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Abstract Ontologies for enabling semantic interoper-

ability is one of the branches in which agreement be-

tween a heterogeneous group of stakeholders is of vital

importance. As agreements are the result of interac-

tions, appropriate methods should take into account

the natural language used by the community during

those interactions. In this article, we first extend a fact-

oriented formalism for the construction of so-called hy-

brid ontologies. In hybrid ontologies, concepts are de-

scribed both formally and informally and the agree-

ments are being grounded in community interactions.

We furthermore present GOSPL, a collaborative ontol-

ogy engineering method on top of this extension and

describe how agreements on formal and informal de-

scriptions are complementary and interplay. We show

how the informal descriptions can drive the ontology
construction process and how commitments from the

ontology to the application are exploited to steer the

agreement processes. All of the ideas presented in this

article have been implemented in a tool and used in an

experiment involving 40+ users, of which a discussion

is presented.
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1 Introduction

The formal semantics of a (computer-based) system

quite simply is the correspondence between this sys-

tem and some real world as perceived by humans. It is

usually given by a formal mapping of the symbols in

the system’s description to objects in that real world,

such that relationships and logical statements in the

specification language can be assigned a truth-value de-

pending on whether a certain state of affairs among

objects exists in the real world. As the real world is

not accessible inside a computer, storing and reasoning

about semantics requires the world to be replaced by an

agreed conceptualization. This conceptualization is of-

ten in the shape of a formal (mathematical) construct.

A computer-based, shared, agreed formal conceptual-

ization is what is known as an ontology. Ontologies

constitute the key resources for realizing a Semantic

Web. Ontologies also help tackling the difficulty of in-

teroperating autonomously developed and maintained

information systems in a meaningful way.

As a consequence, ontologies in general will evolve

while such agreements are developed and put in place.

These ontologies are approximations of a real world; in

fact to the Web services involved, ontologies are the

world. Ontologies represent an externalization [12] of

the semantics outside of the information system. The

basic techniques and architecture for semantic interop-

eration is based on annotation (of an application sys-

tem) and reasoning (about the concepts involved, in

terms of the ontology).

However, the problem is not what ontologies are,

but how they become community-grounded resources

of semantics, and at the same time how they are made

operationally relevant and sustainable over longer pe-

riods of time. In the DOGMA framework [37], fact-
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oriented approaches such as NIAM/ORM [72,29] have

been proven useful for engineering ontologies. A key

characteristic here is that the analysis of information is

based on natural language fact types. A fact type is the

generalization of facts, a collection of objects linked by

a predicate. “[Person] knows [Person]” would be an ex-

ample of a fact type, and “[Christophe] knows [Robert]”

would be a fact in this example. This brings the ad-

vantage that “layman” domain experts are facilitated

in building, interpreting, and understanding attribute-

free1, hence semantically stable ontologies, using their

own terminology. The semantics in ontologies are the

result from agreements within a community to use par-

ticular labels for referring to certain concepts.

Ontology construction must be viewed as a complex,

social and distinct methodological activity. It must lead

to formalized semantic agreement involving its stake-

holder communities and the various social processes

within those communities. An important tool in reach-

ing those agreements is the use of glosses, natural lan-

guage descriptions interpretable by humans. The use of

glosses while reasoning and discussing concepts among

humans aid in the disambiguation of different concepts,

discovery of implicit relations between concepts, discov-

ery of gaps in the ontology, etc. We call the process of

describing with a natural language description articu-

lation. Enabling semantic interoperability should there-

fore explicitly involve the hybrid aspects of information;

i.e. the co-existence of formal reasoning and “informal”

human interactions (with natural language).

In previous work [18], we presented a formalism for

constructing so called hybrid ontologies [51]. In hybrid

ontologies, communities are promoted to first-class cit-

izen, part and parcel of the formalism, such that the

interactions within the evolving community result in

series of ontology evolution operators. The natural lan-

guage aspect is vital, as the closer the link between hu-

man communication and the resulting system and/or

business communication, the more likely such systems

will work as intended by their various stakeholders. In

[19], we presented a method built on top of that frame-

work – called GOSPL – as well as a tool for this method.

GOSPL is a teachable and repeatable collaborative on-

tology evolution method supporting stakeholders in in-

terpreting and modeling their common ontologies in

their own terminology and context, and feeding back

these results to the owning community.

This article starts in Section 2 with related work on

collaborative ontology engineering and tool support, in

which we identify a gap between methods (and their

1 There are only fact types, no distinction between relations
and attributes. The constraints on roles in these fact types
determine the “attributeness” of a fact type.

tool support) that take into account a special linguis-

tic resource and social processes leading to agreements.

Our approach is described over several sections. Section

3 describes the hybrid ontology-engineering framework

– also describing the properties of agreements on for-

mal and informal concept descriptions – and the collab-

orative method on top of this framework is presented

in Section 4. Section 5 describes how the evolution of

glosses leads to new fact types and constraints for the

formal part of the hybrid ontology. Section 6 then fo-

cuses on the exploitation of application commitments,

which are descriptions of how one individual applica-

tion commits to an ontology, are used in community

interactions. Application commitments are used to find

counterexamples to claims made by community mem-

bers and thus guide the discussions. Section 7 presents

the tool supporting the ideas presented in Sections 3

through 6 next to the results of a usability study pre-

sented elsewhere. We conclude the paper with a discus-

sion in Section 8 and conclusions in Section 9.

The main contributions of this paper are the state-

of-the-art in Section 2, the translation of ontologies into

Description Logic in Section 3 and the exploitation of

glosses and application commitments in Sections 5 and

6 respectively.

2 Related Work

Ontology engineering is defined as the set of activities

that concern the ontology development process, the on-

tology life cycle, the principles, methods and method-

ologies for building ontologies, and the tool suites and

languages that support them [25]. One can generally

identify two phases in an ontology engineering method:

elicitation and application [14]. In elicitation, knowl-

edge is extracted from various resources such as docu-

ments of any kind or the experience of domain experts

within a specific context. In the subsequent application

phase, an ontology is used in an application context.

Quite a few surveys on the state of the art on on-

tology engineering methods exist [62,61,25]. For this

paper, the methods we take into account are: CYC [27,

44], Business Semantics Management (BSM) [11], DILI-

GENT [59,58], DOGMA [37] and DOGMA-MESS [52],

HCOME [41,40], Holsapple and Joshi [33], Karapiperis

and Apostolou [38], METHONTOLOGY [22,3], NeOn

[24,9], On-To-Knowledge [63,64], OntoEng [1], Ontol-

ogy 101 [56], the Unified Method [69,68] and UPON

[15,16]. We furthermore took both Web-Protégé [67]

and Collaborative-Protégé [66] into account. Both are

collaborative tools for ontology engineering developed

by the same group of Ontology 101, but do not refer to

a specific method.
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Table 1 Comparison of the state-of-the-art on ontology engineering methods.
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Explicitly intended for distributed & collaborative construction? N Y Y Y Y C C N Y C C N Y C C
Natural language descriptions of concepts? D Y N Y A N N Y Y D Y D Y Y Y
Special linguistic resource as software artifact? N Y N Y W N N N N N N* N N N N*
Tool support? Y Y A Y Y N O Y Y Y O Y Y N O
Tool support for dialogue? N Y Y N Y N N N E E N N Y N N
Social processes for agreements on formal descriptions? N I I Y I Y Y N I I Y N Y Y Y
Tool support for social processes on formal descriptions? N I I P I - - N I I - N Y - -
Social processes for agreements on informal descriptions? N I N N I N N N I N Y N P N N
Tool support for social processes on informal descriptions? N I N N I - - N I N - N I - -
Agreement leads to ontology evolution? - N M M M M M - M M M - Y M M
"Owner" of the ontology? - C H H H K K - K K N - K K K

Table 1 compares the different methods with respect

to following aspects:

– Explicitly intended for distributed and col-

laborative construction? The values are: Y) yes;

N) no; and C) collaborative aspects are touched
upon, but not explicitly mentioned.

– Natural language descriptions of concepts?

Y) yes; N) no; D) support for documentation in

which natural language definitions can be provided;

and A) adoption of existing resources to align with

concepts of the ontologies.

– Special linguistic resource as software arti-

fact? This aspect investigates whether there is a

special linguistic resource next to the formal descrip-

tions of the ontology. The values are: Y) yes; N) no;

and W) use of an existing linguistic resource. Both

OntoEng and UPON do explicitly refer to a glossary

in their papers, but it is not stored as a software ar-

tifact. Their entries are therefore marked with an

asterisk.

Ontologies should be considered as evolving entities.

Argumentation and negotiation processes to discuss the

evolution of ontologies are thus critical. A negotiation

process is defined as a specification conversation about

a concept (e.g., a process model) between selected do-

main experts from the stakeholders (community of or-

ganizations) [13]. In order to substantiate their perspec-

tives, domain experts must formulate arguments. The

following aspects look to what extent the methods have

support for specific social processes and whether their
tools provide support for those.

– Tool support? Y) there is specific tool support

for this method; N) no specific tool support for this

method has been proposed; A) adopting/extending

existing ontology engineering tools for the method;

and O) authors refers to other existing (type of)

tools for some tasks.

– Tool support for dialogue? Y) Yes; N) no or not

proposed; and E) via external (integrated) service

or tool. The most accepted argumentation model is

Issue-Based Information System (IBIS) [43], which

provides a simple and abstract infrastructure for

non-trivial problems that cost a lot to solve in terms

of time, money, etc. IBIS was the model that DILI-

GENT, HCOME, and NeOn adopted. DILIGENT

processes are still under control of knowledge engi-

neers (the completion of some activities is partially

dependent on the decisions of a board of experts),

whereas HCOME aims at empowering users to be
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completely autonomous in their actions and deci-

sions. The first is also true for NeOn. The NeOn

toolkit provides support for discussing issues (based

on DILIGENT) via a plugin that is connected with

Cicero [21], a platform for keeping track of discus-

sions between the developers and users of an on-

tology. On-To-Knowledge proposed a plugin that is

based on existing commercial software for the brain-

storming and elicitation of competency questions.

Competency questions state which queries the on-

tology should support (cfr. [70]). Both NeOn and

On-To-Knowledge are therefore regarded as using

external (integrated) services and tools.

– Social processes for agreements on formal de-

scriptions? This aspect investigates to what extent

methods explicitly describe or prescribe special so-

cial processes for agreeing on formal descriptions of

concepts. Informal here means that concepts are de-

scribed by means of natural language descriptions

rather than a formalism. The values are: Y) yes; N)

no; and I) “implied” by the (tool) support for dia-

logue. Methods with a tool supporting dialogue rely

on the dialogue support to support the social pro-

cesses. DOGMA-MESS proposed a meaning evolu-

tion system. The two methods described in [33] and

[38] defined processes for achieving consensus and

both OntoEng and the Unified Method mentioned

the use of - amongst others - brainstorming sessions

to elicit knowledge for the formal descriptions. On-

To-Knowledge does not provide such support as the

dialogue framework is only used for the elicitation

of competency questions. The dialogue is thus used

to agree what questions should be supported by the

ontology, but not how the ontology should look like.

– Tool support for social processes on formal

descriptions? This aspect compares to what ex-

tent the method provides tool support for some of

the processes described for the previous point. The

values are: Y) yes; N) no or not proposed; P) partial;

I) “implied” by the (tool) support for dialogue; and

-) not applicable as there is no tool support or the

authors referred to other existing (type of) tools.

DILIGENT, HCOME and NeOn have taken argu-

mentation frameworks into account, which are re-

flected in the tool support and therefore these pro-

cesses can be considered implied. Web Protégé offers

support for dialogue in a forum-like manner, and re-

cently provided special requests for formal changes

that are fairly frequent in the medical domain [2].

Also the Business Semantics Glossary for BSM sup-

ports dialogue via their wiki technology. DOGMA-

MESS is considered to provide specific tool support

for their meaning evolution support system (MESS)

module. In DOGMA-MESS, so-called “tickets” are

sent around to the stakeholders for rendering their

perspectives [12]. The stakeholders receive the as-

signment to provide their perspective that are then

stored on the server. The meaning negotiation pro-

cesses for evolving the ontology, however, were only

described and not implemented in a tool. Only some

support for analyzing conflicts between the different

perspectives was proposed to lead the MESS pro-

cess, usually a knowledge engineer or core domain

expert [12].

– Social processes for agreements on informal

descriptions? This aspect investigates to what ex-

tent methods explicitly describe or prescribe special

social processes for agreeing on informal descrip-

tions of concepts. The values are: Y) yes; N) no or

not proposed; P) partial; and I) “implied” by the

(tool) support for dialogue. Again here, the methods

with a tool supporting dialogue rely on the dialogue

system to support the social processes. Only Onto-

Eng proposed social processes for the construction

of natural language definitions of concepts, albeit as

keywords such as “brainstorming”. Unfortunately,

OntoEng does not propose tool support for these

processes. This aspect for Ontology 101 (collab) is

considered partial as the authors proposed special

interactions for formal changes, but not for informal

descriptions. They did, however, provide a request

to introduce terms in which they foresaw a field for

a natural language definition.

– Tool support for social processes on informal

descriptions? This aspect compares to what ex-

tent the method provides tool support for some of

the processes described for the previous point. The

values are: Y) yes; N) no or not proposed; I) “im-

plied” by the (tool) support for dialogue; and -) not

applicable as there is no tool support or the authors

referred to other existing (type of) tools.

– Agreement leads to ontology evolution? This

aspect looks to what extent agreements lead to on-

tology evolution. Ideally, agreements should auto-

matically lead to ontology evolution. The values for

this aspect are: A) automatically; M) manually; N)

not; and -) not applicable as method is not explicitly

intended for distributed collaboration.

