
adfa, p. 1, 2013.

© Springer-Verlag Berlin Heidelberg 2013

SDRule-L: Managing Semantically Rich Business

Decision Processes

Yan Tang Demey and Christophe Debruyne

Semantics Technology & Application Research Lab,

Department of Computer Science, Vrije Universiteit Brussel,

Pleinlaan 2, 1050 Brussels, Belgium

yan.tang@vub.ac.be, christophe.debruyne@vub.ac.be

Abstract. Semantic Decision Rule Language (SDRule-L) is an extension to Ob-

ject-Role Modelling language (ORM), which is one of the most popular fact

based, graphical modelling languages for designing information systems. In this

paper, we want to discuss how SDRule-L models can be formalized, analysed

and applied in a business context. An SDRule-L model may contain static (e.g.,

data constraints) and dynamic rules (e.g., sequence of events). A reasoning en-

gine is created for detecting inconsistency. When an SDRule-L model is used to

manage linked data, a feasible way is to align SDRule-L with Semantic Web

languages, e.g. OWL. In order to achieve this, we propose to map dynamic

rules into a combination of static rules and queries for detecting anomalies. In

this paper, we will illustrate a model reification algorithm for automatically

transforming SDRule-L models that contain dynamic rules into the ones con-

taining static rules, which can be formalized in Description Logic.

Keywords: business process modelling, fact based modelling, Description

Logic, semantic decision support

1 Introduction

Ontologies can be applied in many fields, such as system engineering, requirement

analysis, bioinformatics, information categorization and Semantic Web (SW). One

interesting and appealing domain is semantic decision support (SDS) for business,

which can be further considered as a means to enhance decision support using busi-

ness domain knowledge. We call a system for SDS as SDSS, with which we can assist

communications between decision makers by enhancing the shareability and improve

interoperabilities among business decision tools and services.

A fundamental requirement of SDSS is that its business semantics that is important

to make a decision must be properly captured. In order to fulfil this need, we use Se-

mantic Decision Rule Language (SDRule-L, [1]), which is a dialect in the family of

fact based modeling (FBM) languages [2] and an extension to Object-Role Modelling

language (ORM [3]), to capture decisional semantics and graphically present it.

In this paper, we will discuss the SDRule-L constraints that do not exist in most

FBM dialects, or, have different semantics. We also propose using SDRule-L for

mailto:yan.tang@vub.ac.be
mailto:christophe.debruyne@vub.ac.be
Yan Tang-Demey and Christophe Debruyne. SDRule-L: Managing Semantically Rich Business Decision Processes. In C. Huemer and P. Lops, editors, EC-Web, volume 152 of LNBIP, pages 59-67. Springer, 2013

checking the consistency of linked business data. An SDRule-L model may contain

static rules (e.g., data constraints), dynamic rules (e.g., sequence of events), and sec-

ond-order attributes (e.g., clusters). Unfortunately, current solutions of managing

linked data are based on Description Logic (DL) family, which does not directly deal

with dynamic rules. And, DL by default is first-order logic instead of second-order

logic. In this paper, we will illustrate how SDRule-L models can be mapped into

OWL (Web Ontology Language)-compatible SDRule-L model and DL. In order to

check consistency of business data, we have implemented an SDRule-L engine.

It is organized as follows. Sec. 2 is the paper background. How to map dynamic

rules into a combination of static rules and queries for detecting anomalies will be

discussed in Sec. 3. We will show the implementation issues and present the discus-

sions in Sec. 4. In Sec. 5, we will conclude.

2 Background and Related Work

For over three decades, FBM dialects, such as ORM [3], have been intensively stud-

ied for modeling business information. When comparing FBM dialects to the lan-

guages in the related work, FBM has many outstanding advantages as a modeling tool

for ontologies. For example, Entity-Relationship diagrams (ER, [4]) and Unified

Modeling Language (UML, [5]) cannot express relevant constraints on or between

attributes. Business Process Models and Notations (BPMN, [6]) and its extensions

(e.g., rBPMN that focuses on expression of constraints in BPMN, [7]) mainly focuses

on processes and researchers pay less attention to other models, such as data models.

