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Abstract
The formal semantics of a computer-based system quite simply is the correspondence
between this system and some real world as perceived by humans. It is usually given
by a formal mapping of the symbols in the system’s description to objects in that real
world, such that relationships and logical statements in the specification language can be
assigned a truth-value depending on whether a certain state of affairs among objects exists
in the real world. As the real world is not usually directly accessible inside a computer,
storing and reasoning about semantics requires the world to be replaced by an agreed
specification of a conceptualization, which is often in the shape of a formal construct.
This computer-based, shared, agreed formal specification of a conceptualization is what
is known as an ontology.

The creation of ontologies for enabling semantic interoperability between two or more
autonomously developed and maintained information systems is far from trivial, as it
requires the necessary agreements by all stakeholders – which is called a community – on
concepts and relations to make this interoperation possible.

As those agreements are the result of social interactions, appropriate ontology engineering
methods should take into account the natural language used by the community during
those interactions. In this thesis, a fact-oriented formalism is extended for the construc-
tion of so-called hybrid ontologies. In hybrid ontologies, all concepts, terms, etc. are
represented not just on their own formal structures (e.g. by means of fact-orientation),
but are always to be interpreted in a given context, which is the community that agrees
on those formal structures. Agreements are made possible and are supported by glosses
in natural language of which the shared understanding is implicit. In hybrid ontology en-
gineering, communities consequently are promoted to “first-class citizens” by formalizing
the social interactions that evolve the hybrid ontologies and by declaring the community
as the context in which all processes take place.

Next to proposing a framework for hybrid ontologies, this thesis also presents a collabora-
tive ontology engineering method called GOSPL. GOSPL – which stands for Grounding
Ontologies with Social Processes and natural Language – allows prescribing how the so-
cial interactions should be orchestrated and furthermore describes how agreements on
formal and informal descriptions are complementary, and how they interplay.

A part of this thesis is devoted to show how glosses can drive the hybrid ontology con-
struction process and to show how the annotation of the aforementioned information
systems are used to steer the social interactions and agreement processes.

All of the ideas presented in this work have been implemented in a tool. Both method
and tool were used in two experiments, of which a discussion is presented in this thesis.
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Samenvatting
De formele semantiek van een computergebaseerd systeem kan het best omschreven wor-
den als de link die gelegd worden tussen dat systeem en een realiteit zoals deze door
mensen wordt waargenomen. Deze link wordt gewoonlijk gelegd tussen een formele af-
beelding van symbolen in de beschrijving van het systeem en de objecten in die realiteit.
Zo wordt aan relaties en logische uitdrukkingen in de specificatietaal een waarheidswaarde
toegekend, die afhangt van de stand van zaken tussen de objecten in die realiteit. Om-
dat de echte wereld gewoonlijk niet direct toegankelijk is vanuit een computer, vergt het
opslaan en redeneren over de semantiek een abstracte benadering, m.a.w. door het ver-
vangen van de realiteit door een overeengekomen specificatie van een conceptualisatie,
vaak in de vorm van een formeel construct. Deze computergebaseerde, gedeelde en
overeengekomen formele specificatie van een conceptualisatie heet een ontologie.
De creatie van ontologieën die semantische interoperatie tussen twee of meer autonoom
ontwikkelde en beheerde informatiesystemen moet bewerkstelligen, is ver van triviaal. Het
vereist de nodige akkoorden over de concepten en relaties tussen alle belanghebbenden –
wat we een community noemen – om die interoperatie mogelijk te maken.
Omdat die akkoorden het resultaat zijn van sociale interacties, moeten gepaste methoden
voor het bouwen van ontologieën de natuurlijke taal in achting nemen, die door de com-
munity tijdens die interacties wordt gebruikt. In deze thesis wordt een feit-georiënteerd
formalisme aangewend en uitgebreid voor het maken van zogenaamde hybride ontologieën.
In hybride ontologieën worden alle concepten, termen, ... niet alleen voorgesteld door hun
formele structuren (b.v. door middel van feit-oriëntatie), maar deze moeten altijd binnen
een bepaalde context geïnterpreteerd worden. Deze context is de community die akko-
orden over die formele structuren bereikt. Die akkoorden worden mogelijk gemaakt en
ondersteund door glosses in een natuurlijke taal, waarvan het verstaan en begrijpen door
de community impliciet is. In de constructie van hybride ontologieën worden communities
bijgevolg gepromoveerd tot “first-class citizens”, enerzijds door de sociale interacties te
formaliseren die de hybride ontologieën doen evolueren en anderzijds door het declareren
van de community als de context waarin alle akkoorden plaats vinden.
Naast het voorstellen van een raamwerk voor hybride ontologieën, zal deze thesis ook
de collaboratieve ontologie-constructiemethode GOSPL voorstellen. GOSPL staat voor
“Grounding Ontologies with Social Processes and natural Language” en voorziet een kader
waarin de verschillende sociale interacties kunnen worden voorgeschreven. Verder be-
schrijft GOSPL hoe akkoorden over formele en informele beschrijvingen elkaar aanvullen
en op elkaar inspelen.
Een deel van deze thesis demonstreert hoe glosses het hybride ontologie-constructie proces
aandrijven en hoe de annotaties van bovengenoemde informatiesystemen worden gebruikt
om de sociale interacties en akkoorden bij te sturen.
Alle ideeën voorgesteld in dit werk werden in een tool geïmplementeerd. De methode
en tool werden in twee experimenten gebruikt, waarop verder in dit werk zal worden
ingegaan.
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Chapter 1

Introduction

1.1 Thesis Scope and Motivation

An information system is a system containing information in a database for a given appli-
cation context of a given organization. The application context defines the functionality
of such a system, and is prescribed by the organizations’ requirements. The development
of an information system thus involves the creation of a requirements specification and
an agreement on the design. Costing is an important factor here and will also influence
the choice whether components will be selected for its implementation, outsourced, or
even built from scratch.

One should involve end users during the requirements specification process for several
reasons. Two of these reasons are the impedance mismatch between the jargon (used by
end users) and the business knowledge, and the end users being experts in (their part of)
the domain. The development of an information system typically involves at least four
worlds [JMSV92]:

• The subject world, or the universe of discourse;
• The system world, the information system’s description of the universe of discourse;
• The usage world, the organizational setting in which the system is deployed includ-

ing the end users, associated activities, etc.;
• The development world, which covers the environment in which the system is de-

veloped (including developers, the adopted development methods, etc.).

As shown in Figure 1.1, domain experts and end users observe the world. Domain experts
try to abstract the world, whereas the end users will interact with the world and are able
to test the developed information system by comparing the instances stored in that system
with objects in the real world. Both domain experts and end users will collaborate with a
knowledge designer so that the latter can put the resulting agreements into a CASE1 tool
for building a conceptual schema that describes the business domain. The conceptual
schema will – in turn – be used to generate parts of the processes, parts of the constraints
and a data model of the information system.

The knowledge in such a conceptual schema is typically a mixture of domain-general
knowledge and enterprise-specific knowledge derived from the requirements. Domain
knowledge can contain shared or even generic constraints. Enterprise-specific knowledge
describes the applications and constraints local to the enterprise, making use of the

1Computer-aided software engineering.
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Figure 1.1: Information systems in an enterprise context.

domain knowledge. Enterprise-specific knowledge will often constrain the domain-general
knowledge even further. For example, the knowledge that an ISBN identifies a book is
part of the domain knowledge. In a movie rental service providing enterprise, however,
the knowledge that a customer is only able to lend at most five movies at a time is part
of the enterprise knowledge.

As the business domain is not accessible inside a computer, the conceptual schema –
often in the shape of a formal (mathematical) construct – will actually replace the business
domain. This is necessary in order to store and reason about the semantics of the business
domain. Hence, the formal semantics of an information system is the correspondence
between this system and the conceptual schema, which represents the business domain
as perceived by the domain expert and the end users. Once the system is adequately
designed and implemented, a statement output by the information system can be correctly
interpreted by end users in terms of objects in the business domain if and only if such
statement is derived from stored instances of concepts and relations as described in the
conceptual schema. Those stored instances are mapped by the intentional semantics to
agreed observed relationships among those same objects.

But what happens when two or more autonomously developed and maintained informa-
tion systems need to meaningfully interoperate, but need to remain autonomous? Since
the business domains of each information system overlaps with the shared domain of all
humans involved, agreements on how to describe the shared domain by the representa-
tives of these systems – which we will call a community – are needed. Again, as the
world is not accessible inside each one of those information systems, the shared domain
needs to be replaced by another formal (mathematical) construct, called an ontology (see
Figure 1.2).

An ontology is commonly defined as: “a [formal,] explicit specification of a [shared] con-
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ceptualization” [Gru95]. Gruber’s original definition is without the words “shared” and
“formal”, but are accepted by relevant scientific communities to describe more precisely
the intention of ontologies. Ontologies constitute the key resources for realizing a Seman-
tic Web [BLHL01]. The main difference between a conceptual schema and an ontology
is that the first is intended for the development of one particular information system in
one organization, and the latter for reuse and therefore general for a particular domain.

Each interaction within the community leads to agreements and these agreements are
later on used to construct a new version of the ontology. The ontology will then be
used to annotate the application symbols in each of the information systems for enabling
semantic interoperability.

The problem, however, is not so much what ontologies in computer science are, but 1)
how they become shared formal specifications of a domain, and 2) how they become
operationally relevant and sustainable over longer periods of time [dMDM06]. Ontology
engineering is far from trivial and requires adequate methods and tools for guiding the
process [SSS09].

Suppose we consider the applications of BOZAR2 and Agenda.be3. The first application
is developed for maintaining and displaying cultural events, mostly taking place at the
Centre for Fine Arts in Brussels. The latter is a portal for cultural events in and around

2http://www.bozar.be/
3http://www.agenda.be/
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Brussels and this portal is used to promote the city. Although these applications share
parts of their business domain, both were developed in a different enterprise context and
for meeting different requirements. As a consequence, we observe that the different orga-
nizations have different views on the shared business domain, which can be for instance
observed in the way both applications present categories of musical events to end-users,
as shown in Figure 1.3. In this example, there are some simple correspondences, such as
mapping the concept referred to with the label “classical music” with the concept referred
to with the label “klassiek” (NL). Other mappings, however, are less obvious and make
the exchange of information between the two systems a non-trivial task. For instance,
the concept referred to with the label “jazz” intuitively seems to be included in the con-
cept labeled “jazz & blues”. All instances of the latter, however, are not necessarily all
instances of the first. The figure only depicts some of the taxonomic differences, however
differences in the sets of attributes and the representations of these attributes can be
observed in those applications as well.

Assuming that both organizations wish to annotate their data with an ontology, in order
to retrieve information from both databases via that ontology. For BOZAR, it would
increase the visibility for their events and Agenda.be could benefit from complementing
their information on events with more detailed descriptions provided by the organizing
parties. The ontology that will result of that collaboration will be the outcome of drawing
inspiration from both enterprise contexts. The introduction of “classical music” in the
ontology will most likely not be problematic, but the negotiation on what is considered
“jazz” and “blues” will probably require more effort.

BOZAR AGENDA.BE

Figure 1.3: Different perspectives on the shared world by two organizations.

There are several solutions to tackle this problem. One solution is to agree keeping one
concept in the ontology for both jazz and blues events. Making a distinction between
the two would be left to the end-user interpreting the data. Another solution would be
to separate the two concepts in the ontology. This would then require more effort from
Agenda.be to ensure that instances of both concepts stored in their information system
are properly classified (e.g., by searching for appropriate keywords). What all solutions
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have in common is being the result of negotiation and discussion processes between the
stakeholders.

Ontologies evolve as the agreements within the community evolve, which means that
ontologies, in our opinion, are social artifacts. The social interactions leading to those
agreements implies that communities should become an integral part of the ontology. This
thesis explores how communities can be promoted to first-class citizen in the ontology
engineering process by grounding the ontology evolution process with the community own-
ing the ontology. During each interaction, the community re-internalizes the ontology,
and externalizes their consensus in a following version of that ontology. The terms inter-
nalization and externalization are based on Nonaka and Takeuchi’s four modes of knowl-
edge conversion [NT95]: socialization (tacit to tacit), externalization (tacit to explicit),
combination (explicit to explicit) and internalization (explicit to tacit) – also known as
the SECI model of knowledge dimensions. These modes have been cleverly adopted for
describing meaning negotiation in collaborative ontology engineering [DdMM07, DLM08].
In [DL09], the author has defined the community evolution process as a special type of
process cycle, which consists of the SECI sequence of knowledge conversion modes.

Ω v0 Ω v1 Ω v2 Ω vN

   

...

...

∆Ω ∆Ω

∆C ∆C

...

externalization (re-)internalization

Figure 1.4: Communities evolving together with their ontologies. During each interaction, the
community re-internalizes the ontology, and externalizes their consensus in a next version of
that ontology. Nonaka and Takeuchi’s knowledge-spiral is depicted on the right.

Interestingly, social interactions are supported by dialogue (i.e. discussions) and people
reach agreements on the formal description of concepts via natural language descriptions
that they exchange. We call such natural language descriptions for concepts glosses. By
promoting communities to first-class citizen as well as their glosses, ontologies will impart
a well-defined hybrid aspect, as they are to be resources shared among humans working
in a community, as well as among networked systems such as exist in the World Wide
Web. Natural language descriptions thus become important in supporting and driving
community and ontology co-evolution. This brings us to the first research question:

Q1 What are hybrid ontologies?

It has already been stated that ontology development is far from trivial. For instance,
some of the lessons learned in the On-To-Knowledge4 project are [SSS09]: 1) domain-
experts need practical guidelines and 2) collaborative ontology engineering requires phys-
ical presence and advanced tool support. For the last twenty years, many methods have

4http://www.ontoknowledge.org/
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been put forward developing ontologies. However, it seems that research on methodolog-
ical activities has diminished in recent years [Ber10]. Bergman observed that very few
discrete methods exist, and those that do are often older in nature [Ber10]. Adequate
methods and tool support, however, are key in increasing the success of ontology projects.
This leads us to the next two research questions:

Q2 How are hybrid ontologies constructed?

Q3 How can hybrid ontology construction be supported in a necessarily complex collab-
orative setting?

One of the assumptions in this thesis is that the glosses used by the community for aligning
their thoughts evolve with the community. As a consequence, changes in glosses should
be reflected as changes in the formal description of those concepts. For instance, refining
a definition to include constraints or elaborate on the characteristics of the concept being
described, would and should result in the addition of that constraint and extra knowledge
in the formal description of that concept. The fourth research questions is thus formulated
as follows:

Q4 How does the evolution of a natural language definition of a concept influence the
formal part of a hybrid ontology?

Finally, this thesis looks into the evolution of annotations with the ontology of the infor-
mation systems in the ontology engineering process. These annotations provide valuable
information on how those information systems use the concepts and relations in the on-
tology as well as the instances that are made accessible through the ontology via those
annotations. One can, for instance, look for counterexamples for statements made by
the community, or even determine to what extent one particular information system is
compliant with the constraints of an ontology. The fifth question in this thesis then
becomes:

Q5 How does the annotation of application symbols drive the hybrid ontology engineering
process?

In summary, Q1 looks for a framework for hybrid ontology engineering, whereas Q2 and
Q3 investigate a method and tool for hybrid ontology engineering respectively. Questions
Q4 and Q5 look how the ontology engineering processes prescribed in the answer of Q2
can be facilitated.

This thesis addresses these questions by focusing on several research objectives:

O1 Provide an analysis of the state-of-the-art on ontology engineering with respect to
the use of social processes and the use of natural language definitions to support
the evolution of meaning agreements within a community.

O2 Develop the notion of hybrid ontologies to support social processes with natural
language definitions for concepts.
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O3 Develop a method for hybrid ontology engineering.
O4 Determine which parts of the method can benefit from the evolution of those natural

language definitions.
O5 Determine which parts of the method can benefit from the annotation of existing

(legacy) systems.
O6 Develop a tool that is based on this aforementioned method.
O7 Evaluate the contributions and – by consequence – their conceptual design.