Most methods that take the collaborative aspects of

ontology engineering into account manually evolve

the ontology after agreement has reached. Only On-

tology 101 (collab) proposed some special requests

which – after agreement – automatically evolves the

ontology [2]. The requests are stored as annotations

in the ontology. The only method not really tak-

ing this aspect into account is BSM. The wiki sup-
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porting this method [17] allows anyone with suffi-

cient rights to add new knowledge, without discus-

sion. The formal parts of the ontology, however, do

have a status attribute stating whether some part

is a candidate, accepted, etc. The informal parts of

the ontology do not have such properties. The wiki

paradigm allows someone to make changes and dis-

cussions to happen afterwards. This approach has

several problems:

– The ontology is not guaranteed to be stable at

any time. The authors actually state that a sta-

ble version of the ontology has to be then “com-

piled” for use for the specific interoperability re-

quirements (e.g., into UML, XSD, etc.).

– Community members could already commit to

the knowledge they entered, even it has not been

accepted yet. This would hamper the possibility

of finding compromises.

The reason why most methods require the manual

evolution of ontology is that either someone elicits

knowledge without tool support and then enters the

results or the argumentation frameworks allow users

to discuss issues, solutions, etc. rather than discuss

changes. If the latter would have been adopted, mo-

tivating and discussing the change, then ontology

evolution could be automated.

– “Owner” of the ontology? This aspect compares

who the “owners” of an ontology are for a par-

ticular method. Here, the word “owner” refers to

the users who can change the ontology. The values

for this aspect are: C) the community of stakehold-

ers (possibly including knowledge engineers) are the

owner; H) stakeholders are the owner of their on-

tology, knowledge engineering ensure the evolution

of the shared space; K) knowledge engineers have

ownership; N) not proposed; and -) not applicable

as method is not explicitly intended for distributed

collaboration;

BSM is the only method that allows a community

to develop and maintain their ontologies. In most

methods, the knowledge engineers to be the own-

ers of the ontology. DOGMA-MESS, HCOME and

DILIGENT allow individual stakeholders to main-

tain a “local” view on matters, but the shared per-

spective is managed by the knowledge engineers.

DOGMA-MESS has the notion of organizational on-

tologies, HCOME refers to it as personal spaces and

DILIGENT as local ontologies. A board of stake-

holders with sufficient rights will then try to find

a consensus or compromise from the different per-

spectives to evolve the ontology. The stakeholders

remain thus owner of their ontology.

The problem with this method is that even though

a consensus is sought, people describe their perspec-

tive on matters in a formal way and could thus al-

ready commit to their own descriptions. Not only

that, they could as well already annotate their ex-

isting systems with their predicates. Rather than

discussing changes in the ontology, changes are per-

formed locally and then discussed upon. And one

would indeed benefit from keeping as much as pos-

sible their desired changes. This could thus ham-

per or delay reaching a consensus as it is possible

that stakeholders need to revert and commit to the

new version of the ontology as decided upon by the

board (with the involvement of all stakeholders, of

course). OntoEng did not explicitly state who the

owners of an ontology are. The owner of the ontol-

ogy in Ontology 101 (collab) is presumed to be the

knowledge engineer as the authors did not explicitly

refer to a method in their papers describing Web-

and Collaborative-Protégé, but a case study in the

medical domain hinted the use of knowledge engi-

neers [57].

One can conclude from above that the methods and

tools described in the state-of-the-art do not take into

account the social processes for constructing natural

language definitions of concepts. Most of the methods

that provide support for social interactions rely on this

without specifying any specific processes or considering

the natural language definitions as an equal import ar-

tifact next to the ontology. Definitions are often seen as

annotations to the ontology (e.g., comments).

Web- and Collaborative-Protégé are not methods,

but a tools. These tools were taken into consideration

as Ontology 101 (collab) as they were developed by the

same group that proposed Ontology 101 and developed

Protégé. It is interesting to note that in this compar-

ison table, only the authors of Collaborative Protégé

propose the formalization of specific requests to evolve

the ontology. This is an important step towards agree-

ment evolving ontologies as changes are discussed, and

not issues.

Also apparent is that most methods rely on knowl-

edge engineers are the owner of the ontology (either im-

mediately, or via a setting in which they own the shared

part). Ontologies, however, should belong to the com-

munity and the role of knowledge engineers should be

reduced to a minimum or even removed. As Heylighen

noted in [31]: “If the process were directed by a single

individual (say, the group leader), who imposes a con-

sensus view on the others, then that perspective would

not be more powerful than the perspective of the lead-

ing individual. In other words, the collective would not

be in any way more intelligent than its leader.”
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3 Hybrid Ontology-engineering Framework

Modeling of ontologies within a community of stake-

holders and designers is a critical activity for the even-

tual success of semantic interoperability. Fundamen-

tal to our approach is the involvement of structured

natural language as a vehicle to elicit useful and rele-

vant concepts from community communication, and the

mapping of these social processes to evolutionary pro-

cesses in the emerging ontology. The formalism and lan-

guage presented here are therefore upstream from the

usual ontology languages such as RDF(S) and OWL

and should not be confused with those; in fact it is

relatively straightforward to compile the resulting on-

tologies into, for example, RDF(S) and OWL at any

time.

One fundamental principle of all large system de-

signs is the so-called separation of concerns resulting

in architectures that delegate respective functionalities

to the stakeholders responsible for them. For example,

modules are provided by the (generic) architecture of

information systems driven by a database and largely

separate the concern of basic data management from

that of application development, the famous paradigm

of data independence.

We reapply this principle in our approach by the

rigorous separation in conceptualizations of “fact mod-

eling” from all application-specific interpretations. It

is this interpretation process (formally, of statements

shared in the application system in terms of ontology

concepts) that is usually called “reasoning” in the Se-

mantic Web literature. However, there is little or no

attention to such separation of concerns in the usual

reasoning formalisms of Semantic Web in terms of De-

scription Logics and its syntactical manifestations such

as OWL and its dialects. In our approach, this inter-

pretation is exclusively delegated to the mapping be-

tween application system and the “lexon base” of the

ontology. We shall call these mappings ontological com-

mitments after [26], but we shall reify them in a well-

defined manner suited to our formalism2. Intuitively,

our commitments select the fact types needed, map

application symbols to ontology concepts, and contain

the rules and constraints – expressed in ontology terms

– under which application symbols, relationships and

business rules must be interpreted when they are to be

shared with other autonomous systems. Those systems

will share the concepts, but of course will have their

own symbols, business rules, etc.

2 We do, however, capture what part of the conceptualiza-
tion and its axiomatization should be present in all commit-
ments to ensure proper semantic interoperation between the
different systems (we refer to Section 3.1 for more details).

This separation of concerns allows a natural intro-

duction of formalized social processes in goal-oriented

communities such as exist in enterprises, professional

networks, standardization groups, etc. In fact, this is

true in any “human agent” context for which agreement

about fact types is more efficient than reasoning from

axioms. Note that nearly all data models for databases

and business information systems were arrived at in this

manner for the last 50 or so years.

In [50] a formalism and method for ontology devel-

opment called DOGMA3 was defined that illustrated

and implemented these principles, now lifted to domain

level from the mere enterprise system level. As indicated

above, such descriptions must be seen as different from

their eventual implementations. In the method and life-

cycle of semantic systems, the creation of DOGMA on-

tology descriptions belongs upstream from such imple-

mentation - although of course in many cases one will

have to “mine” or elicit the required knowledge from

existing information systems and their enterprise envi-

ronments.

Definition 1 (DOGMA Ontology Descriptions)

A DOGMA Ontology Description Ω is an ordered triple

〈Λ, ci,K〉 where Λ is a lexon base, i.e. a finite set of

lexons. A lexon is an ordered 5-tuple 〈γ, t1, r1, r2, t2〉
where γ ∈ Γ is a context identifier, t1, t2 ∈ T are terms,

and r1, r2 ∈ R are role labels. A lexon is a binary fact

type that can be read in two directions: t1 playing the

role of r1 on t2 and t2 playing the role of r2 on t1. Here,

the usual alphabets for constructing the elements of T ∪
R are omitted for simplicity. ci : Γ×T → C is a function

mapping pairs of context identifiers and terms to unique

elements of C, a finite given set of concepts. K is a finite

set of ontological commitments. Each commitment is

an ordered triple 〈σ, α, c〉 where σ ⊂ Λ is a selection of

lexons from the DOGMA ontology description, α : Σ →
T is a mapping called an annotation from the set Σ of

application (information, system, database) symbols to

terms occurring in that selection, and c is a predicate

over T ∪R of that same selection expressed in a suitable

FOL language.

Context identifiers are pointers to the origin of a

lexon, and helps with the disambiguation of term- and

role-labels. Within a context γ ∈ Γ and t ∈ T , ci(γ, t)

is the definition itself of the concept agreed by all users.

To emphasize this explicit agreement, we shall avoid la-

beling concepts as such in our formalism, and assuming

they are “computed” by the community from the term

labels.

Example 1 provides an example of a set of lexons

and a commitment.

3 Developing Ontology Guided Methods and Applications
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Example 1 Assuming lexon base Λ containing the following
lexons:

– 〈Cultural Domain Expert 1, Artist, with, of, Name〉
– 〈Cultural Domain Expert 1, Artist, with, of, First Name〉
– 〈VCard, VCard, with, of, Email Address〉
– 〈Cultural Domain Expert 2, Artist, with, of, Age〉
– 〈Cultural Domain Expert 1, Artist, born on, of birth of,

Date〉
– 〈Offer #1 of Organization A, Offer, with, of, Title〉
– 〈Offer #1 of Organization A, Offer, valid, for, Date〉
– 〈RFP Documentation, RFP, with, matches, Offer〉
– 〈FOAF, Agent, with, of, Name〉
– 〈Cultural Domain Expert 3, Artist, contributing to, with

contribution of, Sculpture〉
– ...

All context-term pairs evoke concepts, which are referred
to by the ci function. The owner of an information system
with a relational database with a table ARTIST with a field
FNAM containing the names of an Artist could commit to this
lexon base with a commitment κ ∈ K by selecting the lexon
(selection σ): 〈Cultural Domain Expert 1, Artist, with, of,
First Name〉 , constrain this lexon stating that artists have
at most one first name (constraints c): EACH Artist with AT
MOST 1 First Name , and finally annotate the field in this ta-
ble with this lexon (annotations α): MAP ’ARTIST’.’FNAM’
ON First Name of Artist.

Note that the separation of concerns mentioned in

the previous Section is reflected here through the set

of plausible fact types in the lexon base on one side,

and the constraints, rules, etc. on a relevant selection

of those lexons on the other. In fact there are no con-

straints or any other reasoning supports included in the

lexon base, making for a so-called light ontology.

As the “unique concept” property mentioned above

informally and intuitively results from a community

agreement, we argued to formalize a community as such

a context [18]. We introduced the notion of a hybrid

ontology in which the context identifiers refer to com-

munities and introduced a special linguistic resource –

called glossary – to support the social processes leading

to such agreements.

Definition 2 (Hybrid Ontology Description) A

Hybrid Ontology Description is an ordered pair HΩ =

〈Ω,G〉 where Ω is a DOGMA ontology description in

which the contexts in Γ are labeled communities and G

is a glossary.G is an ordered triple 〈g1, g2, EQG〉, where:

g1 is a finite set of functions of the form g1 : Γ × T →
Gloss, the Term Glossary; g2 is a finite set of functions

of the form g2 : Λ→ Gloss, the Lexon Glossary; Gloss

is a set of human-interpretable objects; EQG is a finite

set of pairs Gloss × Gloss containing the agreement

that two glosses refer to the same concept.

EQG will automatically contain 〈φ, φ〉 for each gloss

φ ∈ Gloss. Below we will give an example of a Hybrid

Ontology Description.

Example 2 Given the DOGMA Ontology Description Ω of
Example 1, the contexts of the lexons in the lexon base are
restricted to communities. The lexon base Λ will thus look as
follows:

– 〈Cultural Domain Community, Artist, with, of, Name〉
– 〈Cultural Domain Community, Artist, with, of, First

Name〉
– 〈Address Community, VCard, with, of, Email Address〉
– 〈Cultural Domain Community, Artist, with, of, Age〉
– 〈Cultural Domain Community, Artist, born on, of birth

of, Date〉
– 〈Vendor Community, Offer, with, of, Title〉
– 〈Vendor Community, Offer, valid, for, Date〉
– 〈RFP Community, RFP, with, matches, Offer〉
– 〈Address Community, Agent, with, of, Name〉
– 〈Cultural Domain Community, Artist, contributing to,

with contribution of, Sculpture〉
– ...

With this lexon base, a glossaryG to construct the Hybrid
Ontology Description could look as follows:

– g1 = {〈〈Cultural Domain Community, Date〉, “The
day of the month or year as specified by a number.”〉,
〈〈Vendor Community, Date〉, “Time stated in terms of
the day, month, and year.”〉,...}

– g2 = {〈〈Cultural Domain Community, Artist, contribut-
ing to, with contribution of, Sculpture〉, “The part played
by an artist in bringing about a result.”〉, ...}

– EQG = {〈“The day of the month or year as specified by a
number.”, “Time stated in terms of the day, month, and
year.”〉, ...}

3.1 The Commitment Layer

In the hybrid ontology-engineering framework, we dis-

tinguish two types of ontological commitments. The

first is called a community commitment and is intro-
duced to add structure to the agreement processes to

construct ontologies for reaching semantic interoper-

ability. It is a selection of lexons of the lexon base to-

gether with a set of constraints on this selection. The

selection of lexons and constraints should capture the

intention of the types of applications that will commit

to the community commitment. Agreements on con-

straints are focused on identifying a set of attributes

that uniquely and totally identifies instances of a con-

cept (as we will describe later on); a necessity for proper

interoperation. Indeed, the number of concepts that

should have such a “reference-structure” depends on

the semantic interoperability requirements of the com-

munity.

The second type, called an application commitment,

will i) commit to one or more community commitments

and ii) provide mappings of its application symbols to

terms and relations in the selection. In addition, iii)

an application commitment can commit to other lex-

ons and constraints not necessarily appearing in a com-
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munity commitment. They may provide more informa-

tion on how this application uses the concepts (e.g., in

terms of extra constraints), or even application-specific

knowledge to ensure that the information inside that

application is properly connected. An example would

be the annotation of join-tables and identifiers that are

specific to the application.

Fig. 1 depicts the different “layers” of the hybrid

ontology engineering framework graphically.

