
adfa, p. 1, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Metis: the SDRule-L Modelling Tool

Yan Tang Demey1 and Christophe Debruyne2

Department of Computer Science,
Vrije Universiteit Brussel, 1050 Brussel, Belgium

1yan.tang@vub.ac.be
2christophe.debruyne@vub.ac.be

Abstract. . Semantic Decision Rule Language (SDRule-L), which is an exten-
sion to Object-Role Modelling language (ORM), is designed for modelling se-
mantic decision support rules. An SDRule-L model may contain static (e.g., da-
ta constraints) and dynamic rules (e.g., sequence of events). In this paper, we
want to illustrate its supporting tool called Metis, with which we can graphical-
ly design SDRule-L models, verbalize and reason them. We can store and pub-
lish those models in its markup language called SDRule-ML, which can be part-
ly mapped into OWL2. The embedded reasoning engine from Metis is used to
check consistency.

Keywords: fact based modeling, object role modeling, conceptual modeling,
semantic decision making, SDRule-L

1 Introduction

Semantic decision support systems are a means to support group decision making
using domain ontologies. Interoperability – the basic characteristic from any ontolo-
gy-based systems – will enhance the mutual understanding between decision makers
within a decision group (or community). Semantic Decision Rule Language (SDRule-
L, [1]) is a bridge connecting ontologies and decision making processes. In other
words, we can use SDRule-L to model decisions based on domain ontologies.

SDRule-L is an extension to ORM2 [2]. SDRule-L supports both static (e.g., data
constraints) and dynamic rules (e.g., sequence of events). It also supports higher-order
modelling. As most first-order static rules can be modelled in ORM2, in this paper,
we will focus on the extended constraints and operators, which are recently imple-
mented in a tool called Metis. Metis contains functions of designing SDRule-L mod-
els graphically and verbalizing the graphical models. The models are stored and pub-
lished in the markup language called SDRule-ML, which is a hybrid language of
ORM-ML [3] and FOL Rule-ML [4]. SDRule-ML can be partly mapped into Web
Ontology Language (OWL2). In addition, it has an embedded SDRule-L reasoner,
with which we can validate linked data.

The paper is organized as follows. Sec 2 is the related work. We will discuss spe-
cific SDRule-L constraints and operators in Sec. 3. Metis is illustrated in Sec. 3.5. We
will discuss in Sec. 4. We will conclude and illustrate our future work in Sec.5.

Yan Tang Demey and Christophe Debruyne. Metis: The sdrule-l modelling tool. In Y. Tang Demey and Hervé Panetto, editors, On the Move to Meaningful Internet Systems: OTM 2013 Workshops, volume 8186 of LNCS, pages 492-502. Springer, 2013�

2 Related Work

Since 1999, the Fact Based Modeling (FBM1) methodological principles have been
adopted for modeling ontologies. The authors in [5] [3] have illustrated how a particu-
lar FBM dialect – ORM [2] – can be used for modeling ontologies and ontology ver-
balization. Dogma Modeler2 and Collibra Studio3 were thus developed. Dogma Mod-
eler supports simple verbalization in English, Dutch, German, French, Spanish, Ara-
bic and Russian. Ontologies, in view of DOGMA Modeler, are made of reusable
modules (or patterns). Collibra Studio is a commercialized tool, with which business
people can model and share their data semantics.

Later on, ORM/ORM2 has been extended for modeling ontology-based application
rules and enabling an application to easily commit to a domain ontology. One exten-
sion is called Semantic Decision Rule Language (SDRule-L, [1]). It is used to model
semantically rich decision support rules. We have designed a markup language –
SDRule-ML – to store and exchange SDRule-L models. The focus of this paper is
SDRule-L extensions and its supporting tool called Metis4. Since the tool is to en-
hance decision making processes in order to get better and wiser decisions, it is
named after Metis, a goddess of wisdom (or wise counsel/wise decision) in Greek
mythology.