1.2 Structural Overview of the Thesis

Parts of this thesis have been reported earlier in following peer-reviewed publications.
This will be mentioned when describing each chapter. This thesis is organized as follows:

Chapter 2 provides a review on ontology languages used on the Semantic Web and a
comparison of the state-of-the-art on (collaborative) ontology engineering. From
the latter it will become apparent that the use of natural language descriptions as
a driver for the social processes and the ownership of ontologies by the community
of stakeholders is not properly addressed.

The comparison of ontology engineering methods in this chapter started from the
related work published in [DM12], which was then extended and compared in more
detail in [DTM13].

Chapter 3 introduces a framework for ontology engineering promoting both the commu-
nity and their glosses to first-class citizens. This framework starts from an existing
ontology engineering framework already using natural language aspects in the for-
mal descriptions of the concepts. Chapter 3 addresses the first research question.

Parts of this chapter stem from [MD10], [DRM10] and [DM11]. Details on the
nature of some agreements were described in [DV13].

Chapter 4 proposes a collaborative ontology engineering approach built on top of the
framework proposed in Chapter 3. In this method, agreements are both starting
from and driven by the glosses. Chapter 4 also elaborates on the nature of meaning
agreements on the labels used in the formal descriptions as well as glosses. Chapter 4
provides an answer to the second research question.

This chapter is mostly based on the work describing the hybrid ontology engineering
method presented in [DM12].

Chapter 5 answers the fourth research question by proposing a method for driving the
social processes within a community via their glosses. Drawing mainly inspiration
from discourse theory to annotate glosses, the goal of a community would be to
have the information contained in glosses to resemble the formal descriptions of the
described concepts as close as possible.

Most of Chapter 5 started from [DV13], but was more thoroughly described in
[DTM13].
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Chapter 6 – which addresses the fifth question – proposes a method for using annotated
information systems to drive social interactions within the community. Communi-
ties are not limited to re-interpreting the ontology for each iteration of the ontology
engineering tasks, but also have access to the annotated data for discussing obser-
vations.

The notion of this software agent reasoning over these annotations was first men-
tioned in [Deb10]. [TD12] provided a first attempt at providing a translation of
hybrid ontologies into a decidable fragment of first order logic, which has been
refined and reported in [DTM13].

Chapter 7 and 8 respectively present the implementation of above-mentioned propos-
als in Chapters 3 to 6, and the application of the method and tool in the context
of Linked Open Data research projects. The usability study used for Chapter 8 are
partly based on [CD12] and [DC13].

Chapter 9 finally concludes this thesis, providing a summary of the contributions. This
chapter also presents some of the limitations and future work.

1.3 A Note to the Reader

This thesis refers several times to Object Role Modeling (ORM) [HM08] and Natural lan-
guage Information Analysis Methodology (NIAM) [Win90]. Both are methods and fact-
oriented modeling languages for the development of information systems with a graphical
notation that is easy to understand. ORM’s method, formalization and diagram language
are directly derived from NIAM, and NIAM actually provides the basis for most ideas
presented in this thesis. In 2005, Halpin introduced the next “generation” of ORM, called
ORM2 [Hal05]. ORM2 is mostly concerned with the introduction of a new, more compact
graphical representation of ORM diagram. The underlying formalism, however, did not
change and is still based on [Hal89], a formalization of NIAM. The author of this thesis
actually favors the graphical notation used in “ORM1”, as the distinction between object
types and predicates are more apparent. As the graphical notation is not relevant, the
thesis will therefore refer to the two “versions” of Object Role Modeling as ORM “tout
court”.
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Chapter 2

Background and Related Work

2.1 Introduction

This section presents an overview of what ontologies are and how they can be used. Even
though the term ontology has its roots in philosophy [Gua98], only the notion used in
computer science is taken into account. In computer science, the most cited definition
of an ontology is given by Gruber [Gru95]: “an explicit specification of a conceptualiza-
tion”. Since the formal definition of an ontology cannot completely specify the intended
structures and semantics of each concept in the domain and can only approximate it,
Guarino and Giaretta proposed to refine the definition as follows [GG95]: “an ontology is
a logical theory which gives an explicit, partial account of a conceptualization.” Guarino
and Giaretta thus weakened the definition given by Gruber. The main difference between
a conceptual schema and an ontology is that the first is intended for the development
of one particular information system in one organization and the latter for reuse and
therefore general for a particular domain.

A more precise definition of ontology will be used in this thesis: “The formal semantics
of a (computer-based) system quite simply is the correspondence between this system and
some real world as perceived by humans. It is usually given by a formal mapping of the
symbols in the system’s description to objects in that real world, such that relationships
and logical statements in the specification language can be assigned a truth-value depend-
ing on whether a certain state of affairs among objects exists in the real world. As the real
world is not usually directly accessible inside a computer, storing and reasoning about se-
mantics requires the world to be replaced by an agreed specification of a conceptualization,
often in the shape of a formal (mathematical) construct. This computer-based, shared,
agreed formal specification of a conceptualization is what is known as an ontology.”

Ontologies constitute the key resources for realizing a Semantic Web [BLHL01] and help
tackle the difficulty of interoperating autonomously developed and maintained informa-
tion systems in a meaningful (i.e. semantic) way.

2.1.1 Interoperability and the Semantic Web

In general, semantic interoperability is defined as the ability of two or more information
systems or their (computerized) components to exchange data, knowledge or resources
and to interpret the information in those systems [DLM08].

Ontologies are not only useful for semantic interoperability. Other motivations for ontolo-
gies can be summarized as follows [UG96, RB06]: the need for communication between
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humans, re-usability of shared understandings, reliability between information systems
and a common vocabulary for humans to write project specifications.

In the beginning, research on ontologies was mostly driven by the idea of producing
models of reality that reflect the “true” structures, independent of subjective judgment
and context [Hep08]. Others, such as Fensel found that it is impossible to produce such
“true” models and claimed that consensual, shared human judgments must be the core
of ontologies [Fen01]. Ontologies are “social” artifacts as ontologies are the result of
agreement processes within a community. It is difficult, if not impossible, to align and
find consensus on every community member’s perceived reality. As a consequence, the
compromises needed to achieve consensus result in an artifact suitable for a particular
task, but not strictly comforting to reality or all of the perceived realities.

The scientific community often debates whether an ontology is a conceptual system or the
specification thereof [Hep08]. Some researchers argue that an ontology is an abstraction
over a domain of interest in terms of its conceptual entities and their relationships. For
others, an ontology is rather the approximate specification of such an abstraction.

A common misconception is that ontologies are knowledge bases and vice versa [Hep08].
This is in part due to some formalisms such as OWL and RDF(S) allowing the creation
of both in one artifact. The distinction between the two, however, is that ontologies
provide vocabularies and the information in knowledge bases will be expressed in terms
of these vocabularies. This means that ontologies should express things about concepts
and individuals are (normally) not part of the ontology.

When creating an ontology, some aspects need to be taken into account. The following
list of these aspects is based on the work of Hepp [Hep08].

• When choosing a formalism for creating the ontology, one can range from a simple
vocabulary to high order logics, all depending on the purpose for which the ontology
will be used. The higher the expressiveness, the more sophisticated reasoning you
can perform. As the expressiveness increases, however, so will the difficulty to
create ontologies and the computational costs of reasoning.
• Also the size of the relevant community (of users) is important. Hepp noted that the

most important number is the number of human stakeholders that are expected to
commit to (use) the ontology. The way you reach agreements within a community
and how (well) you document the ontology depends on the number of users [Hep07].
• The number of changes in a time unit will influence the versioning strategy of the

ontology.
• The number of concepts in the ontology. Large ontologies tend to bring problems

(e.g. visualization and in-memory loading). It is observed that smaller ontologies
tend to be more quickly adopted [Hep07].
• Also having an impact on the agreement mechanisms is whether the intended use of

the ontology involves concepts for which a certain degree of heterogeneous subjective
views are possible. This also depends on the heterogeneity of the group. Examples
of these are religion and culture.
• Finally, the level of detail for describing concepts in the ontology not only influ-

ences comprehension of the ontology, but also has an impact on the agreement
mechanisms.
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Note that next to the number of changes in a given time unit, all the other aspects in-
fluence the agreement processes. Agreement processes need to be guided by a method.
Vrandecic et al. reported on an experiment in which it became apparent that ontology
construction without guidelines was inefficient compared to ontology construction with
prescribed processes [VPST05]. Ontology engineering methods will be mentioned in Sec-
tion 2.2. But, first the ontologies as an artifact and some popular ontology formalisms
will be described.

Ontologies can provide unique identifiers to each concept. Such an identifier can be a
label that unambiguously refers to a concept, a generated artificial ID, or - in popular
Semantic Web languages - a URI1. The use of unique identifiers solves – partly – the
problem of homonymy and synonymy in ontologies. To reason, a software agent only
needs to care about the unique identifiers and the formalism to infer now facts. In fact,
a software agent sufficiently powerful to “understand” P → Q → R can deduce that
P → R then also holds. But what do P , Q and R actually mean? As it turns out, in
order to avoid unwanted interpretations of ontologies, one can use “informal” semantics to
clear things out. Ontologies can be documented with textual definitions, synonym sets,
pictures, etc. In other words: human-readable or human-interpretable documentation.
Dog →Mammal → Animal bears more meaning for us humans than P → Q→ R.

One of the main problems Hepp noted is the interplay between ontologies and natural
language [Hep08]. A tight integration with human language is crucial for ontologies to
be successful. In later sections we will discuss ontology engineering methods that take
this integration into account.

2.1.2 Ontology- and Semantic Web Languages

Figure 2.1 depicts the so-called Semantic Web Stack (or Semantic Web Layer Cake). It
is an adaptation of Berner-Lee’s original stack in one of his talks2. This thesis focuses on
the following layers: (i) data interchange via the RDF (data) model, (ii) the development
of concept- and role-hierarchies with RDF(S), (iii) building ontologies with the Web
Ontology Language (OWL) and (iv) the support for describing business rules with SWRL.
The last is important to introduce rules that cannot be modeled with the Web Ontology
Language.

2.1.2.1 Resource Description Framework

AW3C Recommendation since 1999, the Resource Description Framework [BG04] (RDF)
is an abstract data model that defines relationships between resources on the Web. These
resources are not restricted to documents (or information resources), but can also be used
as a surrogate for real world objects (non-information resources, or “things” described by
documents). Information is encoded in sets of “triples”, where the sources of the relation
is called the subject, the relation itself the property and the relation’s destiny the subject.

1Note that Semantic Web languages allow “nameless” concepts, so called blank-nodes. While a soft-
ware agent processes blank nodes, it will generate an artificial node identifier on the fly.

2http://www.w3.org/2000/Talks/1206-xml2k-tbl/slide10-0.html
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Figure 2.1: The Semantic Web Stack. Highlighted layers will be described in this thesis.

The subject of an RDF-triple is always a URI, the object either a URI or a lexical value.
RDF descriptions are intended to be processed by machines and not read by humans.

Although many other serialization of RDF exists, this section only presents the XML
serialization of RDF and expects the reader to be familiar with the basic concepts of
XML and XML namespaces. Figure 2.2 shows an example of RDF in RDF/XML. This
document describes the resource with a particular URI stating it has a property dc:title
with value “Homepage of Christophe Debruyne” and a property dc:creator with value
“Christophe Debruyne”. The two properties in the example come from Dublin Core3.
Dublin Core is a set of labels (title, publisher, subjects, etc.) used to catalog a wide
range of networked resources, such as digitized text documents, photographs, etc. Ma-
chines, however, do not understand what dc:creator and dc:title mean. Humans
need to follow the descriptions of those two properties in that namespace to find more
information45. Humans need to interpret the information of those labels and write their
applications in such way that data annotated with those labels are interpreted and pro-
cessed in the correct way. RDF is not very expressive and therefore the possibilities for
reasoning are limited. For instance, it is not possible to create concept hierarchies, role
hierarchies or even declare the domain and range of properties. Such expressiveness would
allow lightweight reasoning while querying. An answer to that problem came with RDF
Schema, or RDF(S), which will be described in the next section.

2.1.2.2 RDF Schema

RDF Schema [BG04], a W3C recommendation since 2004, is an extension of RDF that
provides a framework for describing vocabularies (classes, properties and values). It
allows one to define class- and role hierarchies as well as domain- and range restrictions

3http://www.dublincore.org/
4http://dublincore.org/documents/usageguide/elements.shtml\#title
5http://dublincore.org/documents/usageguide/elements.shtml\#creator
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<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:dc="http://purl.org/dc/elements/1.1/">
<rdf:Description
rdf:about="http://www.christophedebruyne.be/index.html">
<dc:title>Homepage of Christophe Debruyne</dc:title>
<dc:creator>Christophe Debruyne</dc:creator>

</rdf:Description>
</rdf:RDF>

Figure 2.2: RDF/XML describing Christophe Debruyne’s Web page.

on properties.

Figure 2.3 depicts an example of using RDF(S) to describe classes and properties between
those classes. In this example, there are three classes: Person, Teacher and Course where
Teacher is a subclass of Person. A property hasTeacher is also defined between Course
and Teacher by using range- and domain restrictions. This RDF Schema can now be
used in other RDF documents to create instances of those concepts or add additional
statements around those concepts by referring to the physical location of that schema in
a namespace. An example of creating instances of this RDF(S) is shown in 2.4.

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xml:base="http://www.christophedebruyne.be/example.rdf#">

<rdfs:Class rdf:ID="Person">
<rdfs:comment>Person Class</rdfs:comment>

</rdfs:Class>
<rdfs:Class rdf:ID="Teacher">

<rdfs:subClassOf rdf:resource="#Person"/>
</rdfs:Class>
<rdfs:Class rdf:ID="Course">

<rdfs:comment>Course Class</rdfs:comment>
</rdfs:Class>
<rdf:Property rdf:ID="hasTeacher">

<rdfs:comment>Teacher of a course</rdfs:comment>
<rdfs:domain rdf:resource="#Course"/>
<rdfs:range rdf:resource="#Teacher"/>

</rdf:Property>
</rdf:RDF>

Figure 2.3: Example of RDF(S) for describing classes and properties between those classes.

Even though RDF(S) allows one to model classes, properties and their hierarchies, it
is still too weak to describe resources in sufficient detail. For instance, RDF(S) does
not provide localized range and domain constraints; it is, for instance, not possible to
state that the range of hasChild are people when applied to people and armadillos
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<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:ex="http://www.christophedebruyne.be/example.rdf#"
xml:base="http://www.christophedebruyne.be/example2.rdf#">

<ex:Course rdf:ID="Informationsystems">
<ex:hasTeacher>

<ex:Teacher rdf:ID="Robert" />
</ex:hasTeacher>

</ex:Course>
</rdf:RDF>

Figure 2.4: Example of using the RDF(S) depicted in 2.3 to create instances of those classes
and properties.

when applied to armadillos. The absence of existence and cardinality constraints in
RDF(S) poses another problem; e.g. one cannot describe that every person has exactly
two (biological) parents. RDF(S) has also no means for defining transitive, inverse or
symmetrical properties. With RDF(S) it is thus not possible to state that isAncestorOf
is a transitive property, or that hasPart is the inverse of isPartOf, or that touches
is symmetrical. The reasoning capabilities of RDF(S) are limited to inferring implicit
knowledge for information retrieval, e.g. retrieving all the names of nurses where person
have names, and nurses are people.

Why is reasoning useful? Reasoning can help one ensure that a particular knowledge
base is meaningful (all named classes can have instances), correct (it captured the in-
tuitions of domain experts) and minimally redundant, i.e. it contains no unintended
synonyms. Reasoning can furthermore help one querying over ontology classes and in-
stances, e.g. finding more general and specific classes or retrieve individuals (instances)
or tuples matching a given query. The need for this expressiveness and reasoning support
brings us to the Web Ontology Language (OWL).

2.1.2.3 Web Ontology Language

The Web Ontology Language (OWL) [BvHH+04, SHKG09], of which OWL 2.0 [MGH+09]
became recently a W3C recommendation, envisaged an ontology language that should
allow users to provide an explicit, formal conceptualization of a domain of discourse.
The motivations of the development of OWL were: a well-defined syntax, with formal
semantics and efficient reasoning support.