Hybrid Ontology Framework

Glossary

Community
Commitments

Lexons

Application
Commitments

App. 
Com. N...App. 

Com. 1

...

Fig. 1 Different “layers” of the hybrid ontology-engineering
framework.

3.1.1 Constraints in a Commitment

The constraints in a commitment are largely based on

Object Role Modeling (ORM) [29] constraints. ORM

is a fact-oriented method for performing information

analysis at the conceptual level. We will describe the
constraints we have adopted, as well as constraints in-

troduced for the purpose of GOSPL.

From ORM, the constraints necessary for creating

referable terms are taken into account. A term is refer-

able when that term is either lexical (thus its instances

can be printed on a screen) or if that term has a unique

reference, a set of attributes that uniquely and totally

identify instances of concepts referred to by this term.

The terms referred to in those attributes (i.e., played

by the co-role of the term) have to be referable as well.

“Uniquely” means a role played at most once by every

instance; “Totally” means that the role is mandatory,

this role has to be played by every instance (a manda-

tory constraint); “Identifying” means that every combi-

nation of instances of concepts referred to by each term

playing the co-role refers to only one instance.

Assume that a floor is uniquely and totally identified

by its floor number and the floor number is lexical in

some community C1. Then the constraints will look as

follows:

<C1, Floor, with, of, Floor Number>

EACH Floor with AT MOST 1 Floor Number.

EACH Floor with AT LEAST 1 Floor Number.

EACH Floor IS IDENTIFIED BY (Floor Number of Floor).

EACH Floor Number IS LEXICAL.

Floor thus has a unique simple reference. A simple

reference is one unique, total and identifying attribute.

A unique composite reference has more than one at-

tribute. Given the description of floor from above, as-

sume that each hotel room is uniquely and totally iden-

tified by its room number (which is lexical) and the floor

in the same community. This would look as follows:

<C1, Hotel Room, with, of, Room Number>

<C1, Hotel Room, with, of, Floor>

EACH Hotel Room with AT MOST 1 Room Number.

EACH Hotel Room with AT LEAST 1 Room Number.

EACH Hotel Room with AT MOST 1 Floor.

EACH Hotel Room with AT LEAST 1 Floor.

EACH Hotel Room IS IDENTIFIED BY

(Floor of Hotel Room) AND

(Room Number of Hotel Room).

EACH Room Number IS LEXICAL.

Sometimes the instances of a lexical term are limited

to a certain set, finite or not. These value constraints

can be part of the domain and even shared. A value

constraint is described in terms of a value range, which

can be an explicit enumeration of elements, ranges or

even regular expressions. For example, if we want to

limit the occurrences of category type to “Single” and

“Double”, we have:

<C1, Hotel Room, with, of, Category Type>

EACH Category Type IS LEXICAL.

EACH Category Type IN (’Single’, ’Double’).

The interpretation of some role-label combinations

can be constrained by the community. For instance,

the ‘Cultural Domain’ community can declare that the

combination “is a / subsumes” refers to the taxonomic

relation with:

INTERPRET ’Cultural Domain Community’ is a / subsumes

AS TAXONOMY.

By doing so, all occurrences of lexons in the com-

mitment of that community with that role-label combi-

nation are interpreted as such. The same can be done

with meronomic relations. By default, the “is a / sub-

sumes” is considered the taxonomic relation. Note that

these interpretations are grounded with the community.

3.2 Synonyms within and across Communities

Two communities γ1, γ2 ∈ Γ can agree that their re-

spective terms t1, t2 ∈ T refer to the same concept. This
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agreement is capture with the relation≡C , ci(γ1, t1) ≡C
ci(γ2, t2) is the agreement of both communities that

their respective terms refer to the same concept. Note

that if γ1 = γ2, it refers to this type of agreement within

one community.

Example 3 Given the Hybrid Ontology Description in Exam-
ple 2, both vendor- and cultural domain community can agree
that their term “Date”, which happens to be used by both
communities, refers to the same concept. By agreeing, they
assert that ci(’Vendor Community’,“Date”) ≡C ci(’Cultural
Domain Community’,“Date”) is part of both community
commitment’s constraints.

We note that assertions of gloss-equivalences and

synonymy are only symmetric, reflexive and transitive

– i.e. an equivalence relation – within one agreement

process. This constraint was put in place to avoid syn-

onymy and gloss-equivalences to be propagated without

each of the communities validating the new relations in-

ferred from these assertions. These new relations can,

however, be analyzed to make additional ≡C assertions

if those concepts indeed are synonymous across two ore

more agreement processes.

The ≡C agreements are stored in the community

commitments. When one wishes to extend an applica-

tion commitment with application-specific knowledge

about one of the shared concepts in the community

commitment, however, he also needs to make explicit

that the term he’s using from this concept is synony-

mous to that of the community. For instance, assume

that a particular application is committing to the term

“Artist” in the cultural domain community and wishes

to annotate his application-specific identifier belonging

to instances of artist in his database, he would add fol-

lowing lexon and synonym statement to his application

commitment (where the origin of this lexon is his orga-

nization):

<’MyOrganization’, Artist, with, of, AID>

LINK(’Cultural Domain Community’,Artist,

’MyOrganization’,Artist).

3.3 Implementing Commitments in OWL and DL

We now present a lossless schema transformation for

community commitments in GOSPL in the Description

Logic (DL) dialect DL-LiteA,id [7]. A lossless schema

transformation is a transformation of a schema that

allows one to preserve each permitted population. In

other words, the populations can be reconstructed un-

ambiguously. As a consequence, a bijective mapping

between both sets of permitted populations must ex-

ist. The “losslessness” of a transformation needs to be

shown.

There are several attempts to bridge the gap be-

tween fact-oriented modeling approaches and logical

formalisms. Notable works include [32] and [23], pre-

senting a translation into OWL 24 of ORM graphical

representations. Most of them identify a subset of ORM

that can be semantically translated to DLs. Authors

in [32] directly transfer ORM representations to DL

formulas case by case. In [23], the corresponding lin-

ear syntax was introduced. The syntax is then given

set-theoretic semantics and translation to DLs. But in-

stead of a direct translation, this approach uses some

sort of schema transformation in which the fact type

is reified (i.e. becomes a concept) and the object types

playing role inside that fact type are now playing roles

with the newly introduced concept. Both approaches

try to capture the intended meaning of ORM represen-

tations and express them in DL formulas. However, we

will show later in this Section that both approaches are

not lossless.

To demonstrate that our proposed translation into

DL-LiteA,id is lossless, we translate both the model in

the community commitment and the translation in DL-

LiteA,id in a set of first-order logic (FOL) formulas. The

first is done by adopting the formalization provided by

[28] and the latter by [4]. Then we show that the exten-

sions of both sets of FOL formulas are equal. In other

words, we will show that one is a logical consequence of

the other and vice versa.

Description logics are a decidable fragment of FOL.

Concept names are unary predicates and role names

are binary predicates. Concept descriptions correspond

to FOL formulas with one free variable, which will be

bound when used in a concept inclusion statement [4].

The translation of assertions in a DL into FOL formulas

are provided by [4]. The translation of concept descrip-

tion C into a FOL formula with one free variable τx(C)

is defined as follows:

1. τx(A) := A(x) for all concept names A

2. τx(C uD) := τx(C) ∧ τx(D)

3. τx(C tD) := τx(C) ∨ τx(D)

4. τx(¬C) := ¬τx(C)

5. τx(∀r.C) := ∀y(r(x, y)→ τy(C)), where y 6= x

6. τx(∃r.C) := ∃y(r(x, y) ∧ τy(C)), where y 6= x

Given a TBox T with concept-inclusions, the trans-

lation τ(T ) of T is given by:

τ(T ) :=
∧

CvD∈T

∀x(τx(C)→ τx(D))

4 http://www.w3.org/TR/owl2-overview/

http://www.w3.org/TR/owl2-overview/
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3.3.1 Lexon

The translation of a lexon into DL-LiteA,id is shown

below. To prove that in this translation is lossless, we

will demonstrate their equivalence. To do so, we will

first translate both the fragments in DOGMA and their

proposed translation in DL in FOL and use a semantic

tableau5 to demonstrate that |= Σ ↔ Φ holds.

Before we translate, we need to state that all roles

with the same label are translated in such a way the

labels become unique. For instance, in 〈γ,A,r,s,B〉 and

〈γ,C,r,s,D〉 the labels of the first roles are the same,

but the roles are different: the first has domain A and

range B, the second domain C and range D. During

translation, they are thus transformed into r1 and r2
and the same happens for both roles with label s.

A lexon 〈γ,A,R,S,B〉 is translated into FOL results

in the following formulas Σ:

∀x(∀y(R(x, y)→ (A(x) ∧B(y)))) (1)

The corresponding DL-LiteA,id statements are:

∃R.> v A (2)

∃R−.> v B (3)

Translated into FOL, the statements in Φ look as

follows:

∀x(∃yR(x, y)→ A(x)) (4)

∀x(∃yR(y, x)→ B(x)) (5)

The semantic tableaus in Fig. 2 and 3 both close,

meaning there are no counterexamples. Since one is a

consequence of the other and vice versa, both sets of

FOL formulas are equivalent. As they are equivalent,

so are their possible extensions. Because of this equiva-

lence, it follow naturally that both sets of formulas are

population equivalent.

5 Semantic tableaux are an efficient and convenient means
to test whether a formula φ is a logical consequence of a set
of formulas Σ in FOL. This is done by trying to make φ false
with respect to Σ by looking for counterexamples for the
sequent Σ ◦ φ. A sequent are two sets of formulas φ1, ..., φn

and ψ1, ..., ψm separated by the symbols ◦. A evaluation V
is called a counterexample of a sequent φ1, ..., φn ◦ψ1, ..., ψm

if V (φ1) = ... = V (φn) = 1 and V (ψ1) = ... = V (ψm) = 1.
When a formula φ occurs on both sides of the sequent, the
evaluation of φ returns both 1 and 0. In that case, the sequent
contains a contradiction and thus has no counterexample.
Formulas on the LHS of a sequent have to be made true
and formulas on the RHS of a sequent false. For instance, in
Σ,α∧β ◦Π, α∧β is true if and only if both α and β are true,
which then yields the subproblem Σ,α, β ◦ Π (by using the
∧L rule, where the ‘L’ stands for left). A branch is considered
closed if it contains the same formula both on the LHS and
RHS in one of the sequents of a branch. Otherwise the branch
is open and a counterexample is found. A counterexample is
a model that makes the LHS of the top sequent true, but the
RHS false.

∀x(∀y(R(x, y)→ (A(x) ∧ B(y)))) ∀x(∃yR(x, y)→ A(x)) ∧ ∀x(∃yR(y, x)→ B(x))

∀x(∃yR(x, y)→ A(x))

∧R

∃R(d, y)→ A(d)

D = {d} ∀R

∃yR(d, y) A(d)

→ R

R(d, e)

D = {d, e} ∃L

∀y(R(d, y)→ (A(d) ∧ B(y)))
∀L

∀y(R(e, y)→ (A(e) ∧ B(y)))

R(d, e)→ (A(d) ∧ B(e))
∀L

R(d, d)→ (A(d) ∧ B(d))

R(d, e)

=

→ L

A(d) ∧ B(e)

A(d), B(e)

=

∧L

∀x(∃yR(y, x)→ B(x))

∃R(y, d)→ B(d)

D = {d} ∀R

∃yR(y, d) B(d)

→ R

R(e, d)

D = {d, e} ∃L

∀y(R(e, y)→ (A(e) ∧ B(y)))
∀L

∀y(R(d, y)→ (A(d) ∧ B(y)))

R(e, d)→ (A(e) ∧ B(d))
∀L

R(e, e)→ (A(e) ∧ B(e))

R(e, d)

=

→ L

A(e) ∧ B(d)

A(e), B(d)

=

∧L

1

Fig. 2 Semantic tableau to show that Σ |= Φ

∀x(∃yR(x, y)→ A(x)) ∧ ∀x(∃yR(y, x)→ B(x)) ∀x(∀y(R(x, y)→ (A(x) ∧ B(y))))

∀x(∃yR(x, y)→ A(x)), ∀x(∃yR(y, x)→ B(x))

∧L

∀y(R(d, y)→ (A(d) ∧ B(y)))
D = {d} ∀R

R(d, e)→ (A(d) ∧ B(e))
D = {d, e} ∀R

R(d, e) A(d) ∧ B(e)
→ R

A(d)

∧R

∃yR(d, y)→ A(d)

∀L

∃yR(e, y)→ A(e)

∃yR(d, y)
→ L

R(d, e), R(d, d)

=

∃R
A(d)

=

B(e)

∃yR(y, d)→ B(d)

∀L

∃yR(y, e)→ B(e)

∃yR(y, e)
→ L

R(d, e), R(e, e)

=

∃R
B(e)

=

1

Fig. 3 Semantic tableau to show that Φ |= Σ

3.4 Mandatory Constraints

The translation of a mandatory constraint into DL-

LiteA,id is shown below. As the reader can see below,
both translations in FOL yield the exact same formula

and are thus equivalent. The constraint that states that

EACH A R’s AT LEAST 1 B is translated into FOL

as follows: ∀x(A(x) → ∃y(R(x, y))). The correspond-

ing DL-LiteA,id statement is A v ∃R.>. Translated

into FOL, this statement looks as follows: ∀x(A(x) →
∃y(R(x, y)))

3.5 Internal Uniqueness Constraints

In DL-LiteA,id, a role functionality assertion expresses

the functionality of a role. An attribute functionality

assertion expresses the functionality of an atomic at-

tribute.

Since we only have lexons, we have to examine only

five cases: 1) no external uniqueness constraint, 2) one

spanning only the first role, 3) one spanning only the

second role, 4) one spanning the first role and one span-

ning the second role (a so-called one-to-one relation)
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and finally 5) one spanning both roles. Cases 1 and

5 are the same. In this Section, we thus only consider

uniqueness constraints over the first role. The third case

is the same as the second merely needs to be reversed

and the fourth is a combination of cases 2 and 3.