Other FBM tools, which are more for modeling databases and information in gen-
eral, are VisioModeler, NORM5, CogNIAM Studio6, Richmond7 and Active Facts8.
Unlike most of the mentioned FBM tools, which deal with local databases, Metis uses
the Resource Description Framework (RDF) to deal with Linked Data, which can be
considered as a collection of relevant databases or web data. Linked Data is referred
to as a Semantic Web initiative to interlink web resources. It uses Uniform Resource
Identifiers (URI) for accessing the resources and RDF for representing knowledge and
annotating the resources. In addition, Metis contains extended graphical notations,
such as cluster, sequence and decisional alternatives (implication), which are specific
for modelling decision rules. In the following section, we will discuss the extensions.

3 SDRule-L Constraints and Operators

The extensions include constraints and operators like annotation (including sample
instances), sequence, cluster, implication, necessity, possibility, cross-context subtyp-
ing and cross-context equivalence. In this paper, we want to focus on sequence, clus-
ter and implication.

1 FBM official website: www.factbasedmodeling.org
2 DOGMA Modeller can be downloaded from www.jarrar.info/Dogmamodeler
3 Collibra Studio is now merged into Collibra Data Governance Software (www.collibra.com)
4 Metis can be downloaded from sourceforge.net/projects/sdrulel/files/Metis/
5 Both Visio Modeller and NORMA can be downloaded from www.ormfoundation.org
6 A commercialized tool developed by PNA Group www.pna-group.nl
7 A tool created by Victor Morgante
8 Active Facts can be retrieved from dataconstellation.com

3.1 Sequence

We often use sequences to describe the relations between events. The graphical nota-
tion of a sequence is an arrow-tipped bar that connects two event types. Each event
type is represented as an object type.

Currently, SDRule-L contains six types of sequence as illustrated in Table 1.

Table 1. SDRule-L Sequence (𝐸": event on the right of the connector;𝐸#: event on the left)

ID Name Graphical Notation Verbalization
1 Succession 𝐸" is before 𝐸#

2 Continuation 𝐸" is exactly before 𝐸#

3 Overlap 𝐸" and 𝐸# overlap

4 Trigger 𝐸" triggers 𝐸#

5 Terminator 𝐸" is terminated by 𝐸#

6 Coincidence 𝐸" and 𝐸# are in parallel
Given two events	𝐸"and	𝐸#, and their begin time stamps (𝐸". 𝑇" and	𝐸#. 𝑇") and end

time stamps (𝐸". 𝑇# and	𝐸#. 𝑇#), the semantics of the sequences illustrated in Error!
Reference source not found. is illustrated as follows.

• Succession:	(𝐸". 𝑇" > 𝐸#. 𝑇") ∧ ({∃𝑒|𝑒 ∈ 𝐸#} → {∃𝑒|𝑒 ∈ 𝐸"})
• Continuation:	𝐸". 𝑇# + 𝛼 = 𝐸#. 𝑇" where 𝛼 is a given time interval
• Overlap:	(𝐸". 𝑇" ≤ 𝐸#. 𝑇") ∧ (𝐸". 𝑇# > 𝐸#. 𝑇") ∨ (𝐸#. 𝑇" ≤ 𝐸". 𝑇")	
∧ (𝐸#. 𝑇# > 𝐸". 𝑇")

• Trigger:	(𝐸". 𝑇" > 𝐸#. 𝑇") ∧ ({∃𝑒|𝑒 ∈ 𝐸"} ↔ {∃𝑒|𝑒 ∈ 𝐸#})
• Terminator:	(𝐸". 𝑇" ≥ 𝐸#. 𝑇#) ∧ (𝐸". 𝑇# = 𝐸#. 𝑇#)
• Coincidence:	(𝐸". 𝑇" = 𝐸#. 𝑇") ∧ (𝐸". 𝑇# = 𝐸#. 𝑇#)

Note that, given an event	𝐸, it is valid iff	𝐸. 𝑇" ≤ 𝐸. 𝑇#.
An SDRule-L model containing sequences (containing both dynamic and static

rules) can be partly mapped into an OWL9-compatible model (containing static rules).
Suppose we have a succession as illustrated in the left figure from Fig. 1. The OWL-
compatible model that is partly mapped from the succession model is shown on the
right in Fig. 1.