OWL first came in three different sublanguages each geared toward fulfilling different
aspects of requirements: OWL Full, OWL DL and OWL Lite. OWL Full uses all the
OWL language primitives and allows the combination of these primitives in arbitrary
ways with RDF. Because of this, OWL Full is fully upward compatible with RDF both
syntactically and semantically. The downside is that OWL Full is so powerful that it is
undecidable. Undecidable means it is impossible to construct an algorithm that always
leads to a correct yes-or-no answer. In OWL DL, DL stands for Description Logics, the
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grounding of this particular sublanguage. Description Logics are a family of decidable
fragments of first-order logic, which will be described in more detail in Section 2.1.4.
OWL DL does not allow certain ways of applying constructors, losing full compatibility
with RDF. Every legal OWL Document is a legal RDF document, but not every RDF
document is a legal OWL DL document. OWL DL, however, permits efficient reasoning
support and is the most expressive decidable OWL sublanguage. OWL Lite provides
an even further restriction. Some examples of such restrictions are the exclusion of
enumerated classes, disjointness statements, and arbitrary cardinality. OWL Lite was
geared towards tractability, meaning that reasoning tasks – which are decision tasks –
can be solved in polynomial time.

OWL 2 introduced different sublanguages [MGH+09], where some expressive power is
traded for efficient reasoning. OWL 2 EL is particularly useful for ontologies with large
numbers of classes and/or properties with a particular flavor of Description Logics with
only existential quantification. OWL 2 QL stands for OWL 2 Query Language and is
a flavor for, as it names implies, dealing with vast amounts of instance data. The RL
in OWL 2 RL stands for Rule Language is aimed at scalable reasoning tasks such as
consistency checking without loosing too much expressiveness.

2.1.3 Semantic Web Rule Language

The Semantic Web Rule Language, or SWRL is a proposal [HPSB+04] for a Semantic Web
rules language6, combining sublanguages of the OWL Web Ontology Language (OWL DL
and Lite) with those of the Rule Markup Language (Unary/Binary Datalog).

All rules in SWRL are expressed in terms of OWL concepts (classes, properties, individ-
uals, literals, etc.). Rules are of the form of an implication between an antecedent (body)
and consequent (head). The intended meaning can be read as: whenever the conditions
specified in the antecedent hold, then the conditions specified in the consequent must
also hold. Below is an example stating that when a person has a sibling that is male, the
sibling is the brother of that person.

Person(?p) ∧ hasSibling(?p, ?s) ∧Man(?s)→ hasBrother(?p, ?s)

2.1.4 Description Logics

This section covers one of the better-known knowledge representation languages, De-
scription Logics (DLs) [BCM+03, Sat03]. DLs are a family of logic based knowledge
representation languages providing a set of constructors to build complex concepts and
roles starting from atomic concepts and atomic roles, which can then be used to extract
implicit knowledge about concepts and individuals via a reasoner. Among those tasks are,
for example, subsumption and concept consistency. The first is used to check whether
a given concept is a subset of another concept and the latter to see whether a concept
can have instances. When the latter is not possible for a concept, this means there is a
contradiction in one of the definitions of that concept.

6A specification can be found here: http://www.daml.org/2003/11/swrl/
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In a DL, the basic notions are atomic concepts and atomic roles. Atomic concepts are used
to group objects that share common features and atomic roles refer to a binary relation
between concepts and concepts, or concept and data values. DLs also offer constructs to
create complex concepts and roles. The set of concepts is denoted with C and the set of
roles with D.

There are many DL dialects that are named following a naming convention that states
which operators are allowed starting from a base language. The base language AL, which
stands for attributive language, allows (i) the negation of concepts that do not appear
on the left hand side of axioms (atomic negation), (ii) concept intersection, (iii) universal
restrictions and (iv) limited existential quantification. Limited existential quantification
means that one can look for the existence of a role played by an instance of concept with
another instance, but cannot specify the specific concept to which the second instance
has to belong to. The letters used in the naming convention and the extension they refer
to are given below7:

F for functional properties;
E for full existential qualification8;
C for complex concept negation;
U for concept union;
H for role hierarchies;
R for role inclusion axioms, reflexivity, irreflexivity and role disjointness;
O for nominal, which are enumerated classes of object value restrictions;
I for inverse properties;
N for cardinality restriction9;
Q for qualified cardinality restrictions;

(D) for using data type properties, data types and data values.

A popular DL is ALC, the attributive language extended with complex concept nega-
tions. The semantics of this DL is given in terms of first-order logic interpretations. An
interpretation I is a pair (∆I , .I), where ∆I is the interpretation domain and .I is the
interpretation function. The domain is a non-empty set of objects, and the interpretation
function maps each atomic concept A ∈ C to a subset AI ⊆ ∆I and each atomic role
r ∈ D to a binary relation rI ⊆ ∆I × ∆I . The extension of .I to arbitrary concept
descriptions for the language ALC is defined as shown in the semantic columns of Table
2.1. Note that ALC is equivalent with ALEU , and therefore existential restriction and
disjunction will described.

A knowledge base (KB) generally contains two distinct components, the Terminological
Box (TBox) and the Assertional Box (ABox). The TBox provides the vocabulary for the
universe of discourse (i.e. the ontology), whereas the ABox defines named individuals in
terms of this vocabulary.

7This list is based on http://en.wikipedia.org/wiki/Description_logic.
8The type of the second instance can thus be specified.
9Not qualified, thus the type of the instances are not specified.
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Table 2.1: The syntax and semantics of DL ALC.

Description Syntax Semantics
Top (all concept names) > ∆I

Bottom (empty concept) ⊥ ∅
Conjunction of concepts C uD CI ∩DI
Disjunction of concepts C tD CI ∪DI
Negation (complement) ¬C ∆I \ CI
Universal restriction ∀r.C {x|x ∈ ∆I ∧ ∀y(r(x, y) ∈ rI → y ∈ CI)}
Existential restriction ∃r.C {x|x ∈ ∆I ∧ ∃y(r(x, y) ∈ rI ∧ y ∈ CI)}

Terminological Box Statements in the TBox are called terminological axioms and
are of the form A v B or A ≡ B. The first are called concept inclusions and state
the necessary conditions for an instance of A to be considered also an instance of B.
The latter is called a concept equivalence, which is basically a shorthand for stating both
A v B and B v A. With a concept equivalence, one describes the necessary and sufficient
conditions for an instance of a concept to be considered an instance of the other and vice
versa. The interpretation of both concept inclusion and concept equivalence are given in
Table 2.2. A TBox T is said to be coherent if and only if the interpretation I satisfies
all terminological axioms in T . Coherence is written as I |= T .

Table 2.2: The syntax and semantics of concept inclusions and concept equivalence.

Description Syntax Semantics
Concept inclusion C v D CI ⊆ DI

Concept equivalence C ≡ D CI = DI

ALC does not provide role axioms as more complex DLs do. One DL that provides a set
of statements to describe the characteristics of roles is EL+ [BBL05]. A role inclusion is
an axiom of the form r1 ◦ ... ◦ rn v s, where r1, ..., rn and s are role names and ◦ denotes
the composition of binary relations. These axioms can be used to define more complex
role definitions, e.g. transitive roles of the form r ◦ r v r. Similar to concept equivalence,
a role equivalence is merely an abbreviation of both r v s and s v r. The interpretation
of both role inclusion and role equivalence are given in Table 2.3.

Table 2.3: The syntax and semantics of role inclusions and role equivalence.

Description Syntax Semantics
Role inclusion r1 ◦ ... ◦ rn v s rI1 ◦ ... ◦ rIn ⊆ sI

Role equivalence r ≡ s rI = sI
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Assertional Box The ABox provides information that is specific for an application
domain in terms of concept and roles by (i) defining individuals and giving individuals
names, and (ii) fill in the roles with relation individuals such that the information is
appropriate. The interpretation I is then extended to map each individual a to an
element aI ∈ ∆I . Given two named individuals a and b, a concept C and a role r;
an interpretation I is said to satisfy a concept assertion C(a) if aI ∈ CI and a role
assertion r(a, b) if r(aI , bI) ∈ rI . An ABox A is said to be satisfied with respect to an
interpretation I if and only if every assertion in A is satisfied. This is written as I |= A.

There are two common assumptions about ABoxes:

1. The unique name assumption (UNA) infers that individual names in I are distinct.
In other words, aI 6= bI .

2. The open world assumption (OWA) presumes that the information in the ABox is
incomplete. In other words, assertions in the ABox expresses that these assertions
are true in all models, but not that all unknown information not occurring in the
models are not true.

Reasoning DL systems allows one not only to describe a universe of discourse, but also
to reason about a knowledge base K = 〈T ,A〉. A knowledge base K is said to be satisfied
by an interpretation I if and only if I satisfies both T and A. Testing the satisfiability
of a knowledge base can be done by checking whether K 6|= ⊥ holds. This thus means
checking whether K under I has a model. A concept C is unsatisfiable with respect to
K if there exists no model of I of K for which CI 6= ∅. Subsumption checking, written
as K |= C ⊆ D can be defined in terms of concept satisfiability checking, as checking
whether CI ⊆ DI is true for every model of K under I can be reduced to checking
whether the concept C u ¬D is concept satisfiable in K under I. Once the TBox is
coherent and consistent, one can populate the ABox with assertions, which in turn will
need to be assessed. This is done by checking whether the knowledge base models each
assertion in every model of K under I.

Relationship with First-order Logic Description logics are decidable fragments of
first-order logic. Concept names are unary predicates and role names are binary pred-
icates. Concept descriptions correspond to first-order formulas with one free variable,
which will be bound when used in a concept inclusion statement [BHS08]. The translation
of assertions in a DL into first-order formulas are provided by [BHS08]. The translation
of concept description C into a first-order formula with one free variable τx(C) is defined
as follows:

1. τx(A) := A(x) for atomic concepts A
2. τx(C uD) := τx(C) ∧ τx(D)
3. τx(C tD) := τx(C) ∨ τx(D)
4. τx(¬C) := ¬τx(C)
5. τx(∀r.C) := ∀y(r(x, y)→ τy(C)), where variable y is different from x
6. τx(∃r.C) := ∃y(r(x, y) ∧ τy(C)), where variable y is different from x
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Given a TBox T with concept-inclusions, the translation τ(T ) of T is given by:

τ(T ) :=
∧

CvD∈T

∀x(τx(C)→ τx(D))

This section described what DLs are and provided more details on the fairly common DL
ALC.

So far, this chapter explained what ontologies in computer science are and described
ontology languages used in the Semantic Web. The problem of how ontologies come
to be, however, has not yet been described. The next section will therefore provide a
literature review on (collaborative) ontology engineering methods.

2.2 Ontology Engineering

The problem is not so much what ontologies in computer science are, but how they come
to be. This section will describe the state of the art on ontology engineering and ontology
engineering methods in particular.

Definition 1 (Ontology Engineering [GPFLC03])
The set of activities that concern the ontology development process, the ontology life
cycle, the principles, methods and methodologies for building ontologies, and the tool
suites and languages that support them, can be referred to as ontology engineering.

For the last twenty years, many methods have been put forward for how to develop
ontologies. It seems, however, that research on methodological activities has diminished
in recent years [Ber10]. Bergman observed that very few discrete methods exist and
those that do are often older in nature [Ber10]. He furthermore noted that most methods
shared several logic steps from assessment to deployment, from testing to refinement.

Quite a few surveys on the state of the art on ontology engineering methods exist. Recent
surveys include [SS10], [ST06] and [GPFLC03]. Corcho et al. observed in [CFLGP03]
that there is no correspondence between ontology building methods and tools, except for
- at that time - METHONTOLOGY [FLGPJ97] (which has the WebODE [CFLGPV02]
tool10) and On-To-Knowledge (with their OntoEdit [SEA+02] tool suit that later be-
came the KAON11 project). The DOGMA [JM09] project developed several tools that
supported their method [DD08].

In general, one can identify two phases in an ontology engineering method: elicitation
and application [DdMM07]. In the elicitation phase, knowledge is extracted from various
resources such as documents of any kind or the experience of domain experts within a

10WebODE was discontinued in 2006, see http://mayor2.dia.fi.upm.es/oeg-upm/index.php/en/
technologies/60-webode

11http://kaon.semanticweb.org/
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specific context. In the subsequent application phase, an ontology is used in an application
context.

In ontology engineering, different stakeholders sharing a common goal constitute a com-
munity and that community tries to create a shared conceptualization of their domain
that enables communication and semantic interoperability between their autonomously
developed and maintained information systems. These stakeholders need to collaborate
in order to achieve this shared agreement, rendering ontology engineering a collaborative
process.

The requirements and needs of the community of stakeholders constantly evolve, and
thus the common ontology they are creating constantly co-evolves. Scalable ontology
engineering is quite difficult when the requirements rapidly evolve, since multiple stake-
holders might have multiple views for a particular part of the world. These different
views need to be interpreted, aligned and negotiated about.

Ontology engineering can be related to collective intelligence. Collective intelligence is
defined as the degree to which the agents in a system collectively can make good decisions
as to their future course of action; in particular, the degree to which the agents collectively
can make better decisions than any of them individually [Hey99]. Collective intelligence
typically emerges by combining knowledge from different agents, as the knowledge of
one agent differs from the knowledge of another agent, the combined knowledge will
constitute a larger pool of more diverse knowledge [Hey11]. Key is the coordination
of activity. Coordination is the arrangement or mutual alignment of actions so as to
maximize synergy and minimize friction in their overall pattern on activity [Hey11]. The
coordination of the ontology engineering processes can be facilitated by the use of glosses.
Glosses are natural language definitions of concepts and will turn out to be key in the
alignment of every stakeholder’s thoughts before working together towards an ontology.
Indeed, if something is not clear between human agents, they will ask questions such as
“What do you mean with ... ?”, “Could you explain ... ?” and discuss the definitions
which will then be used as a baseline for subsequent interactions.

As a consequence, a complex socio-technical process of ontology alignment and meaning
negotiation is required. For a collaborative ontology engineering method to be successful,
the method should thus support domain experts in gradually building and managing
increasingly complex versions of an ontology in all its aspects [dMDM06, DdMM07].

2.2.1 Ontology Engineering Methods

This section now proceeds with a closer look into the existing methods and analyze to
what extent they mention or treat glosses or social processes as a first-class citizen in the
method. The methods are ordered alphabetically.

• The Cyc [GL90, Len95] project attempted to assemble a comprehensive ontology
and knowledge base of everyday common sense knowledge to support human-like
reasoning by machines. The Cyc system includes a variety of interface tools that
permit the user to browse, edit, and extend the knowledge base, send a query to the
inference engine and to interact with the natural language and database integration
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modules. Statements are made with a special syntax. For instance, the following
statement asserts that Christophe Debruyne is an instance of Person.

(#$isa #$ChristopheDebruyne #$Person)

In Cyc, the concept names are known as constants and are used for individuals,
collections, truth functions (applied to one or more concepts and return either
true or false), and functions (which produce new terms from given ones). Every
constant in Cyc should be well-documented and ontology engineers are thus required
to give every constant a comment upon creation. This is the most common form of
documentation in the knowledge base for which guidelines are given to the users12.
Note that the comments reside at the same level of the ontology and that the
collection of descriptions are not treated as a separate resource.

“Knowledge enterers” communicate with Cyc in an expressive language. Their input
is then converted into the heuristic language, which is efficient for dealing with
many sorts of frequently recurring inference problems. Cyc users simultaneously
enter the Cyc data and information is checked before it actually enters the system.
The platform, however, does not support collaboration. The knowledge enterers
furthermore need proper training in entering and commenting the information.

OpenCyc is the open source version of the Cyc technology13.

• DILIGENT [PST04, VPST05, TPS06, PTS09], which stands for distributed, loosely
controlled and evolving engineering of ontologies, supports domain experts in a
distributed setting to engineer and evolve ontologies with the help of a fine-grained
methodological approach based on Rhetorical Structure Theory [MT88] to structure
and analyze the discussions in ontology engineering processes. The ability to present
the reasons and arguments for a modeling decision to the new entrants could speed
up the design process. A similar problem arises, when the ontology is revised and
the ontology engineers need to recall the reasons for the previous design. The users
of the ontology can as well profit from a well-documented ontology for a better
understanding. In this method, the users discuss issues, which are usually specified
at the ontology level (e.g. how should a particular classification be structured). The
users present their arguments, suggest alternatives, agree and disagree with one
another, and vote on the resolution. The editing environment explicitly supports
these steps, by extending an existing tool. A version is locally adopted by the users
after which a board of ontology stakeholders analyze those local changes and try to
converge the differences into a new version of the ontology. After that, the whole
cycle starts again.