The translation of EACH A R’S AT MOST 1 B into

FOL is ∀x(∀y(∀z((R(x, y)∧R(x, z))→ y = z))). In DL-

LiteA,id, this constraints is asserted with (funct R). In

turn, its translation into FOL yields the same formula:

∀x(∀y(∀z((R(x, y) ∧ R(x, z)) → y = z))). Again, the

translation of DOGMA and DL-LiteA,id into FOL are

equivalent.

3.6 External Uniqueness Constraints

To implement external uniqueness constraints in DL,

we use identification assertions. Identification assertions

were first introduced in [7]. Identification assertions are

of the form (id B π1, ..., πn), where B is a basic concept

and every πi is a path. A path is either: an atomic role

or the inverse of an atomic role; an atomic attribute

or the inverse of an atomic attribute; a composition of

two paths πa, πb denoted as πa ◦ πb, where ◦ denotes

the composition operator on two paths; a test relation

‘D?’ representing the identity relation on instances of

D (either a basic concept or a value-domain). Test rela-

tions are used to impose involving instances of a certain

concept or value-domain in the paths. At least one of

the paths in an identification assertions has to have a

length of one, i.e., be an atomic role or attribute (or the

inverse thereof).

The interpretation of an identification constraint

states that for any two instances of a1, a2 ∈ I(A), if

the intersection of the interpretation of each path π in

the identification constraint for these two instances are

not empty, then these two instances are actually the

same instance.

The translation of EACH A IS IDENTIFIED BY

(B1 S1 A) AND ... AND (Bn Sn A) into FOL looks as

follows:

∀x1(∀x2(∀y1(...∀yn((R1(x1, y1) ∧ ... ∧Rn(x1, yn)

∧R1(x2, y1) ∧ ... ∧Rn(x2, yn))→ x1 = x2)...))) (6)

The statement in DL-LiteA,id that corresponds with

this statement is (id A R1 ... Rn), which again yields

in the same translation into FOL.

3.6.1 Subtyping

Translating concept hierarchies in DOGMA and DL-

LiteA,id into FOL is straightforward. The translation of

a subtype declaration – shown below – into FOL pro-

vided by [28] is the same as the translation of the cor-

responding concept-inclusion in DL-LiteA,id, and thus

equivalent. The lexon 〈γ,A,is a,subsumes,B〉 is trans-

lated into FOL as follows: ∀x(B(x) → A(x)). Which

is also the FOL translation of the corresponding DL-

LiteA,id statement: B v A.

The problem with subtyping, however, is that the

instances of all object types that are not the child in a

taxonomic relation are considered to be disjoint. Halpin

calls these object types primitive [28]. For any concep-

tual schema, there will be a finite number of such prim-

itive object types. The disjiontness of the instances of

these object types are given with the following rule:

given A1, ..., An primitive object types

∀x(¬(A1(x) ∧A2(x)) ∧ ¬(A1(x) ∧A3(x))∧
... ∧ ¬(An−1(x) ∧An(x))) (7)

In other words, it is prohibited for an instance to be

a member of two object types from the set of primitive

object types.

In order to be population equivalent, this same re-

striction needs to be modeled in the DL language we

have adopted. The problem, however, is that the DL-

Lite dialect we have adopted has no means for describ-

ing disjointness in an explicit way. In order to solve

this, the disjoint concepts need to be modeled via bi-

nary Horn inclusions. In other words: for every two

concepts A,B that are disjoint, the following concept-

inclusion needs to be asserted A v ¬B, which states

that an instance of A is not in an instance of B. It

is not necessary to assert B v ¬A as well, as the

translation of both concept inclusion into FOL show

that both formulas are equivalent as one is a quan-

tification of the contraposition of the other formula:

∀x(A(x)→ ¬B(x))↔ ∀x(B(x)→ ¬A(x)).

For every two object types in the primitive object

types of the DOGMA model, such a concept-inclusion is

added in the translation into DL-LiteA,id. Now we need

to show that the translation of these concept-inclusions

into FOL is equivalent with the FOL formulas in equa-

tion (7). We show this by means of the two semantic

tableaus in Fig. 4.

3.7 Relation with Related Work

In the last few years, several authors addressed the

problem of providing an encoding for ORM diagrams

in DL knowledge bases [39,36,35,32,23]. Only the work

of Keet [39], and Franconi and Mosca [23] can be con-
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∀x(¬(A1(x) ∧ A2(x)) ∧ ... ∧ ¬(An−1(x) ∧ An(x))) ∀x(A1(x)→ ¬A2(x)) ∧ ... ∧ ∀x(An−1(x)→ ¬An(x))

A1(d)→ ¬A2(d)

D = {d} ∀R

A1(d) ¬A2(d)

→ R

A2(d)

¬R

¬(A1(d) ∧ A2(d)) ∧ ... ∧ ¬(An−1(d) ∧ An(d))

∀L

¬(A1(d) ∧ A2(d)), ...,¬(An−1(d) ∧ An(d))

∀L

A1(d) ∧ A2(d)

¬L

A1(d)

=

∧R
A2(d)

=

...

=

An−1(d)→ ¬An(d)

D = {d} ∀R

An−1(d) ¬An(d)

→ R

An(d)

¬R

¬(A1(d) ∧ A2(d)) ∧ ... ∧ ¬(An−1(d) ∧ An(d))

∀L

¬(A1(d) ∧ A2(d)), ...,¬(An−1(d) ∧ An(d))

∀L

An−1(d) ∧ An(d)

¬L

An−1(d)

=

∧R
An(d)

=

1

∀x(A1(x)→ ¬A2(x)) ∀x(¬(A1(x) ∧ A2(x)) ∧ ... ∧ ¬(An−1(x) ∧ An(x)))

...
∀x(An−1(x)→ ¬An(x))

¬(A1(d) ∧ A2(d)) ∧ ... ∧ ¬(An−1(d) ∧ An(d))

∀R

¬(A1(d) ∧ A2(d))

∧R

A1(d) ∧ A2(d)

¬R

A1(d), A2(d)

∧L

A1(d)→ ¬A2(d)

∀L

A1(d)

=

→ L

¬A2(d)

A2(d)

=

¬L
...

=

¬(An−1(d) ∧ An(d))

An−1(d) ∧ An(d)

¬R

An−1(d), An(d)

∧L

An−1(d)→ ¬An(d)

∀L

An−1(d)

=

→ L

¬An(d)

An(d)

=

¬L

1

Fig. 4 Semantic Tableau

sidered to have tackled the problem from a formal per-

spective6.

The inadequacy of the mapping prosed in [35,32]

can easily be shown by means of semantic tableaus.

Note that the translation in [32] contains quite a few

syntactical errors, but builds further upon the work pre-

sented in [35]. Given the lexon: 〈γ,A,R,S,B〉. The trans-

lation proposed in [35,32] is as follows:

A v ∀R.B (8)

B v ∀S.A (9)

R v S− (10)

Not only is the last statement incorrect and should

be replaced with R ≡ S−, after this correction one can

find a counter example for the translation of the binary

fact type into FOL according to Halpin and the trans-

lation of these DL statements into FOL. The formulas

below provide the latter translation.

∀x(A(x)→ ∀y(R(x, y)→ B(y))) (11)

∀x(B(x)→ ∀y(S(x, y)→ A(y))) (12)

∀x(∀y(R(x, y)↔ S(y, x))) (13)

Indeed, an interpretation I with I(R) = {〈d, e〉},
I(S) = {〈e, d〉}, I(A) = {} and I(B) = {} is a model

for above FOL formulas, but not for the translation pro-

vided by Halpin: ∀x(∀y(R(x, y) → (A(x) ∧ B(y)))). In

other words, there are counter examples and therefore

there is not a bijective mapping between the two.

In [36,39], both Jarrar and Keet provided a trans-

lation of ORM into a DL that support n-ary relations

where n ≥ 2, namely the dialect DLRifd [8]. The prob-

lems with translation proposed by Jarrar were exam-

ined by Keet in the second version of this paper7. Keet

6 Franconi and Mosca published a technical paper contain-
ing more information entitled “The formalisation of ORM2
and its encoding in OWL2”. Available from https://www.

inf.unibz.it/krdb/pub/TR/KRDB12-2.pdf
7 The first version of her paper was published in 2007 in

the Computer Research Repository. Later on, she provided a

criticized the inaccuracy of Jarrar’s work with respect

to the syntax and semantics. Franconi, in turn, pro-

vides critique on Keet’s work on several inaccuracies

[23]. Both proposals are thus inadequate for our trans-

lation, even though the idea was appealing. However,

as DOGMA limits itself to the use of binary lexons and

DL-LiteA,id provides constructs for a lossless transla-

tion, there is no need for constructs to support arbitrary

n-ary relations.

Franconi and Mosca provided a translation of ORM

into ALCQI, thus using the DL ALC extended with

qualified cardinality restrictions and inverse roles. In

essence, they “reify” fact types with uniqueness con-

straints spanning two ore more roles by first introducing

a new concept and then transform each of the involved

roles into a DL role where the domain is the newly intro-

duced concept and the range the object type to which

the ORM role connected to. Those new roles are then

declared to be functional. Indeed, each instance of that

relation only plays each role once. As they claim, their

translation is indeed sound and complete. Every model

of the ORM translation into FOL is also a model for

their DL translation into FOL. But, as will be seen, the

inverse is not true.

Their translation is actually a lossy schema trans-

formation (as shown in Fig. 5). The figure presents a

binary fact type and its lossless schema transformation

using only attributive fact types. Lets call this trans-

lation (A). The figure also contains the “correspond-

ing” ORM diagram for the DL translation proposed by

Franconi and Mosca. Lets call this translation (B). As-

suming that the FOL translation of (A) is contained in

Σ and that of (B) in Φ. It is easy to see that due to the

additional constraints in (A), every model of Σ is also

a model for Φ, but the inverse is not true. Φ is thus a

logical consequence of Σ, but not the other way round.

Since the sets of formulas are not equivalent, there can

second version of her paper with corrections, more extensive
related work, etc. in 2009. Both versions of the paper can be
found here: http://arxiv.org/abs/cs.LO/0702089

https://www.inf.unibz.it/krdb/pub/TR/KRDB12-2.pdf
https://www.inf.unibz.it/krdb/pub/TR/KRDB12-2.pdf
http://arxiv.org/abs/cs.LO/0702089
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not exist a bijective mapping between the two. Hence,

the translation proposed by Franco and Mosca is not

lossless.

# The binary fact type

<’OrgA’,Person,working_for,employing,Company>

# The lossless schema transformation of this fact

# type using only attributive fact types

<’OrgA’,Person,with,of,Contract>

<’OrgA’,Company,providing,of,Contract>

EACH Contract of AT MOST ONE Person.

EACH Contract of AT MOST ONE Company.

EACH Contract of AT LEAST ONE Person.

EACH Contract of AT LEAST ONE Company.

EACH Contract IS IDENTIFIED BY (Person of Contract)

AND (Company of Contract).

# ’’Corresponding’’ Translation proposed by Franconi

# and Mosca.

<’OrgA’,Person,with,of,Contract>

<’OrgA’,Company,providing,of,Contract>

EACH Contract of AT MOST ONE Person.

EACH Contract of AT MOST ONE Company.

Fig. 5 A binary fact type, its lossless schema transforma-
tion using only attributive fact types and the “corresponding”
lossy translation by Franconi and Mosca [23].

3.8 The Glossary

Gloss is a set of natural language descriptions – called

glosses – each providing an “explanation” for a term in

T or a lexon in Λ adequate within a given community.

Guidelines on the construction of glosses were given

in [34]. A gloss should i) start with the term of prin-

cipal or super type of the concept being defined; ii) be

written in the form of propositions; iii) focus on the

distinguishing characteristics of the concept being de-

fined; iv) be supportive (examples are encouraged); v)

be consistent with the formal axioms in the ontology

and vi) be sufficient, clear and easy to understand.

When two different terms are articulated with the

exact same gloss, one would assume that the glosses

and therefore also the described terms refer to the same

concept. If this property holds, we call the hybrid on-

tology consistent. In other words, if two terms in two

communities point to exactly the same gloss, then they

must refer to the same concept as well. For most pur-

poses, however, this condition is too limiting since often

glosses will express “the same thing” without being tex-

tually identical. It suffices that the communities agree

on their equivalence; this leads to the following defini-

tion.

Definition 3 (Gloss-equivalence) Given communi-

ties γ1, γ2 ∈ Γ and terms t1, t2 ∈ T , the two term-

glosses g1(γ1, t1) and g1(γ2, t2) are said to be gloss-

equivalent EQG if the two communities agree that the

described terms refer to the same concept.

Note that there are two special cases of gloss equiv-

alence: one in which the communities are different and

the terms are the same (term-equivalence) and one in

which the terms are different but the within the same

community (community-equivalence). We can now de-

fine the definition for the glossary-consistency principle

as follows:

Definition 4 (Glossary-consistency principle) A

hybrid ontology satisfies the glossary-consistency prin-

ciple if for every two pairs 〈γ1, t1〉, 〈γ2, t2〉 ∈ Γ × T , if

EQG(g1(γ1, t1), g1(γ2, t2)) then ci(γ1, t1) ≡C ci(γ2, t2).

The converse does not necessarily hold.

We do not impose that EQG(g1(γ1, t1), g1(γ2, t2))

implies ci(γ1, t1) ≡C ci(γ2, t2) in order to maintain

glossary-consistency, as both communities might carry

other agreements with other communities for their re-

spective terms. An agreement between those two com-

munities is sufficient.

Gloss-equivalences are on the level of the glossary

whereas ≡C agreements are on the level of the formal

descriptions of the concepts (i.e. the lexons). We can

impose that for ≡C , the term must appear in a lexon

as a term will only be in the community commitment if

and only if that term plays at least one role (otherwise

the term has no purpose for this community). If the

term would end up in a taxonomy, then it plays the

role of being the sub- or supertype of another term (e.g.,

with the role-labels “is a/subsumes”), hence satisfying

the condition.

