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Abstract. Semantic Decision Rule Language (SDRule-L) is an extension to Ob-

ject-Role Modelling language (ORM), which is one of the most popular fact 

based, graphical modelling languages for designing information systems. In this 

paper, we want to discuss how SDRule-L models can be formalized, analysed 

and applied in a business context. An SDRule-L model may contain static (e.g., 

data constraints) and dynamic rules (e.g., sequence of events). A reasoning en-

gine is created for detecting inconsistency. When an SDRule-L model is used to 

manage linked data, a feasible way is to align SDRule-L with Semantic Web 

languages, e.g. OWL. In order to achieve this, we propose to map dynamic 

rules into a combination of static rules and queries for detecting anomalies. In 

this paper, we will illustrate a model reification algorithm for automatically 

transforming SDRule-L models that contain dynamic rules into the ones con-

taining static rules, which can be formalized in Description Logic.  

Keywords:  business process modelling, fact based modelling, Description 

Logic, semantic decision support 

1 Introduction 

Ontologies can be applied in many fields, such as system engineering, requirement 

analysis, bioinformatics, information categorization and Semantic Web (SW). One 

interesting and appealing domain is semantic decision support (SDS) for business, 

which can be further considered as a means to enhance decision support using busi-

ness domain knowledge. We call a system for SDS as SDSS, with which we can assist 

communications between decision makers by enhancing the shareability and improve 

interoperabilities among business decision tools and services. 

A fundamental requirement of SDSS is that its business semantics that is important 

to make a decision must be properly captured. In order to fulfil this need, we use Se-

mantic Decision Rule Language (SDRule-L, [1]), which is a dialect in the family of 

fact based modeling (FBM) languages [2] and an extension to Object-Role Modelling 

language (ORM [3]), to capture decisional semantics and graphically present it. 

In this paper, we will discuss the SDRule-L constraints that do not exist in most 

FBM dialects, or, have different semantics. We also propose using SDRule-L for 
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checking the consistency of linked business data. An SDRule-L model may contain 

static rules (e.g., data constraints), dynamic rules (e.g., sequence of events), and sec-

ond-order attributes (e.g., clusters). Unfortunately, current solutions of managing 

linked data are based on Description Logic (DL) family, which does not directly deal 

with dynamic rules. And, DL by default is first-order logic instead of second-order 

logic. In this paper, we will illustrate how SDRule-L models can be mapped into 

OWL (Web Ontology Language)-compatible SDRule-L model and DL. In order to 

check consistency of business data, we have implemented an SDRule-L engine.  

It is organized as follows. Sec. 2 is the paper background. How to map dynamic 

rules into a combination of static rules and queries for detecting anomalies will be 

discussed in Sec. 3. We will show the implementation issues and present the discus-

sions in Sec. 4. In Sec. 5, we will conclude.  

2 Background and Related Work 

For over three decades, FBM dialects, such as ORM [3], have been intensively stud-

ied for modeling business information. When comparing FBM dialects to the lan-

guages in the related work, FBM has many outstanding advantages as a modeling tool 

for ontologies. For example, Entity-Relationship diagrams (ER, [4]) and Unified 

Modeling Language (UML, [5]) cannot express relevant constraints on or between 

attributes.  Business Process Models and Notations (BPMN, [6]) and its extensions 

(e.g., rBPMN that focuses on expression of constraints in BPMN, [7]) mainly focuses 

on processes and researchers pay less attention to other models, such as data models. 

Compared to Conceptual Graph (CG, [8]), FBM languages contain more semantically 

rich graphical notations and have verbalization mechanisms, which enable modelers 

to easily learn and communicate with domain experts. Hence, FBM is more suitable 

for conceptual analysis, especially when non-technical domain experts are involved. 

In the domain of business, this is an extremely important reason. 

Since 1999, the FBM methodological principles have been adopted for modeling 

ontologies and supporting verbalization of ontology models in the paradigm of De-

veloping Ontology-based Methodologies and Applications [9] [10]. Later on, 

ORM/ORM2 is extended for modeling ontologies. One extension is called Semantic 

Decision Rule Language (SDRule-L, [1]) and is used for modeling semantically rich 

decision support rules within the context of business. Its markup language – SDRule-

ML – has been designed to store and exchange ontology-based decision rules. 

3 Model Transformation 

SDRule-L extends ORM by introducing contains, operators and corresponding graph-

ical notations such as instance, sequence, cluster, negation, exception and modality. In 

this section, we will illustrate those graphical notations and explain their semantics. In 

the meanwhile, we will show how SDRule-L models can be transformed into OWL-

compatible models and the SPARQL queries used for checking the consistency of 

business data. 