DILIGENT also provides an argumentation ontology [TSPSS05]. The main notions
in this ontology are issues, ideas and arguments, which are represented as classes.
The central motivation for this is to keep track of the change arguments.

An existing ontology engineering tool, OntoEdit [SEA+02, SAS03] and developed
by the same group, was extended to support DILIGENT [PSST04]. OntoEdit is

12See http://www.cyc.com/doc/handbook/oe/04-documenting-the-KB.html
13See http://www.opencyc.org/
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an ontology engineering-environment for inspecting, browsing, implementing and
modifying ontologies. Modeling ontologies using OntoEdit is done at modeling at a
conceptual level. It is done so in a formalism-agnostic manner and with graphical
user interfaces to represent views on conceptual structures.

In [SEA+02], Sure et al. referred to a lexicon component. The authors did not de-
scribe agreement processes for natural language definitions. The description of the
method and tool (including screenshots) suggests that only the formal descriptions
of the concepts were taken into account.

• A DOGMA [JM09] – which stands for Developing-Ontology Grounded Methods for
Applications – inspired ontology is based on the classical model-theoretic perspec-
tive [Rei82] and decomposes an ontology into a lexon base and a layer of ontological
commitments [Mee99b, Mee01a], called the principle of double articulation [SMJ02].
A lexon base holds (multiple) intuitive conceptualization(s) of a particular domain.
Each conceptualization is simplified to a “representation-less” set of context-specific
binary fact types14. The commitment layer mediates between the lexon base and its
applications. Each such ontological commitment defines a partial semantic account
of an intended conceptualization [GG95]. It consists of a finite set of axioms that
specify which lexons of the lexon base are interpreted and how they are visible in
the committing application, and (domain) rules that semantically constrain this
interpretation.

A collaborative ontology engineering method and a meaning evolution support sys-
tem (MESS) were defined. The whole was called DOGMA-MESS [dMDM06]. A
Concept Definition Server (CDS) [DBSM04, DdM05, Jar06] was defined for keeping
natural language descriptions - called glosses - for concepts referred to by the terms
in the lexon base. As different terms (in different contexts) can refer to the same
concept, it also provided a way for keeping track of synonyms.

DOGMA also served as the basis for Business Semantics Management [DCM10],
which encompasses the technology, method, organization, and culture that brings
business stakeholders together to collaboratively realize the reconciliation of their
heterogeneous metadata.

Business Semantics Management (BSM) [DCM10] draws from best practices in
ontology management [DLM08] and ontology evolution [HDdS08]. The representa-
tion of business semantics is based on the DOGMA approach. BSM consists of two
complementary cycles: semantic reconciliation and semantic application that each
groups several activities.

Semantic Reconciliation is the first cycle of the method. In this phase, business
semantics are modeled by extracting, refining, articulating and consolidating lexons
from existing sources such as natural language descriptions, existing metadata, etc.
Ultimately, this results several consolidated language-neutral semantic patterns that
are articulated with glosses (e.g. WordNet [Fel98] word senses). These patterns are
reusable for constructing various semantic applications. This process is supported

14A fact type is a generalization of a fact, e.g. ”Person is born on Date” is a fact type and “Christophe
is born on 8 August 1984” a fact. Facts are thus instances of fact types. Fact types are elementary when
they cannot be simplified without loss of meaning.
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by the Business Semantics Glossary. Semantic Application is the second cycle.
During this cycle, existing information sources and services are committed to a
selection of lexons, as explained earlier. In other words, a commitment creates a
bidirectional link between the existing data sources and services and the business
semantics that describe the information assets of an organization. The existing
data itself is not moved nor touched.

The tool supporting BSM is called Business Semantics Glossary (BSG)15 [DDM11].
BSG is a web-application aimed at both business as well as technical users. It
lets people collaboratively manage their business semantics and is based on the
Wiki paradigm that is a proven technique for stakeholder. Governance models
are built-in and user roles (e.g. steward, stakeholder) can be applied to distribute
responsibilities and increase participation. The software takes care of the audit
trails who changed what, when and why.

The BSG is the vehicle that serves the reconciliation of the newly scoped concepts.
The BSM cycle is repeated until an acceptable balance of differences and agreements
is reached between the stakeholders that meets the requirements of the semantic
community. Gradually, closed divergent metadata sources are replaced with meta-
data sources that follow an open standard, and are kept coherent via BSG. After a
consensus has been obtained using BSM with the glossary, the terms and relations
in the ontology can be implemented in other formalisms such as OWL and RDF(S).
BSG has, for instance, been applied in the Flemish public administration [DDS+11].

• HCOME (Human-Centered ONtology engineering MEthodology) [KV03, KVA04,
KV06] supports the development of ontologies in a decentralized fashion. They
introduce three different spaces in which ontologies can be stored. The first one is
the Personal Space. In this space users can create and merge ontologies, control
ontology versions, map terms and word senses to concepts and consult the top
ontology. The evolving personal ontologies can be shared in the Shared Space. All
participants can access the shared space. In the shared space users can discuss
ontological decisions. After a discussion and agreement the ontology is moved
to the Agreed space. HCOME aimed at (i) supporting the active and decisive
involvement of knowledge workers in all stages of the ontology life cycle, and (ii)
further empowering people to engineer their ontologies shaping their information
space in ways that are seamless to their day-to-day working activities.

The HCOME prototype – called HCONE [KV03] (Human Centered ONtology en-
gineering Environment) – explicitly groups members for a given ontology. While
working on the ontology, the facts are verbalized in natural language for validation
by the user to ensure what they have entered is what they meant to enter. The
prototype furthermore supports aligning the concepts in the ontology with external
sources providing definitions such as WordNet [Fel98]. From the papers, however,
it seems that users are not able to enter their own definitions.

Through an argumentation dialogue, any group member can raise issues, propose
solutions and post arguments concerning an ontology that has been shared. The
concepts in those dialogues are: (i) issue, representing a problem to be solved; (ii)

15http://collibra.com/products-and-solutions/products/business-semantics-glossary
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position, either a solutions to an issue raised, or a new version of the discussed
conceptualization; and (iii) argument. Arguments are either supporting arguments
speaking in favor of a position or objecting argument speaking against a position.

In later work, wiki’s were adopted for the HCOME method [VKCL07, Kot08].

• Two approaches for collaborative ontology design were proposed in [HJ02] and
[KA06]. The two approaches consist of four phases: preparation, anchoring, it-
erative improvement and application. Holsapple and Joshi emphasize the design
criteria for the ontology and how the ontology should be evaluated in the prepara-
tion phase [HJ02]. The anchoring phase is used to specify the initial ontology or
ontologies to seed the collaborative effort.

In [HJ02], Holsapple and Joshi uses an adaptation of the Delphi method for col-
lecting and integrating the views of multiple people about the same topic. The
Delphi method is a research method which aims to reach consensus on a subject
by: 1) gathering the opinions from several experts, 2) presenting to the experts the
opinions of others (rendered anonymous, of course), 3) allowing the experts to refine
their opinion based on the other opinions they have received. With this method,
one tries to reach a consensus (one opinion) in several rounds.

Karapiperis and Apostolou adopted the phases of Holsapple and Joshi, but replaced
the Delphi method with voting in a Nominal Group Technique manner [KA06].
Nominal Group Technique is a formal technique to make pooled judgments and
decisions in groups that meet face-to-face. Unlike traditional voting, this technique
takes into account all opinions by following five stages: 1) introduction and ex-
planation of the problem, 2) silent generation of ideas, 3) sharing ideas, 4) group
discussion, 5) voting and ranking.

Both approaches introduced existing techniques to achieve consensus. These tech-
niques can also be used to elicit knowledge, as that knowledge will be part of the
different solutions in the different opinions. Both approaches did not mention any
specific tool support.

• METHONTOLOGY [FLGPJ97] adopts a development process for ontologies where
the tasks and their order are defined and were based on the main activities of
software development and database engineering methods. METHONTOLOGY was
an early attempt to reuse components from existing database modeling method.
Ontologies in this method also follow a life-cycle, where the different stages that
an ontology passes are identified as well. Terms and axioms can be described in
natural language, but those are only intended for documentation purposes.

WebODE [CFLGPV02, CFLGPLC03, AVCFLGP03] is an ontology engineering tool
suite based on an application server, whose development started in 1999. The server
provides services upon which clients could be developed. It provides support for
the METHONTOLOGY method, but can be used with other methods as well.
Development and support for this tool stopped in 2006. Even though the platform
allows several people to work on the same ontology, the platform does not support
social collaboration processes.
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Indeed, the goal of the authors was to prescribe the processes rather than focus on
the social aspects of ontology engineering.

• The NeOn Methodology [GPdCSF09] – a result of the NeOn project16 – for build-
ing ontologies is a scenario-based method that supports the collaborative aspects
of ontology development and reuse as well as the dynamic evolution of ontology
networks in distributed environments. The scenarios emphasize the reuse of onto-
logical and non-ontological resources, the reengineering and merging, and taking
into account the collaborative and dynamic aspects of ontologies. The NeOn Glos-
sary [dCSFGP08] identify and define the processes and activities carried out when
ontology networks are collaboratively built by teams. Guidelines were given for
the different processes and activities of the ontology; including template forms,
workflows and examples.

The NeOn Toolkit17 provides ontology engineering tools developed during the NeOn
project. The tools are published as open source. After the project, the NeOn
Foundation18 was raised to support the toolkit and other technologies developed in
the project. The toolkit is built around the Eclipse framework and provides the
ontology engineering tools as a set of plugins.

Both the Cicero [DEMB+08] wiki and the corresponding NeOn Toolkit plugin19

support ontology developers and users to keep track of discussions on a given on-
tology. The actual discussions are held in the Cicero-Wiki on a central server. The
plugin allows for establishing links between elements in an ontology and discussions
that influenced their design. Knowledge from the DILIGENT method was used to
structure the discussions. Agreements on this platform do not automatically lead
to ontology evolution, but knowledge engineers then have to change the ontology
[DEMB+08]. One of the objectives of Cicero was also to enhance documentation
by providing links with elements in an ontology and the discussions [DEMB+08].

• The On-To-Knowledge project20 resulted in a generic method and tool suite [SSS03,
SSSS01, SSS09]. The method was based on CommonKADS21. The goal of this
project was to build an ontology-based tool environment to improve knowledge
management dealing with large numbers of heterogeneous, distributed and semi-
structured documents. The processes in the On-To-Knowledge method are: 1)
feasibility study, 2) kickoff, 3) refinement, 4) evaluation and 5) application and
evolutions, with cycles (iterations) over steps 3) to 5).

OntoEdit [SAS03] is the ontology engineering environment developed for On-To-
Knowledge and is used for inspecting, browsing, implementing and modifying on-
tologies. Modeling ontologies using OntoEdit is done at modeling at a conceptual
level. It is done so in a formalism-agnostic manner and with graphical user in-
terfaces to represent views on conceptual structures. To facilitate collaboration

16http://www.neon-project.org/
17http://www.neon-toolkit.org/
18http://www.neon-foundation.org/
19http://neon-toolkit.org/wiki/Cicero
20http://www.ontoknowledge.org/
21http://www.commonkads.uva.nl/
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between domain experts and knowledge engineers, several plugins for OntoEdit
were developed.

The OntoKick plugin was built to support the collaborative creation of the require-
ment specification document and the extraction of relevant structures building a
semi-formal ontology description. OntoKick elicits information about requirements
by formulating competency questions [UK95] that need to be answered by the ap-
propriate stakeholders. Competency questions just state which queries the ontology
should support.

The Mind2Onto plugin supports the integration of brainstorming sessions to build
relevant structures of the semi-formal ontology description. This plugin is built
around a commercial solution for the collaborative construction of mind maps and
discussions. The output of this mind map is then imported into the ontology via
XML.

After this project, some of the lessons learned are [SSS09]: 1) domain-experts need
practical guidelines and 2) collaborative ontology engineering requires physical pres-
ence and advanced tool support.

• Al-Debei and Fitzgerald proposed a systematic design method for ontology engi-
neering in information systems called OntoEng [ADF09]. OntoEng is inspired by
design science research and is based on the lessons learnt from existing ontology
development methods and from the experience of building an ontology in the do-
main of telecommunications. The method seems only to prescribe processes. To
the best of our knowledge, no tool was developed for this method. It is implied that
existing tools could be reused (e.g. for modeling UML as mentioned in the paper).
Also the community aspects of ontology engineering were not proposed, and thus no
descriptions for social processes for agreement. Guidelines for the social processes
for elicitation stem from the work on the Unified Method described later in this
section.

• Ontology 101 [NM01] includes simple guidelines based on iterative design to help
stakeholders in creating ontologies using Protégé [NGM00]22 and Ontolingua23 tools.

Interesting to note is that within the same group, a collaborative ontology engi-
neering tool called collaborative Protégé was developed [TNTM08] as well as a
light-weight Web-based version called Web Protégé [TVN08]. Tudorache et al. ex-
plicitly mention the requirement to store discussions for future reference, and thus
support the ontology engineering processes. Both collaborative Protégé and Web
Protégé, however, do not refer to a method that can be supported with this tool.

Recently, the group proposed to structure some of the negotiation processes for
collaborative ontology engineering [ANT+11]. Those requests mainly concern the
introduction of terms, concepts and relations. Natural language definitions are not
negotiated as a separate request, but can be included in a term.

22http://protege.stanford.edu/
23http://www-ksl-svc.stanford.edu:5915/doc/frame-editor/index.html
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• The Unified Method proposed in [UG96] and [Usc96] is drawn from experiences in
the developing the Enterprise Ontology method [UK95] and the TOVE (Toronto
Virtual Enterprise) project ontology [GF95]. The method is language agnostic (i.e.
not developed for a particular formalism) and has no specific tool support. An
important aspect of is the use of a middle-out approach to produce the ontology
(instead of a bottom-up or top-down). The approach furthermore gives a higher
priority to highly connected concepts, since they are more difficult to define correctly
and accurately.

The stages in this method are: 1) identify the purpose and the scope; 2) build the
ontology, which consists of capturing the knowledge, implementing the ontology
and integrating existing ontologies; 3) evaluate the result; and 4) document the
ontology.

An important social process is brainstorming. The brainstorm sessions are used
for identifying all relevant terms and facts. If the group does not have sufficient
domain knowledge, external resources can be consulted to fill gaps. While terms are
grouped in different categories, the decisions why certain terms belong to a certain
group are noted. The method furthermore gave guidelines that support meaning
agreement processes.

While knowledge is captured, the participants are asked to produce natural language
definitions. This is, in fact, one of the guidelines for reaching meaning agreements. If
necessary, examples are recorded as well. Those descriptions have to be as informal
as possible to be understandable by all. Equivalent, more technical descriptions
may be kept next to those.

• UPON [DNMN05, DNMN09] or the United Process for ONtologies is an incremental
and iterative approach to building ontologies using use cases based on UML. It is
based on the Unified Software Development Process or Unified Process (UP), a
popular iterative and incremental software development process framework. This
process divides the project into four phases: inception, elaboration, construction
and transition. The elaboration, construction and transition phases are divided
into a series of time-boxed iterations. The inception phase may be divided into
iterations if the project is deemed large.

In UPON, domain experts mainly focus on the construction of the lexicon and glos-
sary in the earlier phases of the project, whereas the knowledge engineering play
a more important role in the development of semantic networks and implementa-
tions of the ontology (e.g. in OWL) at later stages. UPON thus uses two special
linguistic resources: a lexicon that is merely a set of terms and a glossary, which
is a set of term-definition pairs. Definitions are given in natural language. UPON
furthermore defines a reference lexicon and a reference glossary, both of which are
subsets of the aforementioned linguistic resources validated and approved by the
community. UPON thus implicitly defined agreement processes.