Communities can start gradually building their glos-

sary before formally describing their concepts. However,

nothing should prevent community members for having

agreements on the “sameness” of descriptions across or

within their own community. If the definition would im-

pose≡C on the formal descriptions, the community first

needs to agree on at least one lexon concerning that

term.

Another reason is validation of the equivalences.

The glossary-consistency principle will pinpoint the de-

scriptions used for terms that are EQG, but whose

terms in those communities are not ≡C . The glossary-

consistency principle does not become a property that

needs to hold or else the ontology project fail, instead it

becomes a tool to drive the community in establishing

≡C , double checking whether the gloss-equivalence was

not misleading and both terms really do refer to the

same concept.

This is particularly handy as the validity of the nat-

ural language descriptions and the equivalence of two
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such descriptions are relative to the communities par-

ticipating in these discussions. If glosses were not ade-

quate and yet agreed upon, the second agreement while

the terms are formally described are more than welcome

and the community will be able to rectify the mistakes.

Gloss-equivalence is a symmetrical property as it

captures the communities agreeing that their glosses to

describe their terms refer to the same concept. Term-

adoption, however, is asymmetrical. The definition is

given below.

Definition 5 (Term-adoption) Given a hybrid on-

tology description HΩ = 〈Ω,G〉 and two communi-

ties γ1, γ2 ∈ Γ and term t1 ∈ T , γ2 is said to adopt

〈γ1, t1〉 when gloss1 = g1(γ1, t1) and gloss2 = g1(γ2, t1)

are defined, and we have (i) EQT (gloss1, gloss2), i.e.

first “match” the two glosses; and (ii) ci(γ2, t1) ⇐cea

ci(γ1, t1), i.e. agree that both concepts are equal with

γ2 also incorporating the meaning agreements inside

ci(γ1, t1).

In this definition ⇐cea allows the adopting commu-

nity to incorporate the meaning agreements of the other

community by asserting ci ≡C ci(γ2, t1) for every ci in

cea(ci(γ1, t1)). In other words, by adopting the gloss of

another community-term pair, the adopting community

agrees with all existing ≡C agreements the adoptee has

with other communities. Term-adoption allows γ1 and

γ2 to agree their respective glosses refers to the same

concept (a symmetric condition) and γ2 agreeing to use

t1 as a term to refer to γ1’s concept behind it (an asym-

metric condition).

4 Hybrid Ontology-engineering Method

In the previous Section, we introduced a framework for

hybrid ontology engineering on top of DOGMA, a fact-

oriented ontology engineering approach. In this Section,

we present the method for hybrid ontology engineering.

A method prescribes certain guidelines and steps to be

taken to achieve a certain goal; the construction of a

hybrid ontology in this paper. The method uses the

hybrid ontology-engineering framework defined in the

previous Section. We will introduce the social processes

as we go along each of the steps of the method. The

social processes were defined in [18] and allow a com-

munity to alter the hybrid ontology towards a closer

approximation of the community’s domain.

Fig. 6 summarizes the different phases in GOSPL.

Starting communities and their requirements that co-

evolve, the informal descriptions of key terms have to

be gathered before formally describing those concepts.

These formal descriptions can be constrained and then

committed to by application by using a commitment

language, e.g., Ω-RIDL [71]. During the processes from

creating the glossary to committing to the hybrid on-

tology description, the communities can make agree-

ments on gloss-equivalences and synonyms. The hybrid

ontology, and the data described with those commit-

ments can then be re-internalized by the community

for another iteration, gradually approximating the do-

main that needs to be captured by the ontology.

4.1 Defining Semantic Interoperability Requirements

We restrict ourselves to communities of users represent-

ing autonomously developed and maintained informa-

tion systems with a need to exchange information for

a purpose. This need is translated into a semantic in-

teroperability requirement (SIR). The objectives of a

SIR are to ensure the application or components inter-

operate with other specified information systems and

their components in a meaningful manner. The data

needs to be exchanged between those components and

be useable upon reception and the different components

“know” how to consult the data from other information

systems or components. A community is partly identi-

fied by its SIRs. As we will see later on while describing

the co-evolution between communities and their SIRs,

we will identify communities by those requirements and

its set of members.

A SIR for a community γ ∈ Γ SIR(γ) consists of an

ordered pair 〈KT,GO〉: a non-empty set of key terms

KT ⊂ Γ × T and a non-empty set of goals GO for

which descriptions of those key concepts are needed.

The community interacts and agrees upon the elements

in those two sets. The social processes for this phase are:

– Request to add key term

– Request to remove key term

– Request to add goal

– Request to remove goal

4.2 Building the Glossary

Interoperability is achieved by annotating the symbols

of an information system with terms and relations in

the hybrid ontology. As the hybrid ontology and the

glossary are initially empty, we must ask ourselves how

these ontologies come to be. We have already described

how – in a hybrid ontology – terms are on one hand

described “informally” by means of natural language

descriptions called glosses for humans and described

formally for annotating information systems and their

computerized systems on the other. To ensure all mem-

bers of a community are referring to the same referent
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Manage
Community

Manage Semantic 
Interoperability 
Requirements

Articulate 
with glosses

Create 
Lexons

Constrain 
Lexons Commit

Gloss-
Equivalence Synonym

Fig. 6 The GOSPL method

for a particular label, the community needs to align

their ideas of the concept symbolized by the term. We

call this process alignment. Alignment is achieved by

(1) describing the concepts referred to by these labels

and (2) having the community members agree on one

such description per label.

To facilitate alignment, GOSPL imposes terms to be

articulated before formal descriptions are added, start-

ing with the list of key terms in the SIR.

In a first iteration, there are no lexons. A commu-

nity needs to wait for articulating lexons for when start

emerging. Lexons can be articulated with a gloss only

if both its terms are articulated. In GOSPL, a com-

munity is able to articulate all the lexons. However,

GOSPL strongly encourages articulating at least those

lexons whose internal uniqueness does not span only

one role. In other words, GOSPL encourages the articu-

lation of “many-to-many” relations in ER terminology.

In the absence of an internal uniqueness constraint, the

uniqueness constraint is assumed to be spanning the
two roles. Such relations must correspond with a con-

cept in the domain that needs to be approximated by

the ontology. This is in contrast with so called “attribu-

tive” relations, which can be too “trivial” to fully artic-

ulate. Take for instance the lexon 〈C1,Person,working
for,employing,Organization〉 where a person can work

for many organizations and an organization can employ

many employees. This many-to-many relation could de-

note the concept of position. In the example of 〈C2,
Person,born on,of birth of,Date〉 with a person born on

at most one Date, date (of birth of) becomes an at-

tribute of Person. We therefore don’t need to describe

the relation as being the occurrence of persons having

a birth date. Our claim is that non-attributive relations

denote concepts, and therefore need to be described by

the community. The relation between concepts and non-

attributive relations will become apparent after we will

treat the constraint one can put on lexons and reference

structures of concepts.

The social processes in this phase are:

– Request to add term-gloss

– Request to remove term-gloss

– Request to change term-gloss

– Request to add lexon-gloss

– Request to remove lexon-gloss

– Request to change lexon-gloss

4.3 The Creation of Lexons

Lexons can only be entered in the lexon base when one

of the terms in this lexon has already been articulated.

Indeed, it would be undesirable to describe a relation

between two terms if both terms playing the roles in

that relation are not described themselves, meaning

that their intended meaning has not yet been made

explicit. If at least one of the terms described, one can

assume that the lexon proposed around that term is in

function of the informal definition and/or the SIRs.

The social processes in for constructing the domain-

conceptualization are:

– Request to add lexon

– Request to remove lexon

– Change supertype of term

The last social process in the list above corresponds

with the management of the taxonomy. Changing the

supertype of a term when it has already a place in the

taxonomy of the hybrid ontology will result in the re-

moval of the previous relation.

4.4 Constraining Lexons

An application commitment contains (1) a selection of

community commitments, loading all the lexons and

constraints agreed upon by those communities; (2) a

selection of lexons added by the application-owner; (3)

constraints on lexons (imported of added) that indicate

how that particular application uses those concepts;
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and (4) mappings from application symbols to terms

and roles in that selection.

Some of these constraints have to be shared and

agreed upon by the community in order to meet the se-

mantic interoperability requirements. Those constraints

should not stem from the individual applications, but

be part of the domain that has to be modeled. A classic

example of such a constraint is a book being uniquely

and totally identified by its ISBN number8. Those con-

straints are needed to ensure proper interoperation be-

tween the different systems.

The community thus might need to agree on con-

straints in order to meet the goals captured by their

SIRs. We make a distinction between two types of con-

straints: on terms and on roles of lexons. In either case,

the GOSPL method imposes the terms to be articu-

lated with a gloss. Indeed, it would be undesirable to

constrain the use of a term, a role, or a lexon with in-

sufficient articulation, as this means that their intended

meaning has not yet been made explicit.

For the social process “Request to change super-

lexon of lexon (role hierarchy)”, however, we require

that the four terms of both lexons involved be articu-

lated. Indeed, how can one imply that an instance play-

ing a particular role “r1” implies that same instance

playing another role “r2” if the terms or the relation

itself are not specified. Remember that lexons can be

articulated as well only if both its terms are defined.

The social processes for this phase are:

– Request to create a constraint

– Request to remove a constraint

– Request to change superlexon of lexon (corresponds

with role-hierarchies and ORM subset-constraints).

4.5 Committing to the Hybrid Ontology

Once there is a close approximation of a (part of) the

hybrid ontology for meeting the SIRs, the stakeholders

can start annotating their information systems, with

the hybrid ontology by means of a commitment. The

commitments enable the exchange of information resid-

ing in those systems. With every (closer) approximation

of the domain with the hybrid ontology, the commit-

ments will provide access to instances of concepts that

can be used for defining and/or refining the definitions,

fact types and constraints in the hybrid ontology de-

scription.

Ω-RIDL [71] is the application commitment lan-

guage we have adopted. It was extended to include ref-

erences to community commitments. Take for example

8 Which is only true for only certain types of applications.

the ER-diagram for a fictitious database storing infor-

mation about artists and works of art in Fig. 7. The

corresponding application commitment is shown below

the diagram. Notice the reference to the cultural do-

main community, which will include all lexons and con-

straints currently agreed upon by that community. This

particular commitment furthermore includes some ap-

plication specific knowledge to annotate the artificial

IDs. The commitment describes how these IDs uniquely

and totally identify instances of artists and works of art.

Furthermore the terms “Artist” and “Work Of Art”

inside the application’s lexons are declared to be syn-

onymous with that of the community. The lexons and

constraints of the cultural domain community in this

example were assumed to include (where ‘C’ stands for

“Cultural Domain Community”):

<C,Art Movement,with,of,Name>

<C,Artist,with,of,Art Movement>

<C,Artist,born in,of birth of,Year>

<C,Work Of Art,with,of,Title>

<C,Work Of Art,made in,of,Year>

<C,Artist,with,of,Gender>

<C,Artist,contributed to,with contributor,

Work Of Art>

<C,Gender,with,of,Code>

<C,Artist,having,of,Name>

EACH Name IS LEXICAL.

EACH Code IS LEXICAL.

EACH Year IS LEXICAL.

EACH Title IS LEXICAL.

The lexical constraints limit instances of concepts

denoted by a term to “things” that can be printed on

a screen.

4.6 Community and SIR Co-evolution

We explained how a community starts the development

of a hybrid ontology by first defining their SIRs, artic-

ulate the key terms in those requirements and gradu-

ally construct agreements on fact types, glosses, con-

straints, gloss-equivalences and synonyms. Communi-

ties and their SIRs are, however, not static. They are

evolving and even co-evolving. With the additional of

a new stakeholder in the community, the community

changed not only with the presence of a new member,

but also with the addition of new ideas, a possible dif-

ferent perspective on matters and possible new require-

ments for the community. Also requirements can change

from external forces, e.g. due to legislation changes. The

community constitution does not necessarily need to

change for the SIRs to evolve; a community can come

to the conclusion that the current approximation of the

domain by the hybrid ontology description does not
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PK id
U1 name
U1 birthyear

artist
PK a_id
PK p_id

artistpiecePK id
U2 name
U2 year

piece

BEGIN SELECTION

# Selection of the community.

[’Cultural Domain Community’]

# Application specific lexons

<’MyOrganization’, Artist, with, of, AID>

<’MyOrganization’, Work Of Art, with, of, WID>

END SELECTION

BEGIN CONSTRAINTS

# Declaration of synonyms

LINK(’Cultural Domain Community’, Artist, ’MyOrganization’, Artist).

LINK(’Cultural Domain Community’, Work Of Art, ’MyOrganization’, Work Of Art).

# List application specific constraints

EACH Artist with AT MOST 1 AID. EACH Artist with AT LEAST 1 AID.

EACH AID of AT MOST 1 Artist. EACH Work Of Art with AT MOST 1 WID.

EACH Work Of Art with AT LEAST 1 WID. EACH WID of AT MOST 1 Work Of Art.

END CONSTRAINTS

BEGIN MAPPINGS

# Mapping of application symbols, in this case from Table X Field -> Term role Term (role Term)+

MAP ’Artist’.’name’ ON Name of Artist.

MAP ’Artist’.’birthyear’ ON Year of birth of Artist.

MAP ’Artist’.’id’ ON AID of Artist.

MAP ’piece’.’name’ ON Title of Work Of Art.

MAP ’piece’.’year’ ON Year of Work Of Art.

MAP ’piece’.’id’ ON WID of Work Of Art.

MAP ’artistpiece’.’a_id’ ON AID of Artist contributed to Work Of Art.

MAP ’artistpiece’.’p_id’ ON WID of Work Of Art with contributor Artist.

END MAPPINGS

Fig. 7 Example ER diagram and corresponding Ω-RIDL application commitment.

meet their needs even though it complied with the re-

quirements. In that case, the community will negotiate

changes to the requirements. This can happen when the

community starts to better understand the domain.

5 Glossary Evolution

Now that we have presented the method, we will de-

scribe how the evolution of glosses impacts the hybrid

ontology. We follow Jarrar that the purpose of a gloss

is not to provide or catalogue general information and

concepts about a concept, as conventional dictionaries

and encyclopedias do, but is supposed to render factual

knowledge that is critical to understanding a concept in

ontology engineering [34].