Compared to Conceptual Graph (CG, [8]), FBM languages contain more semantically

rich graphical notations and have verbalization mechanisms, which enable modelers

to easily learn and communicate with domain experts. Hence, FBM is more suitable

for conceptual analysis, especially when non-technical domain experts are involved.

In the domain of business, this is an extremely important reason.

Since 1999, the FBM methodological principles have been adopted for modeling

ontologies and supporting verbalization of ontology models in the paradigm of De-

veloping Ontology-based Methodologies and Applications [9] [10]. Later on,

ORM/ORM2 is extended for modeling ontologies. One extension is called Semantic

Decision Rule Language (SDRule-L, [1]) and is used for modeling semantically rich

decision support rules within the context of business. Its markup language – SDRule-

ML – has been designed to store and exchange ontology-based decision rules.

3 Model Transformation

SDRule-L extends ORM by introducing contains, operators and corresponding graph-

ical notations such as instance, sequence, cluster, negation, exception and modality. In

this section, we will illustrate those graphical notations and explain their semantics. In

the meanwhile, we will show how SDRule-L models can be transformed into OWL-

compatible models and the SPARQL queries used for checking the consistency of

business data.

Formalization of Objectification: Before going into the details of SDRule-L con-

straints and operators, it is necessary to explain objectification and the formalization.

Objectification is a way of treating a role pair as an object [3]. Graphically, it is

represented as shown in Fig. 1 (O1), which is a minimum constrained fact type with

an objectification. A and B are two object types, r1 and r2 are the roles that A and B

can play with, and C is an objectified role pair r1/r2. The bar on r1/r2 is a uniqueness

constraint, meaning that the populations of A and B with regard to r1/r2 are unique.

O1 O2

Fig. 1. Example of objectification and its equivalent owl-compatible model

The objectification from Fig. 1 (O1) can be mapped to Fig. 1 (O2) without losing

any semantics. In Fig. 1 (O2), the objectified role pair r1/r2 is treated as a new object

type C. Two new roles r1’ and r2’ are introduced for the issues of formalization and

implementation. Two mandatory constraints (graphically represented as dots) are

applied between C and A, and between C and B. The constraints on roles r1’ and r2’

ensures 1:1 population between C and A, and between C and B. The circled bar in

Fig. 1 (O2) is an external uniqueness, which is a direct adaptation from the unique-

ness constraint on r1/r2 from Fig. 1 (O1). We use () – a DL dialect – to for-

malize Fig. 1 (O2) as follows:

In what follows, we will use objectification to objectify roles.

Sequence is a common constraint for an event. In SDRule-L, two events can have the

relations as indicated in Table 1.

Table 1. SDRule-L Sequence (: event on the right of the connector; : event on the left)

ID Name Graphical Notation Verbalization

1 Succession

 is before

2 Continuation

 is exactly before

3 Overlap

 and overlap

4 Trigger

 triggers

5 Terminator

 is terminated by

6 Coincidence

 and are in parallel

Allow us to use for denoting an event. An event contains two basic time indica-

tors: begin time stamp (which we indicate as) and end time stamp (indicated as).

 is a valid event iff . We use a dot “ ” to indicate the holder of an element.

For example, for an event , its begin time stamp is denoted by . Given two

A
 r1/r2

C

B A
 r1/r1'

C B
 r2'/r2

>>

_ _

 -_

>>

>>

|=|

events – and – a succession (is before) is valid iff . A con-

tinuation (is exactly before) is valid iff where is a given

time interval. An overlap is valid iff

 and . Or,

 and

A trigger is similar to (but stricter than) a succession. The fact that triggers is

valid iff and when happens, must happen. For a succession like

“ is before ”, when happens, will possibly (but not necessarily) happen. A

terminator – is terminated by – is valid iff and A

coincidence is valid iff and .

Fig. 2 shows an example containing all the six sequence constraints. Each role pair

(see the rectangles) is constrained with a uniqueness constraint (graphically represent-

ed as a bar above role pairs). Without it, a role pair cannot be populated.