The social processes in this method have not been explicitly mentioned except
for interview and brainstorming sessions with domain experts and end users to
elicit terms and requirements. However, the authors did not mention how these
processes should be supported by the method (or a tool). Specific tool support was
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not mentioned in [DNMN09], but as the method is based on the unified process and
UML, existing tool support can be adopted. The authors did mention an existing
ontology management platform – called ATHOS24 – developed by the same group in
which they will consider which parts to integrate for supporting the UPON method.
Any report on such an integration, however, was not found.

It claimed to be the only iterative and incremental ontology building method at
that time. This, however, is not true. Methods such as DOGMA-MESS (and later
on Business Semantics Management) already took into account the incremental
building of ontologies.

2.2.2 A Comparison

Table 2.4 provides a comparison of the aforementioned methods (and tools). The rows
in this table represent the aspects that have been compared. Each aspect will now be
discussed in the following paragraphs. In this Table, one can see that Ontology 101 has
been considered twice. The first column refers to the method developed for creating
ontologies with the Protégé tool. The latter – even though no method is mentioned –
refers to the use of Collaborative Protégé, which has been developed by the same group.

Table 2.4: Comparison of different ontology engineering methods.
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28



Explicitly intended for distributed and collaborative construction? The values
for this aspect are ’Y’, ’C’, and ’N’. The ’Y’ stands for an "yes", the ’N’ for "no"
or "not proposed" and finally ’C’ is used that collaborative aspects are touched
upon, but not explicitly mentioned. A ’C’ is put when some tasks or processes
are described which imply group activities, e.g. brainstorming sessions to elicit
knowledge.

METHONTOLOGY and Ontology 101 (pre-collab) all prescribed tasks, but pro-
vided no information on how to collaborate. CYC allowed multiple users to enter
information through the tools, but collaboration processes were not described nor
supported.

Natural language descriptions of concepts? The possible values for this value are:
’Y’ for "yes", ’N’ for "no", ’D’ for support for documentation in which natural
language definitions can be provided and ’A’ for the adoption of existing resources
to align with concepts of the ontologies.

It seems from the papers of HCOME that users are not able to provide their own
natural language definitions. The authors did mention that concepts in the ontology
can be aligned with natural language definitions from WordNet. CYC, On-To-
Knowledge and Ontology 101 (pre-collab) allow for documentation. In CYC, they
explicitly mention that concepts would be appropriately documented, providing
definitions in natural language in comments. For the latter two, the tools showed
the possibility to enter documentation, which can of course contain such a definition.

Special linguistic resource as software artifact? This aspect investigates whether
there is a special linguistic resource next to the formal descriptions of the ontology.
This aspect indicates a ’N’ when the method stores the natural language definitions
as documentation or as annotations in the ontology (e.g. rdfs:comment). ’Y’ is
used when the natural language definitions are stored in a separate artifact (in
other words, materialized and treated as first-class citizen). ’W’ stands for the use
of existing artifacts. Both OntoEng and UPON do explicitly refer to a glossary in
their papers, but it is not stored as a software artifact.

The verbalization of the formal description of a concept to generate a natural language
definition of that same concept was not considered as an aspect in this table. The
methods that do take the verbalization of formal descriptions into natural language are:
DOGMA-MESS, Business Semantics Management and HCOME. DOGMA-MESS and
Business Semantics Management have already a part of formal descriptions verbalized
thanks to their grounding in fact-oriented modeling based on NIAM/ORM.

Ontologies should be considered as evolving entities. Argumentation and negotiation
processes to discuss the evolution of ontologies are thus critical. A negotiation process is
defined as a specification conversation about a concept (e.g. a process model) between
selected domain experts from the stakeholders (community of organizations) [DM07].
In order to substantiate their perspectives, domain experts must formulate arguments.
The following aspects look to what extent the methods have support for specific social
processes and whether their tools provide support for those.
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Tool support? A fairly straightforward aspect. The values used here are:

Y Specific tool support for this method
N No specific tool support for this method proposed
A Adopting/extending existing ontology engineering tools for the method
O Refers to other existing (type of) tools for some tasks

Tool support for dialogue? The values for these aspects are:

Y Yes
N No or not proposed
E Via external (integrated) service or tool

The most accepted argumentation model is IBIS25 [KR70], which provides a simple
and abstract infrastructure for non-trivial problems that cost a lot to solve (in terms
of time, money, etc.). IBIS was the model that DILIGENT, HCOME, and NeOn
adopted. DILIGENT processes are still under control of knowledge engineers (the
completion of some activities is partially dependent on the decisions of a board of
experts), whereas HCOME aims at empowering users to be completely autonomous
in their actions and decisions. The first is also true for NeOn. The NeOn toolkit
provides - via a plugin - support for discussing issues (based on DILIGENT). On-
To-Knowledge proposed a plugin that is based on existing commercial software for
the brainstorming and elicitation of competency questions. Both NeOn and On-
To-Knowledge are therefore regarded as using external (integrated) services and
tools.

Social processes for agreements on formal descriptions (A)? This aspect inves-
tigates to what extent methods explicitly describe or prescribe special social pro-
cesses for agreeing on formal descriptions of concepts. The values are:

Y Yes
N No or not proposed
I “Implied” by the (tool) support for dialogue

Methods with a tool supporting dialogue rely on the dialogue support to support the
social processes. DOGMA-MESS proposed a meaning evolution system. The two
methods described in [HJ02] and [KA06] defined processes for achieving consensus
and both OntoEng and the Unified Method mentioned the use of - amongst others
- brainstorming sessions to elicit knowledge for the formal descriptions. On-To-
Knowledge does not provide such support as the dialogue framework is only used for
the elicitation of competency questions. In other words, dialogue is used to agree
what questions should be supported by the ontology, but not how the ontology
would look like.

Tool support for social processes on formal descriptions (B)? This aspect com-
pares to what extent the method provides tool support for some of the processes
described for (A). The values are:

25IBIS stands for Issue-Based Information System.
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Y Yes
N No or not proposed
P Partial
I “Implied” by the (tool) support for dialogue
- Not applicable as there is no tool support or the authors referred to other

existing (type of) tools

DILIGENT, HCOME and NeOn have taken argumentation frameworks into ac-
count, which are reflected in the tool support and therefore these processes can
be considered implied. Web Protégé offers support for dialogue in a forum-like
manner, and recently provided special requests for formal changes that are fairly
frequent in the medical domain [ANT+11]. Also the Business Semantics Glossary
for Business Semantics Management supports dialogue via their wiki technology.
DOGMA-MESS is considered to provide specific tool support for their Meaning-
Evolution-Support-System module. In DOGMA-MESS, so-called “tickets” are sent
around to the stakeholders for rendering their perspectives [DD08]. The stakehold-
ers receive the assignment to provide their perspective, which are then stored on
the server. The meaning negotiation processes for evolving the ontology, however,
were only described and not implemented in a tool. Only some support for analyz-
ing conflicts between different perspectives was proposed for someone leading the
MESS process, usually a knowledge engineer or core domain expert [DD08].

Social processes for agreements on informal descriptions (C)? Here, we investi-
gate to what extent methods explicitly describe or prescribe special social processes
for agreeing on informal descriptions of concepts. Informal here means that concepts
are described by means of natural language descriptions rather than a formalism.
The values are:

Y Yes
N No or not proposed
P Partial
I “Implied” by the (tool) support for dialogue

Again here, the methods with a tool supporting dialogue rely on the dialogue system
to support the social processes. Only OntoEng proposed social processes for the
construction of natural language definitions of concepts, albeit as keywords such as
“brainstorming”. Unfortunately, OntoEng does not propose tool support for these
processes.

This aspect for Ontology 101 (collab) is considered partial as the authors proposed
special interactions for formal changes, but not for informal descriptions. They did,
however, provide a request to introduce terms in which they foresaw a field for a
natural language definition.

Tool support for social processes on informal descriptions (D)? Here, we com-
pare to what extent the method provides tool support for some of the processes
described for (C). The values are:
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Y Yes
N No or not proposed
I “Implied” by the (tool) support for dialogue
- Not applicable as there is no tool support or the authors referred to other

existing (type of) tools

Agreement leads to ontology evolution? This aspect looks to what extent agree-
ments lead to ontology evolution. Ideally, agreements should automatically lead to
ontology evolution. The values for this aspect are:

A Automatically
M Manually
N Not
- Not applicable as method is not explicitly intended for distributed collabo-

ration

It is interesting to see that most methods that take the collaborative aspects of
ontology engineering into account manually evolve the ontology after agreement
has reached. Only Ontology 101 (collab) proposed some special requests which
– after agreement – automatically evolves the ontology [ANT+11]. The types of
requests are made after the types of changes most occurring in the medical domain.
The requests are stored as annotations in the ontology.

The only method not really taking this aspect into account is Business Semantics
Management. The Business Semantics Glossary allows anyone with sufficient rights
to add new knowledge, without discussion. The formal parts of the ontology, how-
ever, do have a status attribute stating whether some part is a candidate, accepted,
etc. The informal parts of the ontology do not have such properties. The Busi-
ness Semantics Glossary actually follows a wiki paradigm where anyone can change
the ontology, and discussions can happen afterwards. This approach has several
problems:

• The ontology in the Business Semantics Glossary is not guaranteed to be stable
at any time. The authors actually state that a stable version of the ontology
has to be then “compiled” for use for the specific interoperability requirements
(e.g. into UML, XSD, etc.)
• Community members could already commit to the knowledge they entered,

even if that knowledge has not been accepted by all yet. This would hamper
the possibility of finding compromises.

The reason most methods require the manual evolution of ontology is that either
someone elicits knowledge and agreements without tool support and then enters the
results or the argumentation frameworks allow users to discuss issues, solutions, etc.
rather than discuss changes. If the latter would have been adopted, motivating and
discussing the change, then ontology evolution could be automated.

“Owner” of the ontology? This aspect compares who the “owners” of an ontology are
for a particular method. Here, the word “owner” refers to the users who can change
the ontology. The values for this aspect are:
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C The community of stakeholders (possibly including knowledge engineers)
are the owner

H Stakeholders are the owner of their ontology, knowledge engineering ensure
the evolution of the shared space

K Knowledge engineers have ownership
N Not proposed
- Not applicable as method is not explicitly intended for distributed collabo-

ration
It is interesting to see that Business Semantics Management is the only method that
allows a community to develop and maintain their ontologies. In most methods,
the knowledge engineers are the owners of the ontology.
DOGMA-MESS, HCOME and DILIGENT all allow individual stakeholders to
maintain their view on matters, but the shared perspective is managed by the
knowledge engineers.. DOGMA-MESS has the notion of organizational ontologies,
HCOME refers to it as personal spaces and DILIGENT as local ontologies. A board
of stakeholders with sufficient rights will then try to find a consensus or compromise
from the different perspectives to evolve the ontology. The stakeholders remain thus
owner of their ontology.
The problem with this method is that even though a consensus is sought, people
describe their perspective on matters in a formal way and could thus already commit
to their own descriptions. Not only that, they could as well already annotate
their existing systems with their predicates. Rather than discussing changes in the
ontology, changes are performed locally and then discussed upon. And one would
indeed benefit from keeping as much as possible their desired changes. This could
thus hamper or delay reaching a consensus as it is possible that stakeholders need
to revert and commit to the new version of the ontology as decided upon by the
board (with the involvement of all stakeholders, of course).
OntoEng did not explicitly state who the owners of an ontology are. The owner
of the ontology in Ontology 101 (collab) is presumed to be the knowledge engineer
as the authors did not explicitly refer to a method in their papers describing Col-
laborative Protégé, but a case study in the medical domain hinted at the use of
knowledge engineers [NTDCM08].

We can conclude from above that the methods and tools described in the state-of-the-art
do not take into account the social processes for constructing natural language definitions
of concepts. Most of the methods that provide support for social interactions rely on this
without specifying any specific processes or considering the natural language definitions
as an equal import artifact next to the ontology. Definitions are often seen as annotations
to the ontology (e.g. comments).

Collaborative Protégé is not a method, but a tool. This tool was taken into consideration
as Ontology 101 (collab) as it was developed by the same group that proposed Ontology
101 and developed Protégé. It is interesting to note that in this comparison table, only
the authors of Collaborative Protégé propose the formalization of specific requests to
evolve the ontology. This is an important step towards agreement evolving ontologies as
changes are discussed, and not issues.
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Also apparent is that most methods rely on knowledge engineers to be the owners of
the ontology (either immediately, or via a setting in which they own the shared part).
Ontologies, however, should belong to the community and the role of knowledge engineers
should be reduced to a minimum or even removed. As Heylighen noted in [Hey13]: “If
the process were directed by a single individual (say, the group leader), who imposes a
consensus view on the others, then that perspective would not be more powerful than
the perspective of the leading individual. In other words, the collective would not be in
any way more intelligent than its leader.”

2.3 Conclusions

This chapter provided 1) a definition of ontology in computer science, 2) a survey of
ontology languages on the Semantic Web and 3) the state-of-the-art and comparison on
method for ontology construction.

In this thesis, the problem tackled is not so much what ontologies are, but how they
become social artifacts enabling interoperability between stakeholders representing their
autonomously developed and maintained information systems. Those social artifacts are
the results of social agreement processes, in other words ontologies evolve together with
the communities “owning” the ontologies. From the state-of-the-art, however, one can see
that the community aspects of ontology engineering are often neglected.

An important driver for the agreements are the natural language definitions used by the
community for aligning their thoughts. In the state-of-the-art, however, these natural
language definitions are often considered a second-class citizen: used as documentation in
the ontology and not treated as a special artifact that co-evolves with the community and
the formal definitions in the ontology. Not all methods (and their tools) cover all aspects.
Lacking is thus a method that takes into account: 1) the social interactions between the
community, 2) promoting the natural language definitions to first-class citizen and use
those as a driver for the engineering processes, 3) empower the community in having their
agreements automatically leading to ontology evolution.
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Chapter 3

Hybrid Ontology Framework

3.1 Introduction

Ontologies are keystone technologies used for meaningful and efficient interoperation of
information systems as such systems on the Web are in general developed and maintained
autonomously. This calls for agreements between the stakeholders on the semantics of
the shared concepts involved. Those agreements are captured and subsequently stored
in an ontology. The process of reaching an agreement is defined as “a social process, a
dialogue between multiple human stakeholders in a community containing: (i) a subject
on which needs to be agreed upon, (ii) a series of “utterances” from the stakeholders to
each other and (iii) a conclusion”. As a consequence, ontologies will evolve while such
agreements are developed and finally put in place.

These ontologies are approximations of a real world [Fen01]; in fact, to the Web ser-
vices involved, ontologies are the world. Ontologies represent an externalization of the
semantics outside of the information system. The basic techniques and architecture for
semantic interoperation is based on annotation (of an application system) and reasoning
(about the concepts involved, in terms of the ontology).

From above it follows that modeling ontologies within a community of stakeholders is a
critical activity for the eventual success of semantic interoperability. Fundamental to the
approach that will be presented is the involvement of structured natural language as a
vehicle to elicit useful and relevant concepts from community communication, and the
mapping of these social processes to evolutionary processes in the emerging ontology. The
formalism and language presented here are therefore “upstream” from the usual ontology
languages such as RDF(S) and OWL and should not be confused with those; in fact it is
relatively straightforward to compile the resulting/emerging ontologies into, for example,
RDF(S) and OWL at any time. The process of “implementing” the hybrid ontology in
one of those ontology languages will be dubbed the “downstream usage” of the ontology.

First, we give a more precise definition of an ontology as we need it in the sequel: “The
formal semantics of a (computer-based) system quite simply is the correspondence between
this system and some real world as perceived by humans. It is usually given by a formal
mapping of the symbols in the system’s description to objects in that real world, such
that relationships and logical statements in the specification language can be assigned a
truth-value depending on whether a certain state of affairs among objects exists in the
real world. As the real world is not usually directly accessible inside a computer, storing
and reasoning about semantics requires the world to be replaced by an agreed specification
of a conceptualization, often in the shape of a formal (mathematical) construct. This
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computer-based, shared, agreed formal specification of a conceptualization is what is known
as an ontology.”