A gloss is composed of one ore more sentences con-

structed with the community’s usual alphabet. Those

sentences have to be themselves human-interpretable in

order for the gloss to become understandable. We de-

note S as the set of all possible sentences that can be

constructed with those alphabets. We ignore whether

this set contains sentences (or parts thereof) that are

valid syntax- and grammar wise. As the community will

choose and discuss the elements of this set used for

constructing a gloss, they will make sure that what is

chosen makes sense (at least for this community). We

will thus avoid talking about truth, since we are not in

a formal logical context. We exclusively use this word

between an ontology and semantics. Occasionally and

carefully, we will use this word for addressing the agree-

ment on validity assumed to exist in the community. In

other words, truth is relative to the community; if there

is an agreement, it is assumed to be valid.

Every part of a gloss should contribute to a bet-

ter understanding of the concept described. As a con-

sequence, some of these parts should correspond with

(parts of) the formal description of that concept. In

other words, as the glosses evolve, so should the lex-

ons and constraints. We will describe how glosses can

evolve, and their impact on commitments.

Glosses evolve for a reason, which is captured by the

motivation of the change and the communities’ discus-

sion. How the gloss changes, can be formalized. There

are two types of gloss updates. A first is a complete

change of a gloss. We deem this kind of update to hap-
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pen only accidentally; as such a change would imply

that the community – as a whole – misinterpreted the

term being described in the context of that community

(and their goals).

The second type of change is a (more gradual) re-

finement of the gloss. Glosses are composed of one or

more sentences. Sentences or parts of sentences can be

added or removed. The sentences that have been added

or removed serve (or served in the case of the latter)

a particular purpose for that gloss. That purpose cap-

tures and describes how the gloss and those sentences

were related. On can define many such purposes. In this

paper, the set of purposes is referred to by Θ.

Definition 6 (Gloss evolution) Within a commu-

nity γ ∈ Γ , gloss evolution is defined as mappings of

the form Θγi : 2S → 2S , where a glossary Gloss →
Θγi (Gloss) = Gloss′ by means of the application of a

purpose element in Θ. This creates a discrete gloss evo-

lution. Gloss evolution is a mapping ε : Γ ×N→ 2S , in

which (γ, t)→ Gloss(t) where t is a point in time, such

that ε(γ, 0) = ∅ and ∃g ∈ Gloss,∃s ∈ S : Gloss(t) =

{Gloss(t− 1) \ {g}} ∪ {Θγi (g, s)}.

The linguistic amalgamation operators to add or re-

move (a part of a) sentence from a gloss is defined as:

⊕ : Gloss×Θ×S → Gloss for adding an element of S
to a gloss and 	 : Gloss×Θ×S → Gloss for removing

an element of S from a gloss.

For simplicity’s sake, the exact places where sen-

tences would be added or which occurrence of a part

is removed are “ignored”. Those are assumed to be ad-

ditional parameters of above-mentioned operators. The

changes in text necessary for it to be proper to the com-

munities’ language, such as readjusting capitalization,

are also “ignored” for the same reason.

5.1 The Elements of Θ

This Section will provide a proposal for the elements

in Θ. To this end, inspiration is drawn from discourse

theory, and more concretely Rhetorical Structure The-

ory [49]. Elements from RST are furthermore refined

and complemented with elements introduced specific

for GOSPL. One such element specific to GOSPL is

gloss-adoption, where one community explicitly states

to adopt the gloss of another community.

The goal is not to provide an exhaustive list, as it

can vary depending on the type of community or even

the type of language they employ. The framework is

therefore defined in such a way that new elements can

be introduced to Θ.

A distinction is made between elements that affect

the community commitment and elements that merely

serve to provide additional text to (better) understand

the concept described.

The application of some gloss-amalgamation opera-

tors might imply the introduction of lexons, constraints

and even instances in the community commitment. Lex-

ons and constraints are useful for populating the lexon

base and community commitments. The instances to

validate the constraints explicitly agreed upon by the

community.

5.1.1 Drawing Inspiration from RST

For the elements of Θ, inspiration is – as already stated

above – first drawn from RST. RST was originally de-

veloped as part of research on computer-based text gen-

eration. RST was intended to describe texts by means

of two types of “relations”, each at a different level. The

first is the “nucleus-satellite relation” and is the most

frequent structural pattern. It captures that two spans

of text (usually adjacent) are related such that one of

them has a specific role relative to the other. The other

type is “multinuclear relations”, grouping a set of nu-

clei. RST thus offers means to annotate the role (the

purpose) that a part in the text plays on another part.

Before moving on, the reader needs to be aware that

in RST, the purposes that spans serve to other spans

are somewhat confusingly labeled “relations”. A term

obviously not suitable for a computer science text. The

authors of RST are linguists and the “relations” they

proposed actually refer to “functionalities”, a purpose.

From here onward, the use of the word “relation” in the

context of RST will be avoided.

RST thus allows one to describe how two segments

of discourse are connected to one another. With ele-

ments of the first type, the nucleus (N) is part the of

the text onto which the satellite (S) will play a partic-

ular role.

Example 4 For instance, in the sentence: “Employees are
urged to complete new beneficiary designation forms for re-
tirement or life insurance benefits whenever there is a change
in marital or family status” The part “whenever there is a
change in marital or family status” is the satellite and ex-
presses a condition for “Employees are urged to complete new
beneficiary designation forms for retirement or life insurance
benefits”, the nucleus.

Glosses need to briefly describe terms or lexons em-

ployed by the community. They also need to be agreed

upon by that same community. Opinions or statements

in favor of a particular gloss are part of the discussion

leading to an agreement, and not part of a gloss. As

RST provides “relations” with a subjective nature (e.g.,

the antithesis that describes ideas favored by the au-

thor), only a subset of these “relations” that is deemed
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relevant for gloss evolution will be presented, together

with examples. This is in line with the guidelines on the

construction of glosses given in [34] mentioned in Sec-

tion 3. But first, the purposes provided by RST that

were not taken into consideration are:

1. Purposes for expressing opinions: antithesis, conces-

sion, and justify.

2. Purposes aimed at enabling the reader in undertak-

ing actions: enablement.

3. Purposes at interpreting and evaluating text: inter-

pretation and evaluation.

4. Purposes concerned with relating information with

causes and effects: non-volitional cause/result, voli-

tional cause/result.

The purposes involving a nucleus and a satellite we

adopted are:

– With background, S is used to facilitate the un-

derstanding of N.

– Circumstance is used to denote that S sets the

framework for interpreting N.

– A condition is used to state that the truth-value

accorded to the proposition in N depends on the

truth-value accorded to the proposition in S. Re-

lated functions are: Unconditional, Otherwise,

Unless.

– Elaboration denotes the addition of information

to already available information. There are several

specializations of elaboration. Examples are: Spe-

cialization, Part-whole, etc.

– Evidence is a piece of information that supports a

claim, in this case, the gloss. Examples are typically

used as evidence; they support the definition con-

tained in the gloss. Examples, however, are already

present as a special case of the elaboration function

(instantiation). We therefore limit the type of evi-

dence to information supporting a claim.

– Means is used to denote S presenting an instrument

used for achieving the concept described in N.

– In preparation, S is used to prepare the reader to

expect and interpret N.

– Purpose is used to describe that an activity in N

needs to be initiated in order to achieve what is

described in S. In other words, S thus describes the

purpose for doing the activity described in N.

– In RST, “solutionhood” describes the function that

N presents a solution to the problem described in

S. As this function is one of the few where the de-

scription of the function is more intuitive from N to

S and all other functions presented here described

the function of S on N, we choose to rename this

function into problem-for. This way, the meaning

of each function is presenting a role S is playing on

N.

The elements of Θ currently described involved a

satellite playing a role on a nucleus. However, RST also

described other “relations” which involves multiple nu-

clei. All but two of this type are taken into account.

The multinuclear restatement was not considered for

the same reason as the restatement purpose. Also the

joint purpose was not considered, as it is used to “glue”

two pieces of text that are not related. As a gloss needs

to present a brief description of the described term, all

parts in that gloss need to be relevant.

The purposes involving multiple nuclei used in this

paper are:

– Conjunction. The items are conjoined to form a

unit in which each item plays a comparable role.

Items can be combined with words such as “and”

and “nor”.

– Disjunction. An item presents an alternative for

the other(s). The disjunction is not necessarily an

exclusive disjunction.

– Contrast is used for at most two nuclei. The two

are understood to be similar (or the same) in many

respects and to differ in a few respects, and both

are compared with respect to those differences.

– List for linking items are comparable to each other

and sequence for linking items with a logical suc-

cession, e.g., steps to perform a task.

5.1.2 Remaining Gloss Evolution purposes

RST provides a foundation for choosing gloss-evolution

purposes. The hybrid ontology-engineering framework

we adopted, however, also provides processes that result

in gloss evolution not related with these purposes.

Given two communities γ1, γ2 ∈ Γ and their respec-

tive terms t1, t2 ∈ T and γ2 has articulated t2 with a

gloss g. Community γ1 is able to adopt g for describing

t1. It is obvious that this operation evolves the gloss

for 〈γ1, t1〉. The implications of the adopted gloss on

the hybrid ontology remain within the original commu-

nity, but are known to the adopting community as this

operator links both terms.

Also important is the identification of the set of at-

tributes that uniquely and totally identify instances of a

concept. To this end, a special kind of attribute-purpose

is introduced: the identifies. With this purpose, one

will later on be able to identify these attributes and

distill the necessary constraints for it.
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5.2 Glossary, Lexon Base & Commitment Co-evolution

The elements in Θ and the amalgamation operators en-

able the support of the co-evolution of communities,

ontologies and glossaries. Changes in the requirements

of the community are reflected in the formal part of

the ontology and possibly require the refinement of the

glosses based on the newly defined gloss evolution op-

erators. In turn, those changes might start a series of

social processes for the formal part of the hybrid ontol-

ogy to reflect those changes accordingly. At any time,

changes in both the lexon base and the glossary will in-

fluence the communities’ next decisions. Some elements

of Θ provide only additional information to the commu-

nity for understanding the gloss. Other elements, how-

ever, can and should have an impact on the hybrid on-

tology. These elements influence the hybrid ontology at

three levels:

1. The introduction of one or more pre-lexons in the

lexon base.

2. The introduction of pre-constraints.

3. The introduction elements in the population of a

term or a lexon.

Pre-lexons are “raw” lexons that have not yet been

refined by the community (e.g., proper stemming of

verbs in roles, the introduction of the co-role, etc.).

Some gloss-evolution purposes result in lexons of which

roles, concepts or generalization of concepts are known.

For instance, when describing a specialization of a con-

cept, the roles is a / subsumes – interpreted as the

taxonomic relation – will be proposed. Pre-constraints

are constraints in terms of the pre-lexons.

Example 5 Given some community γ wishing to articulate
the term “Car” with a gloss. The application of the general-
ization (a type of elaboration): “A car”⊕Generalization(“is
a road vehicle”) results in the following pre-lexon.

– 〈γ,Car,is a,subsumes,road vehicle〉

The roles are underlined as they are pre-filled and have a
special interpretation. Nothing prevents community members
to refine this pre-lexon and change its role-labels. But as the
gloss has evolved with a generalization, one would expect that
this would reflect with the addition of a taxonomic relation
in the hybrid ontology.

Once refined, the execution of this gloss evolution triggers
social processes for adding this lexon.

Example 6 Taking the following gloss g for “Car” in some
community γ ∈ Γ : “A car is a road vehicle”. One can elabo-
rate on this term by adding the following sentence s “powered
by an internal combustion engine and able to carry a small
number of people.”. The sentence s is actually the result of a
conjunction s′⊕Conjunction(s′′) where s′ = “powered by an
internal combustion engine” and s′′ = “and able to carry a
small number of people.” Elaborating g with the conjunction

contained in s with g⊕Elaboration(s) results in the following
pre-lexons:

– 〈γ,Car,powered by,.,an internal combustion engine〉
– 〈γ,Car,able to carry,.,a small number of people〉

These pre-lexons have to be refined by the community
and social processes are started to include these lexons in the
hybrid ontology.

– 〈γ,Car,powered by,powers,Internal Combustion Engine〉
– 〈γ,Car,carrying,carried by,Group〉

Instances can be distilled from glosses and used as

a test population in hybrid ontology engineering.

Example 7 Given a gloss g = “A planet, in astronomy, is
one of a class of celestial bodies that orbit stars.” for the
term “planet”. One can elaborate this gloss by giving ex-
amples. s = “Examples are Mercury, Mars and Earth.”
g ⊕ Instantiation(s) = “A planet, in astronomy, is one
of a class of celestial bodies that orbit stars. Examples are
Mercury, Mars and Earth.” The instances of planets are
proposed to be taken into account, and will – once ac-
cepted – serve as a test population for ontology engineering.
Population(γ, P lanet) = {Mercury,Mars,Earth}

There are several ways to discover constraints in

glosses. For example, the conditional can express sub-

set constraints between roles of lexons. Others, such as

the elaboration, contain hints on frequency or totality

constraints within a pre-lexon.

Example 8 Given a gloss g =“A proposal results in a project”
for the term “Proposal” in a certain community γ ∈ Γ and
assuming that the lexon 〈γ, Proposal, results in, result of,
Project〉 is already present. By adding a condition by applying
g ⊕ Condition(“when the proposal is accepted by the review
board.”), the following pre-lexon and subset constraint are
distilled:

– 〈γ,Proposal,is accepted by,.,review board〉
– Subset constraint from “is accepted by” to “results in”.

The community can refine the pre-lexon as well as the
subset constraint and trigger social processes to accept these
in the formal part of the hybrid ontology.

The extraction of possible lexons, constraints and

instances for the community commitment can be to

some extent automated by applying natural language

processing (NLP) techniques.

While extracting the pre-lexons for a purpose f1, the

detection of terms in the nucleus will often follow the

same steps. In essence, if the nucleus is a sentence, then

noun-extraction will be applied on this sentence. How-

ever, if the satellite is a purpose f2, then the nucleus

of that purpose should be examined. If the purpose f1
would be applicable to the nucleus of this purpose f2,

then the structure of this gloss would look different.