Fig. 2. An example of sequence

An example of the verbalization
1
 of Fig. 2 is Device open(s) Curtain before De-

vice send(s) Message.

We can transform the succession constraint modelled in Fig. 2 into an OWL-

compatible model as illustrated in Fig. 3. Role pairs are objectified and new concepts

concerning event and time stamps are added with mandatory constraints (graphically

represented as dots). The part in Fig. 3 that contains extra concepts can be verbalized

as “Open Curtain is a subtype of Event; Send Message is a subtype of Event; Event

has Time Stamp T1; Event has Time Stamp T2”.

 1.

 .

2.

Fig. 3. An OWL-compatible model transformed partly from Fig. 2 and the DL axioms

Note that one part of the semantics of sequence from the original design in Fig. 2

and the discussed DL axioms is missing in Fig. 3. It does not specify that T1 of “Open

1 Verbalization is a process of mapping a graphical model to (or from) a few sentences in a

controlled language.

Device Curtain

Message

Signal

 sendMessage/isSentByDevice

 openCurtain/isOpenedByDevice

>>

>>

Rail

>>
 sendSignalTo/getSignalFrom

 receivedSignal/isReceivedByDevice

_ _Time Interval = 1MS

 isDecoratedByDevice/decorateRail

 isClearedByDevice/clearRail

Decorator

 isSentByPortal/sentSignal

Portal

 isTrackedBy/trackSignal

|=|

 -_

Device

Curtain

Message

openCurtain/isOpenedByDevice

OpenCurtain

sendMessage/isSentByDevice

SendMessage
Event

 hasT1/isT1Of

 hasT2/isT2Of

TimeStamp

Curtain” must be smaller than T1 from “Send Message”. It is normal because it can

be modelled neither in an OWL-compatible model nor in any DL dialects that are

supported by OWL.

Such semantics is captured using a query language. We can check data consistency

by querying linked data. In this paper, we adopt an approach similar to the one in [11]

for checking constraints, namely to translate constraints into SPARQL ASK queries

to check whether counterexamples (i.e. constraint violations) exist. In our engine, the

ASK query looks for counterexamples and upon a positive answer, will return that

this particular constraint has been violated.

Cluster is a way of treating a set of fact types as an object. By having clusters, we can

reify a model by looking into the details of an object, or, we can abstract a model by

hiding the design details of its objects. The graphical notation of cluster is a round-

cornered box indicated with a cluster name. A cluster can be composed of another

cluster, fact types and objectified roles. A composition can be possible or necessary,

the graphical notations of which are shown inTable 2.

Table 2. SDRule-L Cluster

ID Name Graphical Notation Verbalization

1 Possible composition

… possibly con-

tains …

2 Necessary composition

… must contain

…

The modality operators are used to specify whether it is necessary (or possibly) for

a cluster to include a component. In SDRule-L, there are two modality operators –

necessity and possibility. The graphical notation of necessity is a square marked with

“L”. A possibility operator is a diamond square marked with “M”. Note that we shall

not mistake M for mandatory. Since we want to align our graphical notations with the

logical symbols from Modal Logic that are commonly accepted, we choose L (□) for

necessity and M (◇) for possibility.

Fig. 4 shows an example of cluster and the zoom-out view. The cluster “Opening

Curtain” is composed of a necessary cluster “Listen and React” and a possible cluster

“Sending Msg”. The cluster “Listen and React” contains two fact types – Device re-

ceived Signal and Device open(s) Curtain. The cluster “Sending Msg” contains one

fact type – Device send(s) Message. The three clusters are subtypes of “Task”.

If a role that is connected with a cluster is populated, then the necessary compo-

nents of this cluster must be populated while it is not required to have its optional

components populated. Each component of a cluster is by default optional.

With regard to design issues, when a necessary component of a cluster contains a

possible component, then the necessary component is treated as if it were optional.

Fig. 5 shows two models of cluster. Cluster C2 in the figure on the left is a necessary

component for cluster C1, while C2 on the right is an optional component for C1.

Their equivalence can be proven with a truth table.