Formalization of Objectification: Before going into the details of SDRule-L con-

straints and operators, it is necessary to explain objectification and the formalization. 

Objectification is a way of treating a role pair as an object [3]. Graphically, it is 

represented as shown in Fig. 1 (O1), which is a minimum constrained fact type with 

an objectification. A and B are two object types, r1 and r2 are the roles that A and B 

can play with, and C is an objectified role pair r1/r2. The bar on r1/r2 is a uniqueness 

constraint, meaning that the populations of A and B with regard to r1/r2 are unique.  

  
O1 O2 

Fig. 1. Example of objectification and its equivalent owl-compatible model 

The objectification from Fig. 1 (O1) can be mapped to Fig. 1 (O2) without losing 

any semantics. In Fig. 1 (O2), the objectified role pair r1/r2 is treated as a new object 

type C. Two new roles r1’ and r2’ are introduced for the issues of formalization and 

implementation. Two mandatory constraints (graphically represented as dots) are 

applied between C and A, and between C and B. The constraints on roles r1’ and r2’ 

ensures 1:1 population between C and A, and between C and B. The circled bar in 

Fig. 1 (O2) is an external uniqueness, which is a direct adaptation from the unique-

ness constraint on r1/r2 from Fig. 1 (O1). We use     ( ) – a DL dialect – to for-

malize Fig. 1 (O2) as follows:  

                                

                                                  
 

In what follows, we will use objectification to objectify roles. 

   

Sequence is a common constraint for an event. In SDRule-L, two events can have the 

relations as indicated in Table 1.  

Table 1. SDRule-L Sequence (  : event on the right of the connector;  : event on the left) 

ID Name Graphical Notation Verbalization 

1 Succession 
 

   is before    

2 Continuation 
 

   is exactly before    

3 Overlap 
 

   and    overlap 

4 Trigger 
 

   triggers    

5 Terminator 
 

   is terminated by    

6 Coincidence 
 

   and    are in parallel  

Allow us to use   for denoting an event. An event contains two basic time indica-

tors: begin time stamp (which we indicate as   ) and end time stamp (indicated as   ). 

  is a valid event iff      . We use a dot “ ” to indicate the holder of an element. 

For example, for an event   , its begin time stamp is denoted by      . Given two 
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events –    and    – a succession (  is before   ) is valid iff            . A con-

tinuation (   is exactly before   ) is valid iff               where   is a given 

time interval. An overlap is valid iff  

             and            . Or,  

             and             

A trigger is similar to (but stricter than) a succession. The fact that    triggers    is 

valid iff             and when    happens,    must happen. For a succession like 

“   is before   ”, when    happens,    will possibly (but not necessarily) happen. A 

terminator –    is terminated by    – is valid iff             and              A 

coincidence is valid iff             and            .  

Fig. 2 shows an example containing all the six sequence constraints. Each role pair 

(see the rectangles) is constrained with a uniqueness constraint (graphically represent-

ed as a bar above role pairs). Without it, a role pair cannot be populated. 

 

Fig. 2.  An example of sequence 

An example of the verbalization
1
 of Fig. 2  is Device open(s) Curtain before De-

vice send(s) Message.  

We can transform the succession constraint modelled in Fig. 2 into an OWL-

compatible model as illustrated in Fig. 3. Role pairs are objectified and new concepts 

concerning event and time stamps are added with mandatory constraints (graphically 

represented as dots). The part in Fig. 3 that contains extra concepts can be verbalized 

as “Open Curtain is a subtype of Event; Send Message is a subtype of Event; Event 

has Time Stamp T1; Event has Time Stamp T2”. 

 1.                                  

                            

                      

                         . 

2.       

                                  

Fig. 3. An OWL-compatible model transformed partly from Fig. 2 and the DL axioms 

Note that one part of the semantics of sequence from the original design in Fig. 2 

and the discussed DL axioms is missing in Fig. 3. It does not specify that T1 of “Open 

                                                           
1 Verbalization is a process of mapping a graphical model to (or from) a few sentences in a 

controlled language.  
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Curtain” must be smaller than T1 from “Send Message”. It is normal because it can 

be modelled neither in an OWL-compatible model nor in any DL dialects that are 

supported by OWL.  

Such semantics is captured using a query language. We can check data consistency 

by querying linked data. In this paper, we adopt an approach similar to the one in [11] 

for checking constraints, namely to translate constraints into SPARQL ASK queries 

to check whether counterexamples (i.e. constraint violations) exist. In our engine, the 

ASK query looks for counterexamples and upon a positive answer, will return that 

this particular constraint has been violated.  