This becomes clear if the application of elements of Θ

for glosses are visualized as a tree (see Fig. 8). Above,
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the wheels are part of the car, which is the nucleus of

the purpose. Below, however, the meronymic relation is

pointing to the road vehicle. It is up to the community

to ensure that the structure of the gloss corresponds

makes sense. When the gloss is defined by means of

prepositions, those prepositions can easily be structured

according to these rules. In case of a multi-nucleic re-

lationship, the terms will be detected in each element

of that relationship. The multi-nucleic relationships are

mainly exploited to distill a series of pre-lexons that

play a particular purpose. For instance, in the case of

an identification purpose, the disjunction will denote

distinct reference structures, whereas the conjunction

will indicate which attributes belong together.

GENERALIZATION

"A car" "is a road vehicle."

MERONYMY

"It has four wheels."

N S

N S

GENERALIZATION

"A car" MERONYMY

"is a road vehicle." "It has four wheels."

N S

N S

Fig. 8 Tree representation of differently structured glosses
that appear the same.

6 Application commitments in the Feedback

Loop

Application commitments provide valuable information

about which terms and lexons the different members of

the community representing their organization commit

to. This selection is exploited by informing those mem-

bers when changes are requested (and occur) in the

ontology as to stimulate discussion.

The mapping α in those commitments is further-

more used to delve into the annotated data in search

for support or counterexamples for certain statements

made by the community, e.g. to notify the community

whether proposed constraint is true for all annotated

information systems currently known in the commu-

nity. This process will guide the community in its dia-

logue to achieve agreement. This is done by generating

the necessary queries using the commitments of each of

the applications, populating the lexons in the concep-

tual schema and then reason over the data in terms of

lexon populations. This tool is called Ω-DIPPER Fig.

9 extends and depicts the place of Ω-DIPPER in the

feedback loop.

6.1 Semantics of Constrained Lexons

We presented in Section 3 the encoding of lexons and

constraints in Description Logics (DLs) so that we can

utilize DL-reasoners for reasoning tasks over the result-

ing ontologies. The Open World Assumption (OWA)

in DLs allows the existence of unknown information.

However, in many cases, we want information to be as

complete as possible to support business - as defined

by the semantic interoperability requirements of a com-

munity of stakeholders. In other words, the instances in

the annotated information systems must follow certain

business rules to ensure proper business. For example,

in some cultural domain, we want that every “Event

must have at least one explicit associated Location”.

The OWA, however, cannot capture our intuition of

constraints that need to be imposed, thus we assign

different semantics for constraint lexons to treat them

as OWL integrity constraints (ICs) [54,65].

Our purpose is twofold: (1) using ontologies to pro-

vide shared conceptualization and to enrich data, and

(2) using constraints as integrity constraints for data in-

side each application. To achieve this, we combine the

Open World Assumption and Closed World Assump-

tion (CWA). OWA is used in reasoning to derive new

knowledge, and CWA is adopted when validating the

integrity of the application data. We present a survey

of existing approaches for OWL integrity constraints.

Note that some authors refer to an ontology as a knowl-

edge base. This knowledge base is denoted as a pair

〈T ,A〉, where TBox T consists of terminological axioms

and ABox A consists of assertions or data sets. For the

hybrid ontology engineering framework, we agree that

[30] that in an ontology, the description of concepts and

relations should be separated from its instances. For

simplicity’s sake, however, we consider both the axioms

and assertions when discussing the integrity constraints

in this Section. And we use a set of assertions as an ab-

breviation of a model.

Definition 7 (ICs by consistency [42]) An ontol-

ogy O satisfies an integrity constraint IC if and only if

O ∪ IC is satisfiable.
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HYBRID 
ONTOLOGY 

DESCRIPTION


Interaction

externalize

(re-internalize)

"World"

Organized Community

Information 
System 1

Information 
System Ncommitment N

commitment 1

Ω-DIPPER

Fig. 9 Feedback loop from the ontologies to the community by not merely taking into account the lexons committed to by
the application, but the data in the annotated organization information systems as well.

Example 9 Suppose that O1 consists of the following axioms

∃has−.> v Location (14)

MusicEvent v Event (15)

MusicEvent(boomtown) (16)

and IC1 contains only

Event v ∃has.> (17)

It is easy to see that, under OWA, O1 ∪ IC1 is satisfiable. So
O1 satisfies IC1 by Definition 7. However, it does not fit our
intention of using the constraint to ensure that every event
has explicit locations; boomtown is an event but its location
is not explicitly presented.

Definition 8 (ICs by entailment [60]) An ontology

O satisfies an integrity constraint IC if and only if O |=
IC.

Example 10 We consider another example in which IC2 only
contains (17). Ontology O2 consists of all axioms of O1

together with {has(boomtown, ghent), Location(ghent)}. In-
tuitively, one might think that ontology O2 satisfies IC2.
However, there is also a model I1={MusicEvent(boomtown),
Event(boomtown), Event(polepole), has(boomtown, ghent),
Location(ghent)} of O2 for which I1 6|= IC2. By Definition 8,
O2 does not satisfy IC2. That contradicts the intuition.

Definition 8 states that all models must entail the

integrity constraints. However, the example above sug-

gests that entailment in this Definition should be re-

stricted to minimal models of O. I is a minimal model

of O if and only if I is a model of O and there is no

model J of O such that J ⊂ I. Therefore, Definition 8

should be formalized as follows: O satisfies IC if and

only if all minimal models ofO entails IC. This idea has

been nicely captured in [54,53], where ontology axioms

are expressed as FOL formulas [5] and skolemization

[55] is applied to deal with existential quantifiers.

Definition 9 (ICs by minimal models & skolem-

ization [54,53]) Let π(O) and π(IC) be FOL for-

mulas that express axioms in O and IC respectively,

sk(O) be the set of formulas obtained by skolemization

of π(O). O satisfies integrity constraint IC if and only

if I |= π(IC) for every minimal Herbrand model I of

sk(O). We shall sometimes write I |= IC instead of

I |= π(IC).

Definition 10 (Herbrand-based model) Given an

ontology O = {T ,A}.I is a Herbrand-based model of O
if I is a model of O, ∆I consists of ABox’s individuals,

and every individual is mapped to itself. A Herbrand-

based model I of an ontology O is minimal if there is

no Herbrand-based model J of O such that: ∆I ⊂ ∆J
and interpretation function ·J contains every mapping

in the interpretation function ·I .

Now we reconsider examples 9 and 10 with respect

to Definition 9. In Example 9, the only minimal Her-

brand model of O1 is I ′1 = {MusicEvent(boomtown),

Event(boomtown)}. By Definition 9, O1 does not sat-

isfy IC1 because I ′1 6|= IC1. It follows the intuitive inter-

pretation of avoiding an unknown Location for Event.

In example 10, the only minimal Herbrand model of O2

is I2 = I1 \ {Event(polepole)} and I2 |= IC2, then O2

satisfies IC2. This also fits the intuitive interpretation,

however in some cases the skolemization could lead to

unexpected consequences.

Example 11 Let O3 consists of following axioms:

∃has−.> v Location (18)

MusicEvent v Event (19)

Event v ∃has.> (20)

MusicEvent(boomtown) (21)

IC3 contains only the axiom MusicEvent v ∃has.>
The minimal Herbrand model of ontology O3 is of the

form I3 = {MusicEvent(boomtown), Event(boomtown), Lo-
cation(u), hasLocation(boomtown, u)} where u is generated
by skolemization of axiom (18) and (20). We see that I3 |=
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IC3, so O3 satisfies the IC3 although the exact location of
boomtown is unknown.

Definition 9 almost captures the intuition of ICs, but

it has some drawbacks discussed in [65]. To avoid the

problem of unknown individual and avoid unintuitive

meaning of integrity constraints, we use an alternative

semantics for OWL integrity constraints. Before that,

however, the Herbrand-based model of an DL ontology

is first defined, which is similar to the Herbrand model

in FOL.

Now the integrity constraint interpretation is de-

fined to interpret the translated GOSPL constraints.

For each ontology, there is at most one such interpreta-

tion. In case of unsatisfiable ontologies, there is no such

interpretation.

Definition 11 (Constraint interpretation) Given

an ontology O = {T ,A} andM = {I1, . . . , In} is a set

of its minimal Herbrand-based models. Concept name

A, role R, and individual d in integrity constraints are

interpreted by the following integrity constraint inter-

pretation IIC = {∆IIC , ·IIC}, where ∆IIC is a set of

all individuals in A, as follows:

AIIC = {dIIC | dJ ∈ AJ , for all J ∈M}
RIIC = {(cIIC , dIIC ) | (cJ , dJ ) ∈ RJ , for all J∈M}
dIIC = d

The extension of IIC to inverse roles and complex con-

cepts is done as normal.

We will use integrity constraint interpretation to de-

fine how an ontology satisfies an integrity constraint.

Note that we only consider satisfiable ontologies whose
integrity constraint interpretation exists.

Definition 12 (Integrity constraint satisfaction)

Given an ontology O and its integrity constraint inter-

pretation IIC , O satisfies an integrity constraint IC if

and only if IIC |= IC.

We reconsider the previous examples and check whether

Definition 12 captures our intuition of integrity con-

straints.

Example 12 Reconsidering Example 9 with respect to Defini-
tion 12. The only minimal Herbrand-based model of O1 is of
the form I = {MusicEvent(boomtown), Event(boomtown)}.
We have EventIIC = {boomtown} but (∃has.>)IIC = ∅.
Thus, O1 does not satisfy IC1. This matches the intuition of
the constraint.

It is easy to check that Definition 12 also matches

the intuition in Example 10. Now, we reconsider Exam-

ple 11 in the light of Definition 12.

Example 13 Every minimal Herbrand-based model of O3 is
of the form Ii = {MusicEvent(boomtown), has(boomtown,
ui), Event(boomtown), Location(ui)} Where ui is different
in each Ii. We have MusicEventIIC = {boomtown}, but
(∃has.>)IIC = ∅. Thus O3 does not satisfy IC3 as expected.

In the next part, we briefly present the process of

checking integrity constraints.

6.2 Checking Constraints over Annotated Data

Our proposal resembles the IC-interpretation in [65].

We differ from [65] in using minimal Herbrand-based

models instead of classical models. To validate integrity

constraints, we follow the approach in [65]. However,

we adopt the Unique Name Assumption instead of the

Weak Unique Name Assumption [65].

We have implemented a prototype supporting the

common ORM constraints [29]: mandatory constraint,

internal uniqueness constraint, and external uniqueness

constraint. Some SPARQL queries to check the validity

of those integrity constraints and get the counter exam-

ples are presented below. To get complete answers, we

use HermiT9 reasoner to classify the ontology and then

perform materialization before running those SPARQL

queries. Note that our method works correctly with

ontology languages in which classification task can be

done without taking assertions into account.

Mandatory constraint C v ∃R.>
PREFIX ont: <http://path.to.my.ontology/#>

SELECT ?x WHERE {

?x a ont:C.

OPTIONAL {?x ont:R ?y.}

FILTER (!BOUND(?y))

}

Internal uniqueness constraint (funct R)

PREFIX ont: <http://path.to.my.ontology/#>

SELECT ?x WHERE {

?x ont:R ?y1.

?x ont:R ?y2.

FILTER (?y1 != ?y2)

}

External uniqueness constraint (id C R1 ... Rn)

PREFIX ont: <http://path.to.my.ontology/#>

SELECT ?x1 ?x2 WHERE {

?x1 a ont:C.

?x1 ont:R1 ?y1.

...

?x1 ont:Rn ?yn.

?x2 a ont:C.

?x2 ont:R1 ?y1.

...

?x2 ont:Rn ?yn.

FILTER (?x1 != ?x2).

}

9 http://www.hermit-reasoner.com
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7 GOSPL: The Tool

The tool is developed in Java and runs inside an ap-

plication container such as JBoss. It contains two lay-

ers: the base layer contains all the domain classes and

communication with the server and a web application

providing the interface layer. The base layer can also

be consulted by other software agents, making the de-

velopment of standalone clients possible. Fig. 10 shows

a screenshot of the GOSPL tool. It shows a screen with

the lexons and constraints of one communities’ hybrid

ontology description (1) and glossary (2), links to the

discussions (3), community management (4), the com-

mitments of applications to the ontology (5) and the

OWL implementation of the hybrid ontology (6).

Fig. 10 Screenshot of the lexons and constraints of one com-
munities’ hybrid ontology description.

GOSPL is discussion-oriented and both the ontol-

ogy and glossary evolve only if the community reaches

an agreement10. This results in traceability not only

at change level, but also on decision level. In Fig. 11,

several discussions are shown. Different discussions can

be started, one for each of the social processes defined

in Section 4. Depending whether a person is a mem-

ber of the community, some discussions might not be

available. However, all users can leave comments and

all users can start “informal” discussions (even when

they are not part of the community). In other words,

we not only record who changes what, but also the rea-

sons certain changes have been made by linking changes

to discussion on the platform. This was possible by for-

malizing the social processes and its corresponding op-

erators.

10 Or a part of the community that felt the need to partici-
pate in a particular discussion.

Fig. 11 Discussions (social processes) in GOSPL.

A voting system is used to gather the opinion of

people without the need of participating in the discus-

sion.

The application commitments belonging to commu-

nity members describe how the application symbols of

their system commit to the ontology, allowing the in-

formation in those database systems to be retrieved

through the ontology. Of course, the discovery of coun-

terexamples does not necessarily mean that the state-

ment is false, however, this information might direct

the discussion into another direction. Fig. 12 shows a

dataset has over 13000 counterexamples for the manda-

tory constraint on “has” between “Person” and “Other

Name”.

Fig. 12 Finding counterexamples for statements.

Fig. 13 depicts the description of community-term

pair 〈CERIF Project Ontology, Project〉. GOSPL also

shows the communities adopting this gloss or the glosses

that the CERIF Project Ontology has adopted for this

term. Glosses are a very important means to achieve

consensus within and across communities. Others can

easily start a discussion to state that this gloss is equiv-

alent with another gloss (3). The application further-

more suggests the community members to introduce

concepts, fact types, etc. distilled from this gloss (2).