Fig. 1. Left: an example of succession; Right: an OWL-compatible model (partly mapped)

9 Web Ontology Language: http://www.w3.org/TR/owl2-overview/

>>

_ _

 -_

>>

>>

|=|

Device Curtain
openCurtain/isOpenedByDevice

sendMessasge/isSentByDevice
Message

>>
Device

Curtain

Message

openCurtain/isOpenedByDevice

OpenCurtain

sendMessage/isSentByDevice

SendMessage
Event

 hasT1/isT1Of

 hasT2/isT2Of

TimeStamp

When a set of linked data is claimed to be complied with the succession model in
Fig. 1, we can check the data consistency by embedding the dynamic rule – 𝐸". 𝑇" >
𝐸#. 𝑇" – in a query language (in our case, SPARQL10 is chosen). This idea is adopted
from [6]. In particular, sequences are translated into SPARQL ASK queries to check
whether counterexamples exist.

For example for a succession – “𝐸" is before	𝐸#”, it is valid iff	𝐸#. 𝑇" < 𝐸". 𝑇" .
Counterexamples are sought by looking for two facts that violate this condition
(𝐸#. 𝑇" ≥ 𝐸". 𝑇"). It is also invalid if	𝐸# happens but	𝐸" did not happen. We give the
SPARQL query as illustrated below.

ASK {
 {
 ?a <http://…/ont#r1> ?rc1.
 ?a <http://…/ont#r2> ?rc2.
 ?rc1 <http://…/#T1> ?t1.
 ?rc2 <http://…/#T2> ?t2.
 FILTER(?t1 >= ?t2)
 } UNION {
 OPTIONAL{ ?a <http://…/ont#r1> ?rc1. }
 ?a <http://…/ont#lr2> ?rc2.
 FILTER(!BOUND(?rc1))
 }
}

3.2 Cluster

A cluster is used to group a set of fact types. We treat such a set as an object, with
which we can reify a model. For instance, the concept “helpdesk task” may contain
other concepts, such as “people dial a number” and “people pick up a phone”, which
are used to explain “helpdesk task”.

The graphical notation of a cluster is a round-cornered box indicated with a cluster
name. A cluster (also called ‘parent cluster’) may contain another cluster (also called
‘component cluster’), which is attached with a symbol of modality. Table 2 shows the
graphical notions of possible and necessary compositions.

Table 2. SDRule-L Cluster

ID Name Graphical Notation Verbalization
1 Possible composition

… possibly con-
tains …

2 Necessary composition

… must contain
…

10 Query Language for Resource Description Framework (RDF): http://www.w3.org/TR/rdf-

sparql-query/

ParentCluster
 ChildClusterM

ParentCluster

M

ParentCluster
 ChildClusterL

ParentCluster

L

A component cluster is either possible or necessary. A component cluster is by de-
fault possible. Fig. 2 shows an example of cluster. The cluster “Opening Curtain” is
composed of a necessary cluster “Listen and React” and a possible cluster “Sending
Msg”. The cluster “Listen and React” contains two fact types – Device received Sig-
nal and Device open(s) Curtain. The cluster “Sending Msg” contains one fact type –
Device send(s) Message. The three clusters are subtypes of “Task”.

