gandon, F., Villata,
S., Bucher, B., Hamdi, F., Bihanic, L., Képéklian, G., Cotton,
F., et al. Enabling linked data publication with the Datalift
platform. In Proc. AAAI Workshop on Semantic Cities,
2012.

[16] Slepicka, J., Yin, C., Szekely, P., Knoblock, C.: KR2RML:
An alternative interpretation of R2RML for heterogeneous
sources. In: Proceedings of the 6th International Workshop
on Consuming Linked Data (2015).

[17] Stadler, C., Unbehauen, J., Westphal, P., Sherif, M.A., Leh-
mann, J.: Simplified RDB2RDF Mapping. In: Workshop on
Linked Data on the Web. (2015).

[18] Tennison, J., Kellogg, G., Herman, I.: Model for Tabular
Data and Metadata on the Web. (2015)
https://www.w3.org/TR/tabular-data-model/.

[19] Turchin, P., Brennan, R., Currie, T., Feeney, K., Francois, P.,
Hoyer, D., Manning, J., Marciniak, A., Mullins, D.,
Palmisano, A., et al.: Seshat: The global history data-bank.
Cliodynamics: The Journal of Quantitative History and Cul-
tural Evolution 6 (2015).