Glosses thus provide “food for thought” to refine or
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Fig. 13 Displaying the gloss of a community-term pair.

complete the formal part of the hybrid ontology, a pro-

cess that can be facilitated by the tool. This information

can be then exploited to guide the discussion processes,

by transforming certain statements into queries that

will look for counterexamples.

Fig. 14 depicts a simple “scenario” with the tool.

After logging in, users are presented a list of commu-

nities (A), users can take a look in each community

– for instance the Venue community in (B) and the

discussions of that community (C). The image in (B)

corresponds with the screenshot in Fig. 10. Depend-

ing whether the user is a member of a community, the

user has access to a number of social processes he can

start within that community. In (D), we show how a

discussion to add a gloss is started. The discussion pre-

sented in (E) stems from the experiment we will de-

scribe later on. Once a term is articulated, lexons can

be built around this term (F) and constraints on the

created lexons (G). After a while, the community has

obtained a closer approximation of their domain and

can start creating/updating their application commit-

ments (H). These commitments can be (users are not

obliged) registered to the platform, which can then be

used to test statements made in a discussion, e.g., by

looking for counter-examples (H). When users are not

part of a community, the interactions they can start

only involves general requests (e.g., request an edit, or

request to become a member), they have no access to

requests on the glossary or lexon base. If that user is

part of another community, he can trigger processes to

discuss the “sameness” of glosses or terms.

Information on synonymy and gloss-equivalences are

shown on a separate page (a community-term page), ac-

cessible by - for instance - clicking on one of the terms

of the accepted lexons. The GOSPL tool supports a

community in applying the method for ontology engi-

neering, but its purpose is indeed not to replace other

means of interaction that can be more effective when

possible (e.g., face-to-face meetings when community

members are near, or even teleconferences). The out-

come of these interactions outside of the tool, however,

needs to be properly written down when concluding a

discussion.

In [10], we reported on the user satisfaction with

the GOSPL ontology-engineering platform. Based on

this study, we identified the main (usability) problems

and drew valuable conclusions and recommendations

for improvement.

Satisfaction was measured using the standardized

Post-Study System Usability Questionnaire (PSSUQ)

[45,46] developed by IBM. PSSUQ originally consisted

of 19 questions, each question being a statement about

the usability of the system. Participants need to an-

swer each statement using a Likert scale of 7 points,

where 1 indicates that the user “strongly agrees” with

the statement whilst 7 indicates that the user “strongly

disagrees” with it. PSSUQ is based on a comprehensive

psychometric analysis, providing scales for three sub-

factors, namely: (1) system usefulness; (2) information

quality; and (3) interface quality. The short (and most

recent) version of PSSUQ, illustrated in Table 2, was

used, in order to save time.

In Table 2, the questions correspond with the sub-

factors as follows:

– System usefulness: the avg. of items 1 through 6;

– Information quality: the avg. of items 7 through 12;

– Interface quality: the avg. of items 13 through 16;

– Overall: the avg. of items 1 through 16.

In summary, the participants were successful in de-

livering ontologies following the method and tool. Tak-

ing the satisfaction results obtained from PSSUQ and

the user comments, we derived the following conclusions

[10]: out of the three sub-factors identified by PSSUQ,

the system usefulness measure performed best and the

information quality of the system is the sub-factor that

needs to be improved the most. This also corresponds

to the (Information Quality-related) problems the most

cited by the users: usability problems 1, 2 and 3 in Table

3. An improvement regarding problem 1 is to introduce

more information support for the user in the form of in-

telligible error messages or supportive documentation.

From [10], we report only the major problems in this

article.

Regarding the “delete” and “edit” options, most of

the participants would be content with a feature that

allows a post to be edited within a number of seconds.

Regarding the problems related to communities, the
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(A) (B) (C)

(D)
(E)

(F)

(G)

...

...
BEGIN SELECTION
['Cultural Domain']
 <'MyOrganization', Artist, with, of, AID>
 <'MyOrganization', Work Of Art, with, of, WID>
END SELECTION
BEGIN CONSTRAINTS
 LINK('Cultural Domain', Artist, 'MyOrganization', Artist).
 LINK('Cultural Domain', Work Of Art, 'MyOrganization', 
Work Of Art).
 EACH Artist with AT MOST 1 AID.        #(1)
 EACH Artist with AT LEAST 1 AID.       #(2)
 EACH AID of AT MOST 1 Artist.          #(3)
 EACH Work Of Art with AT MOST 1 WID.   #(4)
 EACH Work Of Art with AT LEAST 1 WID.  #(5)
 EACH WID of AT MOST 1 Work Of Art.     #(6)
END CONSTRAINTS
BEGIN MAPPINGS
 MAP 'Artist'.'name' ON Name of Artist.
 MAP 'Artist'.'birthyear' ON Year of birth of Artist.
 MAP 'Artist'.'id' ON AID of Artist.
 MAP 'piece'.'name' ON Title of Work Of Art.
 MAP 'piece'.'year' ON Year of Work Of Art.
 MAP 'piece'.'id' ON WID of Work Of Art.
 MAP 'artistpiece'.'a_id' ON  AID of Artist contributed to 
Work Of Art.
 MAP 'artistpiece'.'p_id' ON WID of Work Of Art with 
contributor Artist.
END MAPPINGS

...

(H) (I)

Fig. 14 Screenshots corresponding with different social processes supported by the tool.

participants wished the ability to delete communities,

in particular the communities that became obsolete as

the different communities evolved. Even though they

understood that even those communities might once

again become active, they would be happy to be able

to “filter” the dead communities from the list and tog-

gle that filter. Also the organization of the information

could be improved (e.g. show more entries by default –

the default number of items shown in a table is 10 and

users wish to augment this number for caret browsing).

Other improvements would be a list of changes after the

last visit and displaying which discussions have been

not yet looked at by the user.

Concerning the method we observed that terms that

were articulated before lexons around this term were

entered into a community commitment were less likely

to have changes in their formal description than those

that weren’t [20]. We analyzed the interactions involv-

ing terms in a community with the following criteria: (1)

the term had to be non-lexical, meaning that instances

of this concept cannot be printed on a screen, only its

lexical attributes can, (2) the term was the subject of

at least 4 interactions (not including gloss-equivalences

and synonyms, thus focusing on the formal and infor-

mal descriptions around this term), and (3) the term

took part in at least one lexon. We took into account

terms with a fair amount of activity. This is due to
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Table 2 PSSUQ - short version [47]

Item Item Text
Q1 Overall, I am satisfied with how easy it is to use this system.
Q2 It was simple to use this system.
Q3 I was able to complete the tasks and scenarios quickly using this system.
Q4 I felt comfortable using this system.
Q5 It was easy to learn to use this system.
Q6 I believe I could become productive quickly using this system.
Q7 The system gave error messages that clearly told me how to fix problems.
Q8 Whenever I made a mistake using the system, I could recover easily and quickly.
Q9 The information provided with this system was clear.
Q10 It was easy to find the information I needed.
Q11 The information was effective in helping me complete the tasks and scenarios.
Q12 The organization of information on the system screens was clear.
Q13 The interface of this system was pleasant.
Q14 I liked using the interface of this system.
Q15 This system has all the functions and capabilities I expect it to have.
Q16 Overall, I am satisfied with this system.

Table 3 Summative user satisfaction. INF = Information Quality, INT = Interface Quality and SYS = System Usefulness.

Usability problem Nature # of reports
1 The (error) messages displayed by the system were often not clear to the user.

There was in general no online help or documentation available.
INF 6

2 There is no “undo” or “edit” option available INF, INT 5
3 No (top menu) link to the current community in the discussion page INT, INF 5
4 It took a while to understand how the system works SYS 1
5 Sometimes, listing items in the dynamic tables did not go well when after returning

to a page it displayed the first item again.
INT 3

6 There was no “delete” option for the communities that “died” during the process. INF, INT 2
7 The user name is not clear (just email addresses appear) INT 1
8 Sometimes, more clicking necessary that one would expect (e.g. when browsing

through several discussions).
SYS 1

the fact that the communities employed terms only rel-

evant to their application, and therefore only inspired

discussions within that group. These discussions are not

interesting as the community tended to agree on what

has been decided for their application.

We then analyzed how much of these terms changed

in terms of their formal description if when the gloss is

provided. With these criteria, we identified 49 terms. Of

these 49 terms, 38 started with the natural language de-

scription as described by the GOSPL method. Of these

38 terms, 11 of them had changes in their formal de-

scription (29%). And of the remaining 11 terms that

did not start with the informal description, 5 of them

changes in their formal description (45%).

The reason we left out lexicals is that they often

play in an attributive role. Lexons are supposed to be

entered when at least one of the terms is articulated. At

the start, the key terms are often described first. And

when the second term concerns a lexical in an attribu-

tive role, the community tends to agree on the meaning

of this attribute based on the label of that term. If

we were to take lexicals into account, we again observe

that terms that did not start with an informal descrip-

tion are more likely to change its formal description: 18

terms out of 46 that started with a gloss and 6 terms

out of 12 that did not start with a gloss.

8 Discussion

Every method needs to be teachable, repeatable and

traceable. The GOSPL method for hybrid ontology en-

gineering complies with all three criteria. The first two

criteria have already been proven in industry; we went

beyond the current state of affairs with the third crite-

rion by formalizing the social processes involved. This

allows us to store the whole dialogue within the com-

munity, supporting decision-making that could result in

ontology evolution.

Teachable. The DOGMA framework for ontology en-

gineering, on which GOSPL is based upon, drew

inspiration from database design methods and tech-

niques such as NIAM and ORM. NIAM/ORM and

therefore also DOGMA are fact-oriented approaches
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in which stakeholders communicate fact types ex-

pressed in natural language.

Fact-oriented approaches differ from frame-oriented

approaches (e.g., UML) by eliminating the distinc-

tion between attributes and relations; every thing

is a fact between concepts. This reduces the learn-

ing curve. Unlike UML, fact-orientation was not in-

tended to capture the dynamic aspects of a system

(e.g., methods). The use of natural language to ex-

press these fact types also facilitates the knowledge

elicitation processes.

Repeatable. Ontology engineering processes and possi-

ble interactions have been described and therefore

repeatable by a community who have been trained

or have access to the documentation. Because the

method is repeatable, the third aspect – traceabil-

ity – is a logical consequence.

Traceable. In order to support ontology evolution, one

needs to record the changes over time. As in software

engineering, it is a good practice to also document

why certain changes have been made. The different

evolution operators on the formal parts are there-

fore traceable (who, why, when, etc.), what is not

often captured is the whole process of reaching a de-

cision, with GOSPL, the social processes leading to

a change in the ontology will have been formalized

and stored for future reasoning.

The GOSPL tool supports a community in applying the

method for ontology engineering, but its purpose is in-

deed not to replace other means of interaction that can

be more effective when possible (e.g., face-to-face meet-

ings when community members are near, or even tele-

conferences). The outcome of these interactions outside

of the tool, however, needs to be properly written down

when concluding a discussion. For a closer integration

of other means of interaction such as teleconferences, we

could draw inspiration from [48] where they presented a

customizable collaborative environment focused to sup-

port ontology-based enterprise interoperability.

9 Conclusion

In computer science, the problem is not what ontolo-

gies are, but how they become to be shared and ex-

plicit agreements useable for semantic interoperability

within a community. In this article we have presented a

method and tool for hybrid ontology engineering called

GOSPL, which stands for Grounding Ontologies with

natural Language and Social Processes. Hybrid ontolo-

gies are ontologies in which concepts are both described

formally and informally, where the latter uses a special

linguistic resource called Glossary. For the formal de-

scriptions, we adopted a fact-oriented ontology frame-

work where the knowledge building blocks are binary

fact types, also grounded in natural language. All agree-

ments within and across communities of stakeholders

are the result of social interactions, which are captured.

In more detail, this article presented:

– A framework for hybrid ontology engineering, which

constitutes the adoption of an existing fact-oriented

ontology engineering approach in which the context

of fact types is limited to communities. We also in-

troduced a glossary for the informal descriptions

and introduced the notion of community- and ap-

plication commitment. The first capturing a com-

munities’ engagement to comply with a selection of

fact types and constraints to ensure proper business

and the latter a description of how one individual

application commits to the ontology.

– We explained the nature of the agreements of “same-

ness” at both informal and formal level, and how the

two interplay. We also provided a motivation why an

agreement why the agreement of two glosses – used

to describe two terms in two different communities

– being considered referring to the same concept

should not automatically imply that the terms are

synonymous.

– The framework merely provides a setting in which

hybrid ontologies are built, but no method to guide

the community in this process. The GOSPL method

was presented where – starting from key terms of the

semantic interoperability requirements – one ideally

starts from an informal description to describe the

concepts formally. To drive the social interactions

in the method, we described how we exploit glosses
and application commitments. The glossary is used

to extract potential new knowledge to feed the dis-

cussions. The application commitments are used to

analyze some claims made by the community that is

presented as additional information during the com-

munities’ interactions.

All these ideas were implemented in a tool, used

in the context of a Linked Data project in Brussels.

The usability study conducted in [10] showed that the

method and tool helped the participants in construct-

ing hybrid ontologies, but there were some suability

problems that needed to be addressed. Furthermore,

the usability study showed that the there was a need

for additional documentation and information from the

tool in guiding the users; a tutorial and reading mate-

rial on the method and tool were deemed not sufficient

for the users. An updated version of the method, doc-

umentation and tool will therefore be used in an new

experiment with a similar number of participants, but
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in a different domain. Part of future work will be to

examine to what extent GOSPL can be applied for all

semantic interoperability projects.

The community model was intentionally kept sim-

ple to avoid groupthink [31]. Part of ongoing research,

however, is to explore to what extent community lead-

ers can be identified based on the interactions they

have with other community members, other communi-

ties and the platform. The aim is to provide community

leaders with additional privileges only to steer the dis-

cussions.
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