One fundamental principle of all large system design is the so-called separation of con-
cerns resulting in architectures that delegate respective functionalities to the stakeholders
responsible for them. Examples are modules and databases. Modules are provided by the
(generic) architecture of information systems driven by a database and largely separate
the concern of basic data management from that of application development, the famous
paradigm of data independence.

The approach we will use in this thesis reapplies this principle by the rigorous separation
in conceptualizations of “fact modeling” from all enterprise-specific interpretations. It is
this interpretation process (formally, of statements shared in the application system in
terms of ontology concepts) that is usually called “reasoning” in the Semantic Web liter-
ature. However, there is little or no attention to such separation of concerns in the usual
reasoning formalisms of Semantic Web in terms of Description Logics and its syntactical
manifestations such as OWL and its dialects. In this approach, this interpretation is
exclusively delegated to the mapping between an application system and the “lexon base”
of the ontology. The lexon base is a possibly vast set of plausible binary fact types to
be interpreted in a certain context and will be described in more detail in subsequent
sections. These mappings are called ontological commitments1 after [Gua98], but these
shall be reified in a well-defined manner suited to the formalism. Intuitively, commit-
ments select the fact types needed, map application symbols to ontology concepts, and
contain the rules and constraints – expressed in ontology terms – under which application
symbols, relationships and business rules must be interpreted when they are to be shared
with other autonomous systems. Those systems will share the concepts, but of course
will have their own symbols, business rules, etc.

This separation of concerns allows a natural introduction of formalized social processes in
goal-oriented communities such as exist in enterprises, professional networks, standard-
ization groups, etc. In fact, this is true in any “human agent” context for which agreement
about fact types is more efficient than reasoning from axioms. Note that nearly all data
models for databases and business information systems were arrived at in this manner
for the last 50 or so years.

In [Mee01b] and [Mee99a] a formalism and method for ontology development called
DOGMA2 was defined that illustrated and implemented these principles, now lifted to
domain level from the mere enterprise system level. As indicated above, such descriptions
must be seen as different from their eventual implementations, e.g. using RDF(S) and/or
OWL. In the method and life cycle of semantic systems, the creation of DOGMA ontology
descriptions belongs upstream from such implementation - although of course in many
cases one will have to “mine” or elicit the required knowledge from existing information
systems and their enterprise environments.

The next section will define what DOGMA Ontology Descriptions are before extending
it for a hybrid ontology engineering framework.

1Often referred to as commitments in this thesis.
2DOGMA originally stood for “Developing Ontology-Guided Mediation by Agents” [Mee01b] and

stood later for “Developing Ontology-Grounded Methods and Applications”.
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3.2 The DOGMA Ontology Framework

Definition 2 (DOGMA Ontology Descriptions)
A DOGMA Ontology Description Ω is an ordered triple 〈Λ, ci,K〉 where Λ is a lexon
base, i.e. a finite set of lexons. A lexon is an ordered 5-tuple 〈γ, t1, r1, r2, t2〉 where
γ ∈ Γ is a context identifier, t1, t2 ∈ T are terms (or term labels), and r1, r2 ∈ R are
role labels. A lexon is a binary fact type that can be read in two directions: t1 playing
the role of r1 on t2 and t2 playing the role of r2 on t1. Here, the usual alphabets for
constructing the elements of T ∪ R are omitted for simplicity. ci : Γ × T → C is a
fa function mapping pairs of context identifiers and terms to unique elements of C,
called concepts. K is a finite set of ontological commitments. Each commitment is
an ordered triple 〈σ, α, c〉 where σ ⊂ Λ is a selection of lexons from the DOGMA
ontology description, α : Σ → T is a mapping called an annotation from the set
Σ of application (information, system, database) symbols to terms occurring in that
selection, and c is a predicate over T ∪R of that same selection expressed in a suitable
first-order language.

Note that concepts are not described further than elements of a set. This is deliberate as
we posit that concepts can only and exclusively be “known” through the interpretation of
their properties and behavior as observed in communities. Context-identifiers are pointers
to the origin of a lexon, and helps with the disambiguation of term- and role labels. Within
a context γ ∈ Γ and t ∈ T , ci(γ, t) is the definition itself of the concept agreed by all users.
To emphasize this explicit agreement, we shall avoid labeling concepts as such in our
formalism, and assuming they are “computed” by the community from the term labels.
Indeed, in this formalism, a constructivist [FHL+96] approach is adopted [DL09]. A
constructivist is “somebody who believes that “reality” exists independently of any observer,
but who is aware that we only have access to our own (mental) “conceptions”; for the
constructivist, the relationship between reality and conception is principally subjective, and
may be subject to negotiation between observers; any agreement may have to be adapted
from time to time. [FHL+96] ”

Below are some examples of lexons:

• 〈Cultural Domain Expert 1,Artist,with,of,Name〉
• 〈Cultural Domain Expert 1,Artist,with,of,First Name〉
• 〈VCard,VCard,with,of,Email Address〉
• 〈Cultural Domain Expert 2,Artist,with,of,Age〉
• 〈Cultural Domain Expert 1,Artist,born on,of birth of,Date〉
• 〈Offer #1 of Organization A,Offer,with,of,Title〉
• 〈Offer #1 of Organization A,Offer,valid,for,Date〉
• 〈RFP Documentation,RFP,with,matches,Offer〉
• 〈FOAF,Agent,with,of,Name〉
• 〈Cultural Domain Expert 3,Artist,contributing to,with contribution of,Sculpture〉
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• ...

These lexons are then used to construct commitments. The function ci maps terms in
those lexons to concepts as they are understood and agreed upon in those contexts. It
is possible that terms in different contexts refer to the same concept, e.g. ci(Offer #1 of
Organization A,Offer) and ci(RFP Documentation,Offer). Stating that two context-term
pairs refer to the same concept is also delegated to the commitment layer, which will be
discussed later on.

The DOGMA Framework was previously defined as to contain two layers: the Lexon
Base Λ and the commitment layer containing the commitments K. Later on in this
thesis, however, a motivation for the introduction of an additional layer in order to do
proper business between two or more autonomous information systems will be given.
What is lacking is a layer in which the agreements and engagement of the community
of stakeholders is captured to which everyone needs to comply with for proper semantic
interoperation to be possible. In a way, these are similar to the commitments described in
the definition above, but without the mapping of application symbols and only involving
lexons belonging to a domain (and not to an application). From here onward, the dis-
tinction between application commitments and community commitments is made. The
first will refer to the latter for to annotate existing applications, also providing additional
enterprise-specific knowledge and the mappings. The community commitments will be
motivated and described in later sections, but first the application commitments will be
described in more detail.

3.2.1 Application commitments

This section describes the characteristics of the commitments K of a DOGMA Ontology
Description. Such commitments describe how one individual application commits to a
selection of lexons as well a description on how these applications uses these lexons (by
means of constraints) and how its application symbols map onto the terms and roles
inside that selection. Figure 3.1 depicts an example commitment. For more details on
the syntax of commitments, the reader is referred to [VDBM04, TTM07]. This thesis will
introduce a dialect of Ω-RIDL.

3.2.1.1 Constraints in an Application Commitment

The constraints in an application commitment are largely based on ORM [HM08] con-
straints. Object Role Modeling (ORM) [HM08] is the successor of NIAM3 [Win90] and
is intended to model conceptual schemas for closed information systems. ORM has two
basic constructs: objects types and relations called fact types. Object types correspond
with the subjects or objects in sentences and the verbs these object types play are the
roles (predicates) of the fact type. An object thus plays a role in relations with other ob-
jects. ORM also provides a graphical notation and a conceptual modeling method called

3Nijssen’s Information Analysis Methodology, and later as Natural language Information Analysis
Methodology and Binary Relationship Modeling
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BEGIN SELECTION
<’Offer #1 of Organization A’, Offer, with, of, Title>
<’Offer #1 of Organization A’, Offer, contains, contained_in, Product>
<’Offer #1 of Organization A’, Offer, made_by, makes, Vendor>
<’Offer #1 of Organization A’, Vendor, located_on, location_of, Address>
...

END SELECTION
BEGIN CONSTRAINTS
EACH Offer contains at least 1 Product.
EACH Vendor located_on exactly 1 unique Address.
...

END CONSTRAINTS
BEGIN MAPPINGS
MAP ’APP_OFF’.’Title’ ON Title of Offer.
MAP ’APP_VEN’.’ADDR’ ON Address location_of Vendor.
...

END MAPPINGS

Figure 3.1: Example of a commitment for a particular application showing pieces of the three
parts: selection σ, constraints c and annotations (or application symbol mappings) α.

the Conceptual Schema Design Procedure (CSDP). In DOGMA, the terms correspond
to the object types and the role labels with the roles.

ORM is used to create conceptualizations using a graphical notation and a formalism
that is grounded in first order logic and set theory. The graphical notation is used to
create diagrams that capture elementary fact types.

ORM is attribute-free, which means it treats all elementary fact types as relationships
and in this manner treats decisions for grouping facts into structures as implementation
concerns irrelevant to meaning. By avoiding attributes in the base model, ORM improves
semantic stability. Semantic stability is a measure of how well models or queries expressed
in the language retain their original intent in the face of changes to the business domain.
The more changes one needs to make to a model or query to cope with a business change,
the less stable it is [HM08].

In [SMJ02, DJM02], the authors put forward the advantages of ORM as a semantically
rich modeling language, also mentioning the advantages of begin able to depict the models
as natural language sentences (verbalization) and as an intuitive diagram.

For this thesis, some ORM constraints have been adopted and other constraints have
been introduced. From ORM, the constraints necessary for creating referable terms are
taken into account. A term is referable when that term is either lexical (thus its instances
can be printed on a screen) or if that term has a set of attributes that uniquely and totally
identify instances of the concept referred to by this term. The terms referred to in those
attributes (i.e. played by the co-role of the term) have to be – in turn – referable as well.

1. “Uniquely” means a role played at most once by every instance;
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2. “Totally” means that the role is mandatory, this role has to be played by every
instance (a mandatory constraint);

3. “Identifying” means that every combination of instances of concepts referred to by
each term playing the co-role refers to only one instance.

Assume that a floor is uniquely and totally identified by its floor number, and the floor
number is lexical. Then the constraints will look as follows:

EACH Floor with AT MOST 1 Floor Number. # Unique
EACH Floor with AT LEAST 1 Floor Number. # Total
EACH Floor IS IDENTIFIED BY (Floor Number of Floor). # Identifying
EACH Floor Number IS LEXICAL.

“Floor” thus has a unique simple reference. A unique simple reference is one unique, total
and identifying attribute. A unique composite reference has more than one attribute.
Given the description of “Floor” from above, assume that each hotel room is uniquely,
and totally identified by its room number (which is lexical) and the floor. This would
give the following result:

EACH Hotel Room with AT MOST 1 Room Number. # Unique
EACH Hotel Room with AT LEAST 1 Room Number. # Total
EACH Hotel Room with AT MOST 1 Floor. # Unique
EACH Hotel Room with AT LEAST 1 Floor. # Total
EACH Hotel Room IS IDENTIFIED BY (Floor of Hotel Room)
AND (Room Number of Hotel Room). # Identifying
EACH Room Number IS LEXICAL.

In the first example, the identifying constraint was put on one role and therefore the same
constraint as the uniqueness constraint. Uniqueness constraints are typically denoted
with an arrow or line above the role in ORM. In the second example, the identifying
constraint is modeled using an external uniqueness constraint. Here external means
across multiple lexons. In ORM, they are typically denoted with a circle containing
the letter ‘U’ (for uniqueness) or a line, connected with dotted lines the roles involved.
Mandatory constraints are depicted with a bullet on the role and the distinction between
lexical and non-lexical terms is made by using a full line around the term label for the
first, and a dashed line around the term label for the latter. An ORM diagram of this
example is shown in Figure 3.2.

Sometimes the instances of a lexical term are limited to a certain set, finite or not. These
constraints are called value constraints and can be part of the domain and therefore
shared. A value constraint is described in terms of a value range, which can be an
explicit enumeration of elements, ranges or even regular expressions. For example, if one
wants to limit the occurrences of category type to ‘A’, ‘B’ and ‘C’, he states:

EACH Category Type IN (‘A‘,‘B‘,‘C‘).
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Figure 3.2: An example of a simple and a composite unique reference.

Another typical constraint is the subset constraint, which states that the population of a
set of roles in fact types must be a subset of the population of another set of roles. Figure
3.3 depicts such a subset constraint using the ORM notation. This constraint states that
the population of lexon F2 is a subset of the population of lexon F1. In other words, if
an instance of A plays the role of Rn on an instance of B, that same instance of A must
also play the role of R1 with the same instance of B.

A

R1 S1

B

Rn Sn

F1

F2

Figure 3.3: An example of a subset constraint.

3.2.1.2 Synonyms in Application Commitments

An application can commit to lexons coming from different contexts. Often, terms in
those lexons from one context will be synonymous with terms in lexons from other con-
texts. It is even possible that different terms within one context can be synonymous. The
commitment therefore needs to contain information on how different terms are linked with
each other. Information on synonyms are part of the constraints as a predicate relating
two term-context pairs. A more detailed description on the nature of synonymity will be
given in Sections 3.3.4.

Note that the separation of concerns mentioned in the previous section is reflected here
through the set of plausible lexons in the lexon base on one side, and the constraints,
rules, etc. on a relevant selection of those lexons on the other. In fact there are no
constraints or any other reasoning supports included in the lexon base, making for a
so-called “light weight” ontology.
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Also notice that a particular application is able to commit to a series of lexons originating
from different contexts. When two or more autonomously developed information systems
need to interoperate meaningfully, they will need to share at least the lexons. Nothing,
however, prevents the people responsible for these application commitments to select
other lexons. Moreover, it will sometimes be desirable or necessary to include additional
information (from the organization owning the application, or other contexts) in order to
enable interoperability.

Take for example the relational database depicted in Figure 3.4 capturing the relation
of artists contributing to works of art (called “pieces”, in this particular application) in a
table called artistpiece. This database, however, uses an artificial ID as a primary key
for both instances of artists and works of art. The foreign keys used in the join table are
evidently referring to these primary keys. These artificial IDs are not shared among other
applications. In fact, those artificial IDs are not even part of the domain. Only rarely,
one can find identifiers shared across applications (such as ISBN numbers for books),
and even then applications often use an artificial primary key for various reasons, e.g.
simplicity or increased performance. In order for this application to share information
on who collaborated on what piece, the owners of this application will need to properly
annotate the artificial IDs with their organization knowledge as well. This is reflected in
the additional lexons originating from a different context, that of the organization owning
the application, in Figure 3.5.

The example in Figure 3.5 shows how the constraints are used so that 1) the concepts of
artists and works of art within the organization are synonymous with those of another
context, and 2) the artificial IDs are used to uniquely, and totally identify instances
of artists and works of art. The primary- and foreign keys are then annotated with
this knowledge and an agent capable of interpreting Ω-RIDL can then construct queries
necessary to join instances of artists with instances of works of art, and populating the
lexon 〈’Cultural Domain Expert 1’, Artist, contributed to, with contribution, Work Of
Art〉. Other applications are now able to retrieve information from this relation, without
even the need to care about enterprise-specific lexons.

The application commitments allow organizations to disclose some of the organization’s
knowledge, or at least those necessary for enabling interoperability. And as more orga-
nizations pick up lexons previously not shared by many, the more this lexon will become
part of the shared understanding that constitutes the ontology. This is why one can
include additional lexons and constraints, even when they are not (yet) shared.