 

Cluster is a way of treating a set of fact types as an object. By having clusters, we can 

reify a model by looking into the details of an object, or, we can abstract a model by 

hiding the design details of its objects. The graphical notation of cluster is a round-

cornered box indicated with a cluster name. A cluster can be composed of another 

cluster, fact types and objectified roles. A composition can be possible or necessary, 

the graphical notations of which are shown inTable 2.  

Table 2. SDRule-L Cluster  

ID Name Graphical Notation Verbalization 

1 Possible composition 

 

… possibly con-

tains … 

2 Necessary composition 

 

… must contain 

… 

 

The modality operators are used to specify whether it is necessary (or possibly) for 

a cluster to include a component. In SDRule-L, there are two modality operators – 

necessity and possibility. The graphical notation of necessity is a square marked with 

“L”. A possibility operator is a diamond square marked with “M”. Note that we shall 

not mistake M for mandatory. Since we want to align our graphical notations with the 

logical symbols from Modal Logic that are commonly accepted, we choose L (□) for 

necessity and M (◇) for possibility. 

Fig. 4 shows an example of cluster and the zoom-out view. The cluster “Opening 

Curtain” is composed of a necessary cluster “Listen and React” and a possible cluster 

“Sending Msg”. The cluster “Listen and React” contains two fact types – Device re-

ceived Signal and Device open(s) Curtain. The cluster “Sending Msg” contains one 

fact type – Device send(s) Message. The three clusters are subtypes of “Task”. 

If a role that is connected with a cluster is populated, then the necessary compo-

nents of this cluster must be populated while it is not required to have its optional 

components populated. Each component of a cluster is by default optional.  

With regard to design issues, when a necessary component of a cluster contains a 

possible component, then the necessary component is treated as if it were optional. 

Fig. 5 shows two models of cluster. Cluster C2 in the figure on the left is a necessary 

component for cluster C1, while C2 on the right is an optional component for C1.  

Their equivalence can be proven with a truth table. 

ParentCluster

      ChildClusterM
ParentCluster

M

ParentCluster

      ChildClusterL

ParentCluster

L



 

 

Fig. 4. Left: An example of cluster in SDRule-L; Right: a zoom-out view 

  

Fig. 5. Two equivalent models 

Fig. 4 can be mapped into an OWL-compatible model as illustrated in Fig. 6. 

Mandatory constraints are assigned to the roles that come from a mandatory cluster.  

The semantics of composition from Fig. 4 is missing in Fig. 6.  

 

Fig. 6. OWL-compatible models partly transformed from Fig. 4 

Other Constraints and Operators  

In general, an implication is used to draw conclusions based on statements. In 

SDRule-L, we use it to control the population of a role based on alternatives. It is 

often used for modeling dynamic and non-monotonic decision rules.  

Fig. 7 shows an example of implication and its verbalization. An arrow tipped bar 

indicated with ¬ is an operator of negation. When negation is applied on a role of the 

antecedent of an implication, it is a checksum of empty population. When it is applied 

on a role of the consequence of an implication, it is a denial of populating this role. 

For instance in Fig. 7, if                              is populated, then 

                       must be populated; otherwise, the latter must not be 

populated. 
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If Device does not open Curtain, then Device 

does not send Message. 

If Device open(s) Curtain, then Device 

send(s) Message. 

Each Device open(s) at least one Curtain. 

Each Device send(s) at least one Message.  

Fig. 7. An example of implication and its verbalization 

Due to the limitation of DL, negation and conditional alternatives cannot be for-

malized. Implication could be partly modeled in DL as a subset. For instance, the non-

negative part in Fig. 7 can be formalized as:                         
                      ; and,                . However, we shall avoid 

this complicated construction and opt for queries to detect counterexamples instead. 

When negation is used in a conditional statement, it is a constraint. When it is used 

in a conclusion, it is an operator. Another important operator in SDRule-L is skipper.  

A skipper allows us to give an exception to the studied constraints. It is quite useful 

especially for the domains like law, which in most cases contains inconsistency.  Fig. 

8 shows the graphical notation of skipper.  

 

Each Device send(s) exactly one Mes-

sage [SKIP]. 

Fig. 8. An example of skipper (exception) 

4 Implementation, Discussion and Future Work 

The paper idea has been implemented in the SDRule-L engine, which can be down-

loaded from https://sourceforge.net/projects/sdrulel/.  

An SDRule-L model is stored and shared in a mark-up language called SDRule-

ML [1]. Our SDRule-L engine takes SDRule-ML files as inputs and generates analy-

sis messages (e.g., whether all the constraints in a model are satisfied or not) as out-

puts. Including the method of model transformation that is discussed in Sec. 3, it is 

also required to specify any possible implicit constraints. Otherwise, it would be diffi-

cult to link the components in an XML file to the elements in a query.  