Fig. 2. Left: An example of cluster in SDRule-L; Right: a zoom-out view

When a cluster is populated, its necessary components must be populated while we
do not require its optional components to be populated. Suppose that we have a data
table containing a set of linked data. When we validate it with the SDRule-L model as
illustrated in Fig. 2, the data record with ID 4 does not satisfy the model because
𝑆𝑒𝑛𝑑𝑖𝑛𝑔𝑀𝑠𝑔 is populated, which implies that 𝑂𝑝𝑒𝑛𝐶𝑢𝑟𝑡𝑎𝑖𝑛 must be populated.
𝑂𝑝𝑒𝑛𝐶𝑢𝑟𝑡𝑎𝑖𝑛 contains a necessary cluster called “𝐿𝑖𝑠𝑡𝑒𝑛𝐴𝑛𝑑𝑅𝑒𝑎𝑐𝑡”, which consists
of the two following optional fact types.

𝑙" = 〈𝐷𝑒𝑣𝑖𝑐𝑒, 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝑆𝑖𝑔𝑛𝑎𝑙, 𝑖𝑠𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝐵𝑦𝐷𝑒𝑣𝑖𝑐𝑒, 𝑆𝑖𝑔𝑛𝑎𝑙〉
𝑙# = 〈𝐷𝑒𝑣𝑖𝑐𝑒, 𝑜𝑝𝑒𝑛𝐶𝑢𝑟𝑡𝑎𝑖𝑛, 𝑖𝑠𝑂𝑝𝑒𝑛𝑒𝑑𝐵𝑦𝐷𝑒𝑣𝑖𝑐𝑒, 𝐶𝑢𝑟𝑡𝑎𝑖𝑛〉

Since 𝑂𝑝𝑒𝑛𝑐𝑢𝑟𝑡𝑎𝑖𝑜𝑛 must be populated, at least one from the above two fact types
must be populated. However, in record with ID 4, none of these two fact types are
populated. Therefore, it does not satisfy the model.

Table 3. A table containing linked data that needs to be complied with Fig. 2

ID Device Signal Curtain Message
1 D1 S1 C1 M1
2 D2 S2 C2 NULL
3 D3 S3 NULL NULL
4 D4 NULL NULL M4
5 D5 NULL C5 M5
6 D6 NULL NULL NULL

For the other data records, which are valid facts, we present the analysis as follows.

• 1: all fact types are populated
• 2: the optional component from cluster “𝑂𝑝𝑒𝑛𝑖𝑛𝑔𝐶𝑢𝑟𝑡𝑎𝑖𝑛” – 𝑆𝑒𝑛𝑑𝑖𝑛𝑔𝑀𝑠𝑔 – is

not populated. All the rest are populated.

OpeningCurtain
ListenAndReact

Device Curtain

Message

Signal
 receivedSignal/isReceivedByDevice

 openCurtain/isOpenedByDevice

L

 sendMessage/isSentByDevice

SendingMsgM

Task

OpeningCurtain

ListenAndReact

SendingMsg

Task

• 3: the optional component (referred to 	𝑙" , see above) from the cluster
“ 𝐿𝑖𝑠𝑡𝑒𝑛𝐴𝑛𝑑𝑅𝑒𝑎𝑐𝑡 ”, which is a necessary component from the cluster
“𝑂𝑝𝑒𝑛𝑖𝑛𝑔𝐶𝑢𝑟𝑡𝑎𝑖𝑛”, is populated. All the rest are not populated.

• 4: invalid (see the earlier discussion)
• 5: the optional component (referred to 	𝑙# , see above) from the cluster

“ 𝐿𝑖𝑠𝑡𝑒𝑛𝐴𝑛𝑑𝑅𝑒𝑎𝑐𝑡 ”, which is a necessary component from the cluster
“𝑂𝑝𝑒𝑛𝑖𝑛𝑔𝐶𝑢𝑟𝑡𝑎𝑖𝑛”, is populated. Another optional component (referred to	𝑙", see
above) from the cluster “𝐿𝑖𝑠𝑡𝑒𝑛𝐴𝑛𝑑𝑅𝑒𝑎𝑐𝑡” is not populated.

• 6: the cluster “𝐿𝑖𝑠𝑡𝑒𝑛𝐴𝑛𝑑𝑅𝑒𝑎𝑐𝑡” is not populated.