PK id
U1 name
U1 birthyear

artist
PK a_id
PK p_id

artistpiecePK id
U2 name
U2 year

piece

Figure 3.4: Small relational database modeled in (E)ER.
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BEGIN SELECTION
# Selection of lexons shared by > 1 applications
<’Cultural Domain Expert 1’,Artist,contributed to,with contributor,Work Of Art>
<’Cultural Domain Expert 1’,Artist,having,of,Name>
<’Cultural Domain Expert 1’,Artist,born in,of birth of,Year>
<’Cultural Domain Expert 2’,Work Of Art,with,of,Title>
<’Cultural Domain Expert 1’,Work Of Art,made in,of,Year>
# Enterprise-specific lexons
<’MyOrganization’,Artist,with,of,AID>
<’MyOrganization’,Work Of Art,with,of,WID>

END SELECTION
BEGIN CONSTRAINTS
LINK(’Cultural Domain Expert 1’,Artist,’MyOrganization’,Artist).
LINK(’Cultural Domain Expert 1’,Work Of Art,’MyOrganization’,Work Of Art).
LINK(’Cultural Domain Expert 1’,Work Of Art,

’Cultural Domain Expert 2’,Work Of Art).
# List enterprise-specific constraints
EACH Artist with AT MOST 1 AID. #(1)
EACH Artist with AT LEAST 1 AID. #(2)
EACH AID of AT MOST 1 Artist. #(3)
EACH Work Of Art with AT MOST 1 WID. #(4)
EACH Work Of Art with AT LEAST 1 WID. #(5)
EACH WID of AT MOST 1 Work Of Art. #(6)

END CONSTRAINTS
BEGIN MAPPINGS
MAP ’Artist’.’name’ ON Name of Artist.
MAP ’Artist’.’birthyear’ ON Year of birth of Artist.
MAP ’Artist’.’id’ ON AID of Artist.
MAP ’piece’.’name’ ON Title of Work Of Art.
MAP ’piece’.’year’ ON Year of Work Of Art.
MAP ’piece’.’id’ ON WID of Work Of Art.
MAP ’artistpiece’.’a_id’ ON AID of Artist contributed to Work Of Art.
MAP ’artistpiece’.’p_id’ ON WID of Work Of Art with contributor Artist.

END MAPPINGS

Figure 3.5: Example Ω-RIDL commitment for describing the database shown in Figure 3.4.
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3.3 Towards a Hybrid Ontology Framework

This section extends the DOGMA Ontology Framework to support hybrid ontology en-
gineering. In hybrid ontologies, all concepts, terms, etc. are represented not just on their
own formal structures (e.g. by means of fact-orientation), but are always to be inter-
preted in a given context, which is the community that agrees on those formal structures.
Agreements are made possible and are supported by glosses in natural language of which
the shared understanding is implicit. In hybrid ontology engineering, communities con-
sequently are promoted to “first-class citizens” by formalizing the social interactions that
evolve the hybrid ontologies and by declaring the community as the context in which all
processes take place.

In this thesis, the act of providing an informal, natural language definition is called
articulating and the result thereof an articulation4. Articulation is defined as “the result
of articulating terms or lexons. Articulating means to explain; to put into words; to make
something specific”.

The previous section already explained that application commitments were not enough
to guarantee proper interoperation between autonomous information systems belonging
to a community of stakeholders. Indeed, the engagement of the community members to
commit to certain lexons will be necessary. Those agreements will need to be captured
in a community commitment, which will be discussed in depth in section 3.4.

Before introducing the community commitment, however, an artifact that will support
and even drive these agreements, called a glossary, will need to be introduced. This arti-
fact will capture the informal natural language descriptions of concepts. After describing
the glossary and the community commitment, the social processes involved to make the
community commitment evolve will be discussed. This will constitute the framework for
hybrid ontology engineering, but not yet the method. The method will be described in
the following chapter.

3.3.1 The Glossary and Concept Identifiers

Note that previous definitions imparts a well-defined hybrid aspect on ontologies as they
are to be resources shared among humans working in a community as well as among
networked systems such as exist in the World Wide Web. As the “unique concept”
property mentioned above informally and intuitively results from a community agreement,
it is useful to formalize a community precisely as such a context, and to name the resulting
notion a hybrid ontology [MD10]. A special linguistic resource, called a glossary, is
introduced. This glossary will record and support all the social processes.

Definition 3 (Hybrid Ontology Description)
A Hybrid Ontology Description is an ordered pair HΩ = 〈Ω, G〉 where Ω is a DOGMA
ontology description where the contexts in Γ are labeled communities and G is a

4Note that articulation is not to be confused double-articulation introduced in the previous chapter.
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glossary. A glossary G is an ordered triple 〈g1, g2, EQG〉, where

• g1 is a function of the form g1 : Γ× T → Gloss, the Term Glossary;
• g2 is a function of the form g2 : Λ→ Gloss, the Lexon Glossary;
• Gloss is a set of human-interpretable objects.
• EQG is a finite set of pairs Gloss × Gloss containing the agreement that two

glosses refer to the same concept.

Context identifiers are thus pointers to a community. They can be a name, a URI to a
website or even a URI to a document describing the community. To improve readability,
names as context identifiers are used throughout this document. For example, given the
DOGMA ontology description Ω from the previous example, the lexons will thus point
to communities instead of their source of origin. Those lexons could thus look as follows:

• 〈Cultural Domain Community,Artist,with,of,Name〉
• 〈Cultural Domain Community,Artist,with,of,First Name〉
• 〈Address Community,VCard,with,of,Email Address〉
• 〈Cultural Domain Community,Artist,with,of,Age〉
• 〈Cultural Domain Community,Artist,born on,of birth of,Date〉
• 〈Vendor Community,Offer,with,of,Title〉
• 〈Vendor Community,Offer,valid,for,Date〉
• 〈RFP Community,RFP,with,matches,Offer〉
• 〈Address Community,Agent,with,of,Name〉
• 〈Cultural Domain Community,Artist,contributing to,with contribution of,Sculpture〉
• ...

Note that the lexons from VCard and FOAF are now in the same community. It could
be that lexons from different sources were agreed upon by the same community. With
those lexons, a hybrid ontology description can be constructed where G contains (among
others):

• (〈Address Community, Email Address〉, “The address of an email, a system of world-
wide electronic communication in which a user can compose a message at one ter-
minal that can be regenerated at the recipient’s terminal when the recipient logs
in”)
• (〈Vendor Community, Offer〉, “Represents the public announcement by a vendor to

provide a certain business function for a certain product or service to a specified
target audience.”)
• (〈Vendor Community, Offer, contains, contained in, Products〉, “Represents the

relation of a product for sale being included in an offer.”)

For the sake of understanding the text, it will be sufficient to think of Gloss as a set of
natural language descriptions each providing an “explanation” for a term in T or a lexon
in Λ adequate within a given community.
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Those definitions should be of proper quality, in order to be useful. Jarrar gave several
guidelines on the construction of such glosses [Jar06]: a gloss should (i) start with the
term of the principal or supertype of the concept being defined; (ii) be written in the
form of propositions; (iii) focus on the distinguishing characteristics of the concept being
defined; (iv) be supportive (examples are encouraged); (v) be consistent with the formal
axioms in the ontology and (vi) be sufficient, clear and easy to understand by the members
of the community.

Before continuing to describe the role of glosses in hybrid ontology engineering and how
concepts interplay with the concepts referred to by the ci function, a couple of functions
on relations on concepts needs to be defined.

3.3.2 Community Calculus for Concepts

Given a lexon 〈γ, t1, r1, r2, t2〉 ∈ Λ, the function ci returns for the community γ and
term t1 the concept that t1 evokes within γ. That every community-term pair should
refer to at most one concept is obvious, the community would be divided if two different
subsets of that community would have a different concept in mind for a particular label.
Yet, communities can agree that their terms could refer to the same concept and those
agreements are captured in their respective concepts. Those agreements are captured
and part of the concepts.

Definition 4 (Concept Equality Agreements inside a Concept)
A function cea for retrieving the concept equality agreements part of the concept
ci(γ, t) referred to by one community-term pair 〈γ, t〉 ∈ Γ × T is defined as cea :
C → 2C returning for a given concept ci(γ, t) the set of concepts {ci(γ′, t′)|ci(γ, t) ≡C
ci(γ′, t′)∧〈γ′, t′〉 ∈ Γ×T} where ≡C is the agreement of both communities that those
terms refer to the same concept. Note that if γ = γ′, it refers to the agreement within
one community that two labels refer to the same concept.

For example, given the situation depicted an explained in Figure 3.6, the cea for each
community-term pair are:

• cea(ci(γ1, t1)) = {ci(γ1, t1), ci(γ2, t2), ci(γ3, t3), ci(γ4, t4)}
• cea(ci(γ2, t2)) = {ci(γ1, t1), ci(γ2, t2), ci(γ3, t3)}
• cea(ci(γ3, t3)) = {ci(γ1, t1), ci(γ2, t2), ci(γ3, t3)}
• cea(ci(γ4, t4)) = {ci(γ1, t1), ci(γ4, t4), ci(γ5, t5)}
• cea(ci(γ5, t5)) = {ci(γ4, t4), ci(γ5, t5)}

Given two community-term pairs 〈γ, t〉, 〈γ′, t′〉 ∈ Γ×T with ci(γ, t) = ci1, ci(γ′, t′) = ci2,
g1(γ, t) = gloss1 and g1(γ′, t′) = gloss2. The following functions are defined:

• Concept-intersection ∩C : C × C → C is the concept constructed with the
intersection of the concept equality agreements of two concepts referred to by two
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community-term pairs with the ci function, returning a concept with a cea with
all the shared agreements of concepts referred to by the given community-term
pairs. With ci1 and ci2 the resulting concept c3 for c1∩C c2 is constructed such that
∀c′ ∈ cea(c3) : c′ ∈ cea(c1) ∩ cea(c2). For example, given the situation depicted
an explained in Figure 3.6, the intersection of ci(γ1, t1) ∩C ci(γ4, t4) is a concept
containing the agreement of communities γ1 and γ4 that their respective terms are
referring to the same concept and ci(γ2, t2)∩C ci(γ5, t5) is a concept containing no
agreement.

– cea(ci(γ1, t1) ∩C ci(γ4, t4)) = {ci(γ1, t1), ci(γ4, t4)}
– cea(ci(γ2, t2) ∩C ci(γ5, t5)) = ∅

• Concept-union ∪C : C × C → C is the concept constructed with the union of
the concept equality agreements of two concepts referred to by two community-
term pairs with the ci function, returning a concept with a cea with all the shared
agreements of concepts referred to by the given community-term pairs. With ci1 and
ci2 the resulting concept c3 for c1 ∪C c2 is constructed such that ∀c′ ∈ cea(c3) : c′ ∈
cea(c1)∪cea(c2). In Figure 3.6, the cea of the union of ci(γ1, t1)∪C ci(γ5, t5) would
result in cea(ci(γ1, t1) ∪C ci(γ5, t5)) = {ci(γ1, t1), ci(γ2, t2), ci(γ3, t3), ci(γ4, t4),
ci(γ5, t5)}

• Concept-equality =C : C × C → {True, False} returns true if and only if the
agreements in the intersection of both concepts are the same as the agreements in
the two concepts. In Figure 3.6, ci(γ2, t2) =C ci(γ3, t3) since both concepts contain
the same set of agreements. In the same example, we have that ci(γ1, t1) 6=C

ci(γ2, t2), since the first operand also contains the agreement that communities γ1
and γ4 agreed that their respective terms t1 and t4 refer to the same concept and
this is not appearing in the set of agreements in the second operand.

• Concept-inclusion given c1 and c2, ⊆C : C × C → {True, False} which returns
true if and only if cea(c1) ⊆ cea(c2). With this definition, the following property
holds: (c1 ∩C c2) ⊆C c1.

3.3.3 The Role of Glosses in Hybrid Ontologies

Glossaries turn out to require a fairly rich structure when to be deployed for (hybrid)
ontology engineering, as they are used to build agreements in communities about concepts.
This section describes how glosses interplay with concepts and how the combination of
both will facilitate the agreement processes. However, first some functions and relations
on glosses are introduced. As an example, the following gloss glossE for the term “Email
Address” in some community γE is used.

“An email address unambiguously names the location of an email box
to which email messages are delivered. An example format of an email
address is lewis@example.net which is read as lewis at example dot net.”
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ci(Ɣ1,t1)

ci(Ɣ2,t2) ci(Ɣ3,t3)

ci(Ɣ4,t4)

ci(Ɣ5,t5)

Figure 3.6: Example of interrelations between communities using the agreements on referring
to the same concept. Communities γ1, γ2 and γ3 all agree that their term refers to the same
concepts. The same holds for the terms of communities γ4 and γ5. Communities γ1 and γ4 also
agree that their terms t1 and t4 also refer to the same concept, something the other communities
not necessarily agreed with.

• Gloss-terms. The function terms : Gloss → 2S returns a set of terms used in
the gloss using noun discovery techniques5. Using the Apache OpenNLP toolkit6,
for example, the following nouns can be detected: {Location, Address, Email, Box,
Example, .net}. Other solutions, such as the commercial API Alchemy7 would
return {E-mail, E-mail address, Domain Name System, .net, .NET Framework}.

The occurrence of relevant terms inside a gloss that does not appear as a term in
one of the communities’ lexon provides a trigger for a new discussion. Indeed, if
the community would deem the discovered term relevant, they will have to relate
it with either the described term or another term from that community residing in
a lexon.

• Gloss-instances instances : Gloss → 2Instance, where Instance is the set of all
instances in all glosses of a Hybrid Ontology Description. Instances are composed
over an alphabet just like term- and role labels. Instances are to be mapped onto
terms in the ontology existing in the ontology and maybe be used to reason over
the constraints (e.g. constraints) as sample data. If the term on which an instance
has to be mapped onto is missing from the ontology, the community can decide to
enter a new lexon with that term. By doing so, the instance becomes part of the
motivation of entering the new lexon. To detect instances in a gloss, one can use
named entity extraction techniques or look for proper nouns by using a gazetteer.
In the example above, “lewis” or “lewis@example.net” would have been identified
as named entities, perhaps as instances of Person and Email Address respectively.
One could assume that in a well-constructed gloss, would be properly indicated,
e.g. by use of capitalization or quoted literals. However, such a restriction would
be too restrictive to be practical.

• Gloss-lexons. The function prelexons : Gloss → 2Λ returning unrefined “pre-
lexons” in which one of the roles is not necessarily expressed. In fact, it can happen

5For which several off-the-shelf solutions exist. The quality of the output of the chosen solution,
however, falls outside the scope of this dissertation.

6http://incubator.apache.org/opennlp/
7http://www.alchemyapi.com/
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that both role and co-role are not appearing. Terms in those pre-lexons can actually
refer to specific instances (being named entities). If both terms are referring to
concepts, then a social process for entering this lexon - if not yet in the hybrid
ontology - might be initiated. In the other case, the class of the instances has to be
first determined before the lexon can be introduced to the ontology. This instance
of a relation can then be used as sample data for reasoning later on. The pre-lexons
that can be extracted from this gloss with the Alchemy API can be found in Table
3.1 and give the community an idea of what other lexons they can introduce to the
ontology. From those pre-lexons, the first might be refined into the following lexon
〈Vendor Community, Email Address, names, name of, Email Box〉.

Table 3.1: Examples of pre-lexons retrieved from a gloss (using the Alchemy API), those
pre-lexons give the community a hint of what other lexons they can introduce to the ontology.

Subject Predicate Object
An email address Names The location of an email box which is
An example format of an
email address

Is lewis@example.net which is read as lewis at example
dot net

Which Is read as At example dot net

The identification of attributes of entities has always been a modeling issue in conceptual
(database) modeling and because of the application independency of ontologies. For
instance, assume the follow pre-lexons can be elicited from a gloss.

〈γ′, “chrdebru@vub.ac.be”, identifies, ., Email Inbox〉

Here the γ′ is the community in which the gloss was placed related to a term. The ‘.’
stands for the co-role that has not been expressed. The “chrdebru@vub.ac.be” is actually
referring to an instance of an email address and the lexon will be refined as

〈γ′, Email Address, identifies, identified by, Email Inbox〉

Expressing both role and co-role proves has the advantage as the “attributeness” of a
relation depends on the constraints on those roles. In this example, it is clear that the
email address is an attribute of an email inbox. This is one of the benefits of using
fact-oriented modeling, mentioned in the previous section.

• Source of glosses. The function source : Gloss → D maps elements of Gloss to
elements of D, a set of pointers of Documents. Documents can include dictionaries,
manuals, and even interviews with humans. Documents can reside both offline or
on the Web. Those pointers are assumed to be identified unambiguously by some
identifier.