ParentCluster

 ChildClusterM
ParentCluster

M

ParentCluster

 ChildClusterL

ParentCluster

L

Fig. 4. Left: An example of cluster in SDRule-L; Right: a zoom-out view

Fig. 5. Two equivalent models

Fig. 4 can be mapped into an OWL-compatible model as illustrated in Fig. 6.

Mandatory constraints are assigned to the roles that come from a mandatory cluster.

The semantics of composition from Fig. 4 is missing in Fig. 6.

Fig. 6. OWL-compatible models partly transformed from Fig. 4

Other Constraints and Operators

In general, an implication is used to draw conclusions based on statements. In

SDRule-L, we use it to control the population of a role based on alternatives. It is

often used for modeling dynamic and non-monotonic decision rules.

Fig. 7 shows an example of implication and its verbalization. An arrow tipped bar

indicated with ¬ is an operator of negation. When negation is applied on a role of the

antecedent of an implication, it is a checksum of empty population. When it is applied

on a role of the consequence of an implication, it is a denial of populating this role.

For instance in Fig. 7, if is populated, then

 must be populated; otherwise, the latter must not be

populated.

OpeningCurtain

ListenAndReact

Device Curtain

Message

Signal
 receivedSignal/isReceivedByDevice

 openCurtain/isOpenedByDevice

L

 sendMessage/isSentByDevice

SendingMsgM

Task

OpeningCurtain

ListenAndReact

SendingMsg

Task

r1

A B

r2

C D

M

M

r3

E F

L

C2L

C1 C1

r1

A B

r2

C D

M

M

r3

E F

L

C2M

Device

Curtain

Message

Signal

 receivedSignal/isReceivedByDevice

 openCurtain/isOpenedByDevice

 sendMessage/isSentByDevice

OpeningCurtain ListenAndReact SendingMsg

Task

If Device does not open Curtain, then Device

does not send Message.

If Device open(s) Curtain, then Device

send(s) Message.

Each Device open(s) at least one Curtain.

Each Device send(s) at least one Message.

Fig. 7. An example of implication and its verbalization

Due to the limitation of DL, negation and conditional alternatives cannot be for-

malized. Implication could be partly modeled in DL as a subset. For instance, the non-

negative part in Fig. 7 can be formalized as:
 ; and, . However, we shall avoid

this complicated construction and opt for queries to detect counterexamples instead.

When negation is used in a conditional statement, it is a constraint. When it is used

in a conclusion, it is an operator. Another important operator in SDRule-L is skipper.

A skipper allows us to give an exception to the studied constraints. It is quite useful

especially for the domains like law, which in most cases contains inconsistency. Fig.

8 shows the graphical notation of skipper.

Each Device send(s) exactly one Mes-

sage [SKIP].

Fig. 8. An example of skipper (exception)

4 Implementation, Discussion and Future Work

The paper idea has been implemented in the SDRule-L engine, which can be down-

loaded from https://sourceforge.net/projects/sdrulel/.

An SDRule-L model is stored and shared in a mark-up language called SDRule-

ML [1]. Our SDRule-L engine takes SDRule-ML files as inputs and generates analy-

sis messages (e.g., whether all the constraints in a model are satisfied or not) as out-

puts. Including the method of model transformation that is discussed in Sec. 3, it is

also required to specify any possible implicit constraints. Otherwise, it would be diffi-

cult to link the components in an XML file to the elements in a query.

In this paper, a sequence constraint (e.g., continuation) is applied on two fact types,

which share at least one object entity. In general, we allow a sequence constraint to be

applied on any two fact types that are indirectly connected. When we want to compare

two facts from these two different fact types, we need to find the right connection

between them; otherwise, we cannot compare them. Fig. 9 shows an example of se-

quence that is applied on indirectly connected and two possible paths of building the

connection. The two different paths might lead to different conclusions. Finding right

connections for indirectly connected fact types is a challenge, which we will study in

the future.