With cluster, a model can easily embrace higher ordered rules. The advantage is
that we can simply the process of model reification. The disadvantage is that it brings
complexity to the reasoning engine. We will explore the issues on how to combine
cluster with other constraints in the future.

Similar to the constraint of sequence, we first map clusters to OWL-compatible
models as illustrated in Fig. 3.

Fig. 3. OWL-compatible models partly transformed from Fig. 2

Then, we provide the following SPARQL queries11 for finding counterexamples.

ASK {
 ?a a <http://…/ont#Device>.
 OPTIONAL {
 ?a <http://…/ont#l2f> ?x1.
 ?x1 a <http://…/ont#l2>.
 }
 OPTIONAL {
 ?a <http://…/ont#l3f> ?x2.
 ?x2 a <http://…/ont#l3>.
 }
 FILTER(!BOUND(?x1) || !BOUND(?x2))
}

ASK {
 ?a <http://…/ont#l1f>
?b.
 ?b a
<http://…/ont#l1>.
 OPTIONAL {
 ?a ?z ?c. ?c a
<http://…/ont#l2>.
 }
 FILTER(!BOUND(?c))
}

11 “l2”, “l3” and “l1” are the identifiers for respectively the first, second and third binary fact

type on the left hand side of the example in Fig. 2.

Device
Curtain

Message

Signal
 receivedSignal/isReceivedByDevice

 openCurtain/isOpenedByDevice

 sendMessage/isSentByDevice
OpeningCurtain ListenAndReact SendingMsg

Task

3.3 Other operators and constraints

SDRule-L also includes other extensions, such as implication, negation, skipper (ex-
ception), cross-context equivalence and cross-context subtyping. Due to the limit of
paper length, we refer to [1] for the details.

An important point we want to make in this paper is, all the operators and con-
straints that we have discussed earlier are supposed to be further used for modeling
decisional alternatives (also called non-monotonic decision rules). Implication can be
used for this purpose.

Fig. 4 shows an example of implication and its verbalization. An arrow tipped bar
indicated with ¬ is a negation12. Implication can be mapped into a subset constraint
when the decision rule is monotonic. When the rules are non-monotonic, we must use
implication instead. Sometimes, one fact type may appear more than once within one
SDRule-L model (e.g., as shown in Fig. 4). Note that in ORM, such duplications are
not allowed.

If Device does not open Curtain,
then Device does not send Message.
If Device open(s) Curtain, then
Device send(s) Message.
Each Device open(s) at least one
Curtain.
Each Device send(s) at least one
Message.

Fig. 4. An example of implication and its verbalization

When negation is applied on a role of the antecedent of an implication, it is a
checksum of empty population. When it is applied on a role of the consequence of an
implication, it is a denial of populating this role. For instance in Fig. 4, if
𝑜𝑝𝑒𝑛𝐶𝑢𝑟𝑡𝑎𝑖𝑛/𝑖𝑠𝑂𝑝𝑒𝑛𝑒𝑑𝐵𝑦𝐷𝑒𝑣𝑖𝑐𝑒 is populated, then 𝑖𝑠𝑆𝑒𝑛𝑡𝐵𝑦𝐷𝑒𝑣𝑖𝑐𝑒/𝑠𝑒𝑛𝑑𝑀𝑠𝑔
must be populated; otherwise, the latter must not be populated. Therefore, if we get an
empty set of linked data, then it is valid. If we get a set of data as illustrated in Table
4, then the first record is valid and the second one is invalid.

Table 4. A table containing linked data that needs to be complied with Fig. 4

ID Curtain Device Message
1 C1 D1 M1
2 C1 D1 NULL

The SPARQL queries are provided as follows.

12 When negation is used in a conditional statement, it is a constraint. When it is used in a con-

clusion, it is an operator.