In this paper, a sequence constraint (e.g., continuation) is applied on two fact types, 

which share at least one object entity. In general, we allow a sequence constraint to be 

applied on any two fact types that are indirectly connected. When we want to compare 

two facts from these two different fact types, we need to find the right connection 

between them; otherwise, we cannot compare them. Fig. 9 shows an example of se-

quence that is applied on indirectly connected and two possible paths of building the 

connection. The two different paths might lead to different conclusions. Finding right 

connections for indirectly connected fact types is a challenge, which we will study in 

the future. 
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Sequence on unconnected 

fact types 
Possible path 1 Possible path 2 

Fig. 9. An example of a sequence applied on unconnected fact types and two possible paths of 

connections 

5 Conclusion 

In this paper, we have discussed the most recent results concerning SDRule-L, which 

is a semantic decision support language. In particular, we have presented constraints 

of sequence, cluster and implication, and operators of negation and skipper. We have 

shown a method of mapping dynamic rules into a combination of static rules and 

queries for detecting model anomalies. This method is further implemented in the 

SDRule-L reasoning engine. 

Acknowledgements: Our use case and experimental data from this paper are taken 

from the SBO OSCB project. 

References 

 

1. Tang, Y., Meersman, R.: SDRule Markup Language: Towards Modeling and 

Interchanging Ontological Commitments for Semantic Decision Making. In 

Giurca, A., Gasevic, D., Taveter, K., eds. : Handbook of Research on Emerging 

Rule-Based Languages and Technologies: Open Solutions and Approaches Sec. I. 

Chapter V. IGI Publishing, USA (2008) 

2. FBM: What is Fact Based Modeling? In: Fact Based Modeling Official Website. 

Available at: http://www.factbasedmodeling.org/ 

3. Halpin, T., Morgan, T.: Information Modeling and Relational Databases 2nd edn. 

Morgan Kaufmann (2008) 

4. Calì, A., Gottlob, G., Pieris, A.: The Return of the Entity-Relationship Model: 

Ontological Query Answering. In : Semantic Search over the Web. Springer 

Berlin Heidelberg, Germany (2012) 255-281 

5. Wang, X., Chan, C.: Ontology Modeling Using UML. In Konstantas, D., Léonard, 

M., Pigneur, Y., Patel, S., eds. : 7th International Conference on Object Oriented 

Information Systems Conference (OOIS’2001), Geneva, vol. LNCS 2817, pp.59-

68 (2001) 

6. Prater, J., Mueller, R., Beauregard, B.: An ontological approach to oracle BPM. In 

A

 ra/rb

B

 rc/re
EC

 ra/rc

 rc/rd

D
 ra/rd>>

A

 ra/rb

B

 rc/re
EC

 ra/rc

 rc/rd

D
 ra/rd>>

A

 ra/rb

B

 rc/re
EC

 ra/rc

 rc/rd

D
 ra/rd>>

http://www.factbasedmodeling.org/


Pan, J. Z., Chen, H., Kim, H. G., Li, J., Wu, Z., Horrocks, I., Mizoguchi, R., Wu, 

Z., eds. : JIST'11 Proceedings of the 2011 joint international conference on The 

Semantic Web, Hangzhou, vol. LNCS7185, pp.402-410 (2011) 

7. Milanovic, M., Gasevic, D., Rocha, L.: Modeling Flexible Business Processes 

with Business Rule. In : the 15th IEEE International Enterprise Distributed Object 

Computing Conference, EDOC 2011, Helsinki, Finland, vol. 3.1, pp.65-74 (2011) 

8. Comparot, C., Haemmerle, O., Hernandez, N.: Conceptual Graphs and Ontologies 

for Information Retrieval. In Priss, U., Polovina, S., Hill, R., eds. : the 15th 

international conference on Conceptual Structures: Knowledge Architectures for 

Smart Applications, Beijing, vol. LNAI 4604, pp.480-483 (2007) 

9. Meersman, R.: Semantic Ontology Tools in IS Design. In Raś, Z., Skowron, A., 

eds. : ISMIS 99 Conference, London, vol. LNCS1609, pp.30-45 (1999) 

10. Spyns, P., Tang, Y., Meersman, R.: An Ontology Engineering Methodology for 

DOGMA. Journal of Applied Ontology 3(1-2), 13-39 (2008) 

11. Tao, J., Sirin, E., Bao, J., McGuinness, D. L.: Integrity Constraints in OWL. In 

Fox, M., Poole, D., eds. : AAAI, Atlanta, Georgia, USA (2010) 

 