Device

Curtain

 openCurtain/isOpenedByDevice

Message

 sendMsg/isSentByDevice

¬

¬
 isOpenedByDevice/openCurtain

 isSentByDevice/sendMsg

Device
 sendMsg/isSentByDevice

Message

https://sourceforge.net/projects/sdrulel/

Sequence on unconnected

fact types
Possible path 1 Possible path 2

Fig. 9. An example of a sequence applied on unconnected fact types and two possible paths of

connections

5 Conclusion

In this paper, we have discussed the most recent results concerning SDRule-L, which

is a semantic decision support language. In particular, we have presented constraints

of sequence, cluster and implication, and operators of negation and skipper. We have

shown a method of mapping dynamic rules into a combination of static rules and

queries for detecting model anomalies. This method is further implemented in the

SDRule-L reasoning engine.

Acknowledgements: Our use case and experimental data from this paper are taken

from the SBO OSCB project.

References

1. Tang, Y., Meersman, R.: SDRule Markup Language: Towards Modeling and

Interchanging Ontological Commitments for Semantic Decision Making. In

Giurca, A., Gasevic, D., Taveter, K., eds. : Handbook of Research on Emerging

Rule-Based Languages and Technologies: Open Solutions and Approaches Sec. I.

Chapter V. IGI Publishing, USA (2008)

2. FBM: What is Fact Based Modeling? In: Fact Based Modeling Official Website.

Available at: http://www.factbasedmodeling.org/

3. Halpin, T., Morgan, T.: Information Modeling and Relational Databases 2nd edn.

Morgan Kaufmann (2008)

4. Calì, A., Gottlob, G., Pieris, A.: The Return of the Entity-Relationship Model:

Ontological Query Answering. In : Semantic Search over the Web. Springer

Berlin Heidelberg, Germany (2012) 255-281

5. Wang, X., Chan, C.: Ontology Modeling Using UML. In Konstantas, D., Léonard,

M., Pigneur, Y., Patel, S., eds. : 7th International Conference on Object Oriented

Information Systems Conference (OOIS’2001), Geneva, vol. LNCS 2817, pp.59-

68 (2001)

6. Prater, J., Mueller, R., Beauregard, B.: An ontological approach to oracle BPM. In

A

 ra/rb

B

 rc/re
EC

 ra/rc

 rc/rd

D
 ra/rd>>

A

 ra/rb

B

 rc/re
EC

 ra/rc

 rc/rd

D
 ra/rd>>

A

 ra/rb

B

 rc/re
EC

 ra/rc

 rc/rd

D
 ra/rd>>

http://www.factbasedmodeling.org/

Pan, J. Z., Chen, H., Kim, H. G., Li, J., Wu, Z., Horrocks, I., Mizoguchi, R., Wu,

Z., eds. : JIST'11 Proceedings of the 2011 joint international conference on The

Semantic Web, Hangzhou, vol. LNCS7185, pp.402-410 (2011)

7. Milanovic, M., Gasevic, D., Rocha, L.: Modeling Flexible Business Processes

with Business Rule. In : the 15th IEEE International Enterprise Distributed Object

Computing Conference, EDOC 2011, Helsinki, Finland, vol. 3.1, pp.65-74 (2011)

8. Comparot, C., Haemmerle, O., Hernandez, N.: Conceptual Graphs and Ontologies

for Information Retrieval. In Priss, U., Polovina, S., Hill, R., eds. : the 15th

international conference on Conceptual Structures: Knowledge Architectures for

Smart Applications, Beijing, vol. LNAI 4604, pp.480-483 (2007)

9. Meersman, R.: Semantic Ontology Tools in IS Design. In Raś, Z., Skowron, A.,

eds. : ISMIS 99 Conference, London, vol. LNCS1609, pp.30-45 (1999)

10. Spyns, P., Tang, Y., Meersman, R.: An Ontology Engineering Methodology for

DOGMA. Journal of Applied Ontology 3(1-2), 13-39 (2008)

11. Tao, J., Sirin, E., Bao, J., McGuinness, D. L.: Integrity Constraints in OWL. In

Fox, M., Poole, D., eds. : AAAI, Atlanta, Georgia, USA (2010)