Device

Curtain

 openCurtain/isOpenedByDevice

Message

 sendMsg/isSentByDevice
¬

¬
 isOpenedByDevice/openCurtain

 isSentByDevice/sendMsg

ASK {
 ?a ont:OpenCurtain ?y.
 OPTIONAL{?a ont:sendMsg ?x.}
 FILTER(!BOUND(?x))
}

ASK {
 OPTIONAL{?a ont:sendMsg ?x.}
 ?a ont:OpenCurtain ?y.
 FILTER(!BOUND(?x))
}

Although implication can be used to model decisional alternatives, we want to use

a neater and more concise means to model ontology-based decision rules. This partic-
ular approach is called semantic decision tables [7] [8]. How to use semantic decision
tables for modeling decisional alternatives will be illustrated in the next subsection.

3.4 Using Semantic Decision Tables to Model Decisional Alternatives

A decision table is a table representing an exhaustive set of mutually exclusive condi-
tions. It contains conditions, actions and decision rules. A condition consists of a con-
dition stub represented as a label and a condition entry represented as a value or value
range. Similarly, an action is composed of an action stub represented as a label, and
an action entry, which is often a Boolean value13. A decision rule is a decision column
or a decision row, depending on the layout of the decision table. A decision rule con-
sists of a set of conditions and a set of actions.

A semantic decision table (SDT) is a decision table annotated with a domain ontol-
ogy. With the annotation, we are able to specify the meta-rules and relations between
table elements into axioms, which are processable by machines. Fig. 5 shows an ex-
ample of SDT that is equivalent to the SDRule-L illustrated in Fig. 4.

Condition 1 2

Device open Curtain Yes No
Action
Device send Message *

Fig. 5. An SDT example that is equivalent to Fig. 4

In the decision table from Fig. 5, “𝐷𝑒𝑣𝑖𝑐𝑒	𝑜𝑝𝑒𝑛	𝐶𝑢𝑟𝑡𝑎𝑖𝑛” is a condition stub.
“𝑌𝑒𝑠” and “𝑁𝑜” are the two condition entries. “𝐷𝑒𝑣𝑖𝑐𝑒	𝑠𝑒𝑛𝑑	𝑀𝑒𝑠𝑠𝑎𝑔𝑒” is an action
stub. “∗” and the absence of “*” are the two action entries. There are two conditions
in the decision table:〈𝐷𝑒𝑣𝑖𝑐𝑒	𝑜𝑝𝑒𝑛	𝐶𝑢𝑟𝑡𝑎𝑖𝑛, 𝑌𝑒𝑠〉 and	〈𝐷𝑒𝑣𝑖𝑐𝑒	𝑜𝑝𝑒𝑛	𝐶𝑢𝑟𝑡𝑎𝑖𝑛, 𝑁𝑜〉.
There are also two actions:〈𝐷𝑒𝑣𝑖𝑐𝑒	𝑠𝑒𝑛𝑑	𝑀𝑒𝑠𝑠𝑎𝑔𝑒,∗〉 and	〈𝐷𝑒𝑣𝑖𝑐𝑒	𝑠𝑒𝑛𝑑	𝑀𝑒𝑠𝑠𝑎𝑔𝑒, 〉.
The two columns indicated with 1 and 2 are the two decision rules. We annotate this
decision table with the fact types (from a domain ontology), which are constrained in
the ontology as shown on the right in Fig. 5.

When we have complicated decision rules, SDTs are much better than the models
containing implications for the following reasons.

13 If it is not a Boolean value, then we need to map it into a Boolean value.

Device

Curtain

Message

 isOpenedByDevice/openCurtain

 isSentByDevice/sendMsg

• Within an SDT, decisional alternatives are easier to be compared.
• Decision rules in an SDT are an exhaustive set of mutually exclusive conditions.

Therefore, the completeness of a rule set is ensured. When there are a lot of condi-
tions, it is difficult to manually check the completeness of an SDRule-L model
containing implications.

• It is easier to group rules and detecting irrelevant rule sets using the existing SDT
rule engine. For SDRule-L implications, it is a big challenge to group similar rules.

3.5 Metis

As most tools from other fact-based modeling dialects as discussed in Sec. 2, Metis
contains functions of graphically design and verbalization of SDRule-L models. The
SDRule-L reasoner is also embedded to ensure the consistency of data.

Metis has been developed as a plugin framework. We have used Eclipse14 Java
software development kit (SDK) for the implementation. In particular, the Graphical
Editing Framework (GEF) has been adopted for the rich graphical editor and views of
Metis user interface. Fig. 6 and Fig. 7 show two screenshots of Metis.

Fig. 6. Screenshots of Metis: graphical models w.r.t. Fig. 1 and Fig. 2

14www.eclipse.org

Fig. 7. Metis screenshot: Views of verbalization for the two graphical models in Fig. 6

Including the function of graphical modeling using drag and drop, Metis also sup-
ports importing/exporting SDRule-L models from/into SDRule-ML.

4 Discussion

An SDRule-L model can contain dynamic and static rules, and, monotonic and non-
monotonic rules. Sequence can be used to create dynamic rules seeing that it contains
dynamic aspects like time. Most SDRule-L constraints that are inherited from ORM2
are considered to be static. Implication (and the equivalent SDTs) is the only one
constraint that can make a rule non-monotonic. All the rest, if they are not combined
with implications, can only be used to model monotonic decision rules.

In this paper, we have illustrated how to use SDRule-L to validate linked data,
which complies with an SDRule-L model. Our method of checking data consistency
contains three steps: 1) transform into a static, OWL-compatible model; 2) create
SPARQL queries that contain dynamic rules; 3) find counterexamples.

5 Conclusion and Future Work

In this paper, we have discussed three constraints from SDRule-L – sequence, cluster
and implication – and how we can use them to validate linked data. Implications can
be further mapped into semantic decision tables, with which we can analyse the deci-
sion rules. We have also illustrated the first version of SDRule-L tool called Metis.

In the future, we want to add a function of model checksum to Metis. For example,
we shall allow two continuation constraints with inverse directions to be used on two
events.

Acknowledgements: Our use case and experimental data from this paper are taken
from the SBO OSCB project.

References

1. Tang, Y., Meersman, R.: SDRule Markup Language: Towards Modeling and
Interchanging Ontological Commitments for Semantic Decision Making. In
Giurca, A., Gasevic, D., Taveter, K., eds. : Handbook of Research on Emerging
Rule-Based Languages and Technologies: Open Solutions and Approaches Sec. I.
Chapter V. IGI Publishing, USA (2008)

2. Halpin, T., Morgan, T.: Information Modeling and Relational Databases 2nd edn.
Morgan Kaufmann (2008)

3. Demey, J., Jarrar, M., Meersman, R.: A Conceptual Markup Language that
Supports Interoperability between Business Rule Modeling Systems. In : proc. of
OTM 2002: COOPIS, DOA, AND ODBASE, California, USA, vol. LNCS 2519,
pp.19-35 (2002)

4. Biletskiy, Y., Boley, H., Ranganathan, G.: RuleML-based learning object
interoperability on the Semantic Web. Interact. Techn. Smart Edu. 5(1), 39-58
(2008)

5. Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD
Thesis, Vrije Universiteit Brussel, Brussel (2005)

6. Tao, J., Sirin, E., Bao, J., McGuinness, D. L.: Integrity Constraints in OWL. In
Fox, M., Poole, D., eds. : AAAI, Atlanta, Georgia, USA (2010)

7. Tang, Y.: On Semantic Decision Tables. PhD Thesis, Department of Computer
Science, Vrije Universiteit Brussel, Brussels (2009)

8. Tang, Y.: Semantic Decision Tables - A New, Promising and Practical Way of
Organizing Your Business Semantics with Existing Decision Making Tools. LAP
LAMBERT Academic Publishing AG & Co, Saarbrücken, Germany (2010)