This function allows us to group glosses according to their origin. The more glosses
refer to the same source, the more it is assumed the source is trusted. The function
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also acts as a means to detect gloss-equivalence. As mentioned earlier, communities
will often describe the same thing with two glosses that are not completely identical
(e.g. a different punctuation or use of cases). Glosses with a same origin and high
lexical similarity are proposed to the communities as potentially equivalent glosses.
Similarity is calculated using existing string metrics [CRF03].

It happens that different glosses for a term originating from the same source are
reformulated or reinterpreted in such a way that heuristics (such as string metrics)
return low similarity scores. The combination of a keeping sources and string met-
rics for detecting similarities cannot only be used to detect gloss-equivalences, but
even to drive the communities in agreeing on one of several gloss-equivalent glosses
that originate from the same source.

The proposed functions allow agreements on glosses and terms to drive the ontology
engineering process, helping the community to start social processes to propose additional
lexons in the ontology. As discussions are started, the community as a whole can also
control which discussions fall out of the scope of the kind of information services the
Hybrid Ontology Description has to support.

Onto the relation between concepts and glosses. It is natural to associate them with
concepts (in a DOGMA ontology description through the terms of lexons). However,
one needs to assure that the terms in a lexon are articulated before the lexon itself is
articulated. This is called the glossary coherence principle.

Definition 5 (Glossary coherence principle)
Given a hybrid ontology description HΩ = 〈Ω, G〉, a glossary is said to be coherent
when ∀λ = 〈γ, t1, r1, r2, t2〉 ∈ Λ : if g2(λ) is defined, then both g1(t1) and g1(t2) are
defined.

Indeed, it would be not very useful to describe a relation between two terms if one or
both terms playing the roles in that relation are not described themselves, implying that
their intended meaning has not yet been made explicit.

3.3.4 Glossary-consistency and Gloss-equivalences

When two different terms are articulated with the exact same gloss, one would assume
that the glosses and therefore also the described terms refer to the same concept. If this
property holds, the hybrid ontology is said to be glossary-consistent.

Definition 6 (Glossary-consistency principle)
A hybrid ontology satisfies the glossary-consistency principle if for every two pairs
〈γ1, t1〉, 〈γ2, t2〉 ∈ Γ × T , if g1(γ1, t1) = g1(γ2, t2) then ci(γ1, t1) ≡C ci(γ2, t2). The
converse does not necessarily hold.
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In other words, if two terms in two communities are articulated with the exact same
gloss, then those terms in those communities must refer to the same concept as well in
order for the hybrid ontology to be glossary-consistent. For most purposes, this condition
is too limiting since often glosses will express “the same thing” without being textually
identical. It suffices that the communities agree on their equivalence; this leads to the
following definition.

Definition 7 (Gloss-equivalence)
Given communities γ1, γ2 ∈ Γ and terms t1, t2 ∈ T , the two term-glosses g1(γ1, t1) and
g1(γ2, t2) are said to be gloss-equivalent EQG if the two communities agree that the
described terms refer to the same concept.

There are two special cases of gloss-equivalence: one in which γ1 = γ2 and t1 6= t2, and
one in which γ1 6= γ2 and t1 = t2. The first is called community-equivalence EQγ and the
latter term-equivalence EQT .

Using gloss-equivalence, the glossary-consistency principle can be redefined as follows:

Definition 8 (Glossary-consistency principle, bis)
A hybrid ontology is said to satisfy the glossary-consistency principle if for every two
pairs 〈γ1, t1〉, 〈γ2, t2〉 ∈ Γ×T , if EQG(g1(γ1, t1), g1(γ2, t2)) then ci(γ1, t1) ≡C ci(γ2, t2).
The converse does not necessarily hold.

Note that when two communities γ1, γ2 ∈ Γ agree that the glosses used to describe
their terms t1, t2 ∈ T are gloss-equivalent EQG, that this does not automatically imply
ci(γ1, t1) ≡C ci(γ2, t2). Both terms should refer to the same concept; however, both
agreements can be established separately. Gloss-equivalences are on the level of the
glossary whereas ≡C agreements are on the level of the formal descriptions of the concepts
(i.e. the lexons). It is necessary for an ≡C agreement that the terms must appear in a
lexon. This implies that a term will only be in the community commitment if that term
plays at least one role (otherwise the term has no purpose for this community). If the
term would end up in a taxonomy, then it plays the role of being the sub- or supertype
of another term (e.g. with the roles “is a/subsumes”), hence satisfying the condition.
Communities can start gradually building their glossary before formally describing their
concepts. However, nothing should prevent community members for having agreements
on the “sameness” of descriptions across or within their own community. If the definition
would impose ≡C on the formal descriptions, the community would first need to agree
on at least one lexon concerning that term.

Another reason is validation of the equivalences. The glossary-consistency principle will
pinpoint the descriptions used for terms that are EQG, but whose terms in those commu-
nities are not ≡C . The glossary-consistency principle does not become a property that
needs to hold or else the ontology project fails, instead it becomes a means to drive the
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community in establishing ≡C ; validating whether the gloss-equivalence was not mislead-
ing and both terms really do refer to the same concept.

This is particularly handy as the validity of the natural language descriptions and the
equivalence of two such descriptions are relative to the communities participating in these
discussions. If glosses have been ill defined and yet their gloss-equivalence agreed upon,
a discussion over the articulated term’s ≡C agreement might help the communities in
discovering and rectifying their mistakes.

Gloss-equivalence is a symmetrical property as it captures the communities agreeing that
the term-glosses refer to the same concept. Term-adoption, however, is asymmetrical.
The definition is given below.

Definition 9 (Term-adoption)
Given a hybrid ontology description HΩ = 〈Ω, G〉 and communities γ1, γ2 ∈ Γ and
t1 ∈ T , a community γ2 is said to adopt 〈γ1, t1〉 when gloss1 = g1(γ1, t1) and gloss2 =
g1(γ2, t1) are defined, and we have

(i) EQT (gloss1, gloss2), i.e. first “match” the two glosses; and

(ii) ci(γ2, t1) ⇐cea ci(γ1, t1), i.e. agree that both concepts are equal with γ2 also
incorporating the meaning agreements inside ci(γ1, t1).

⇐cea is an operator for adopting meaning agreements, allowing the first community
to incorporate for their term all meaning agreements around the second community’s
term. This is achieved by asserting ci ≡C ci(γ2, t1) for every ci in cea(ci(γ1, t1)).

In other words, by adopting the gloss of another community-term pair, the adopting com-
munity agrees with all existing ≡C agreements the adoptee has with other communities.
Term-adoption allows γ1 and γ2 to agree their respective glosses refers to the same con-
cept (a symmetric condition) and γ2 agreeing to use t1 as a term to refer to γ1’s concept
behind it (an asymmetric condition).

Important to note is that assertions of gloss-equivalences and synonymy are only symmet-
ric, reflexive and transitive – i.e. an equivalence relation – within one agreement process.
This constraint was put in place to avoid synonymy and gloss-equivalences to be propa-
gated without each of the communities validating the new relations inferred from these
assertions. If communities A,B and C get together and agree that their terms tA, tB
and tC are synonymous, the following assertions are added: ci(A, tA) ≡C ci(B, tB),
ci(B, tB) ≡C ci(C, tC) and ci(A, tA) ≡C ci(C, tC). However, if community C and D
afterwards agree that ci(C, tC) ≡C ci(D, tD), then this does not imply that ci(A, tA) ≡C
ci(D, tD) or ci(B, tB) ≡C ci(D, tD). The agreements on synonymy can be followed by
the other communities, allowing them to start interactions to state the terms are indeed
synonymous. The same holds for gloss-equivalences.

52



3.4 Community Commitments

What the definition above does not explain is how to achieve an agreement on how
concepts should be referred to. For this, one option is to let the communities involve
their application commitments and examine the reference structures for the concepts in
those commitments.

While the description of concepts and glosses are formally adequate to be useful in prac-
tice, more details of the structure (i.e. organizations) and the processes by which such
a community achieves agreement about lexons and about the commitment of a specific
information system to the hybrid ontology are required. The first step is the requirement
that a community viewed as a context must agree on unique concepts based on terms
used in lexons. This is reflected by the definition of the concept identifier function ci,
which maps every community-term pair to exactly one concept.

The second step is the introduction of a community commitment to add structure to the
agreement processes. A community commitment is similar to an application commitment
that it contains a selection σ ⊂ Λ and a predicate c over T ∪ R of that same selection.
It differs from an application commitment in not containing annotations of application
symbols and – as a natural consequence – not containing any enterprise-specific knowl-
edge either. The community commitment is an engagement of the members within that
community to commit to the lexons and constraints agreed upon by the community and
captured in the community commitment. The community commitment will contain only
lexons and constraints on these lexons describing the domain (thus not belonging to one
individual application).

The introduction of a community commitment is motivated by the need for ensuring
proper semantic interoperation between information systems. Depending on the goal of
the ontology, instances shared across different autonomous information systems need to
some degree to be compared for equivalence. One example is joining information from
separate sources belonging to one instance of a concept. In order to achieve this, the
members of the community have to agree upon a series of attributes that uniquely and
totally identify the concepts they share. In other words, they have to agree on the reference
structures described in Section 3.2.1. By sharing the same reference structures, the
information systems are able to unambiguously interpret information describing instances
and find the agreed corresponding instance in their data store (or of that of a third
system).

By adding an additional layer and a glossary, the first to capture the agreements necessary
for interoperability and the latter to facilitate agreement processes, a framework for
hybrid ontology engineering has been set up. Figure 3.7 shows how the DOGMA and
Hybrid ontology engineering frameworks relate to each other. Notice that application
commitments in the hybrid ontology engineering framework are still able to commit
to lexons not appearing in a community commitment for describing enterprise-specific
knowledge. Application commitments can refer to one or more communities, but can
also contain only enterprise-specific information. In that case, however, the annotation of
that information system only makes sense for the organization owning that information
system and semantic interoperation with that system therefore not guaranteed.
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Figure 3.7: The different “layers” in the DOGMA ontology engineering framework and the
Hybrid ontology engineering framework.

The hybrid aspect is reflected in a dual perspective on the ontology Ω, and in particular
on the glossary underpinning its lexons within a community: the community members
agree on unique concepts based on glosses while systems interoperate (reason) based on
the relationships (lexons) that are deemed to exist between terms that refer to those same
concepts.

It is important to state that constraints in the community commitment are only de-
clared on the lexons currently agreed on by the community, as a community needs to
come to an agreement for their specific semantic interoperability requirements. Declaring
constraints over lexons from more than one community is possible in application com-
mitments, as application commitments can refer to more than one community and even
contain enterprise-specific lexons.

Figure 3.8 depicts a simplification of the iterative process involved. The interactions
between the community result in ontology evolution operators applied to the ontology.
These operators thus enact the externalization of the reflections of that community. The
new ontology description, after a while, will be re-internalized as the community achieves
(and discusses about) new insights. The Hybrid Ontology Description is used downstream
(ref. Figure 3.9) to generate a knowledge base, e.g. as OWL-defined “storage structures”
and constraints/rules implementing relevant commitments for the enterprise information
systems to be served. The co-evolution of a community and its Hybrid Ontology De-
scription is a natural consequence of this process. Externalization [DD08] - identifying
the key conceptual patterns that are relevant from the discussions - results in a series
of ontology evolution operators for the next version and (re-)internalization [DD08] - by
committing instance bases to the new version of the ontology - changes the community’s
composition: members depart when their goals differ too much from the common goal,
or others join.

Before describing the social processes in the next sections, emphasis is again put on
the fact that communities in a collaborative ontology engineering method are relevant
only if there are two or more autonomously developed information systems that need to
interoperate. When there is only one information system, the semantics resulting from
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Figure 3.8: Feedback loop between an organized community and an ontology.
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Figure 3.9: “Downstream” usage of the Hybrid Ontology Description to implement the ontology,
used for annotating the application symbols of an information system as well as for assisting the
validation of the ontology, consistency checks with reasoners, etc.. Users and software agents
“recognize” the kind of annotated data provided by the information system and the ontology

that community (even if the number of people is greater than one) are those of that
application. This would bring us no step further from going from a closed information
system to open information systems.

3.5 Social Processes in Ontology Engineering

To support hybrid ontology engineering, one first needs to define a set of processes within
a community that are intended to reflect its member interaction with the “real world”
and with each other. Then those processes are “mapped” onto a sequence of ontology
evolution operators, as defined by [DdMM07]. It is essential to observe that the ontology
description evolves only as the result of agreements, viz. actions performed in principle
by multiple community members.

Every ontology evolution operation is subject to discussion before approval during the
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re-internalization phase mentioned earlier. Members request certain changes under the
form of those operators with a motivation. Depending on the outcome of the discussion,
the request is “approved” or “denied”. The latter is useful when the community agrees
that the request falls out the scope of milestones closer by. Once the proposed changes
have been accepted and the community decides to go to a next version of the hybrid
ontology description, all changes are translated into ontology evolution operators.

The boundaries of one ontology engineering iteration and the whole ontology project in
general need to be scoped. Scoping helps grounding discussions, preventing members of a
community to go “off topic”. The first iteration consists of the initial community of mem-
bers representing autonomously developed information systems that need to interoperate
semantically. The discussions are based on a motivation and a problem scope. The mo-
tivation expresses why a Hybrid Ontology Description8 or an incremental extension of a
Hybrid Ontology Description is needed. During this phase, members can also suggest the
use of relevant sources from which inspiration can be drawn upon. Sources of inspiration
can be legacy database schemas, standards, documentation, etc. Before going on to the
next phase, the relevance of these sources needs to be agreed upon by the community.

The ontology evolution operators are subject to pre- and post-conditions, similar to the
pre- and post-conditions for context-dependency management introduced by [DdMM07].
The conditions will be tested only after the proposed changes are approved by the com-
munity.

We will describe the social interactions that can take place in a community. Throughout
this section, it is assumed that the interactions take place in some community γ. The out-
come of some interactions will evolve the community commitment. The community com-
mitment is part of the set of commitments in the hybrid ontology HΩ = 〈〈Λ, ci,K〉, G〉.
This community commitment will be referred to with κ = 〈σ, α, c〉.

Before getting started, the function λ is introduced: the function λ : T ×K → 2Λ returns
– given a term t and a commitment – the lexons in that commitment for which one of
the terms is t.

Semantic interoperability is defined as the ability of two or more autonomously developed
and maintained information systems or their computerized components to communicate
data and to interpret the information in that data [DL09]. The scope of an ontology
project are defined by semantic interoperability requirements, which are defined as:

Definition 10 (Semantic Interoperability Requirements)
A semantic interoperability requirements for a community γ ∈ Γ SIR(γ) consists of
an ordered pair 〈KT,GO〉: a non-empty set of key terms KT ⊂ Γ × T for which
descriptions of concepts referred to by these terms are needed and a non-empty set of
goals GO, which contain the desired results the community envisions to obtain with
the ontology they intend to develop expressed in that community’s language with
their usual alphabet.

Since both key terms and goals are captured as sets, one can apply set operations to

8In the case of a first iteration, the hybrid ontology description is initially empty.
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perform evolution of them.

- The function kt : Λ→ 2KT returns the set of key terms of a community;
- The function go : Λ→ 2GO returns the set of goals of a community.

Add (invite) member and remove member. Members can join (or invited) to take
part in refining the motivation and scope and the subsequent ontology engineering
processes. When the goals of a community differ to greatly from the interest of one
of the stakeholder, a member can decide to leave the community.

Proposing resources that can be used to draw inspiration from. The community dis-
cusses which resources will be referred to as information sources from which the
lexons and definition could elicited from. Sources can be referred to by a URI,
reference, etc., as long as the community as a whole knows where to find and access
this information. Examples of such re-sources can be the use of existing standards.

Request to add a key term k
Request to remove a key term k
Request to add a goal g
Request to remove a goal g

For both the addition of a key term or a goal for the SIR of a community, it is of course
required that the term or goal is not yet appearing in respectively in K and GO. As for
the removal of key terms and goals, they should appear in the SIR of that community in
order for the social interaction to take place or the operation to be executed.

Other social interactions are:

Request to add a lexon l. In this social process, the community members discuss
whether the lexon l will be included in the community commitment.

Pre-condition l 6∈ σ
Post-condition l ∈ σ

Request to add a constraint. A community discusses whether a constraint on the
lexons in the community commitment should be part of that same community
commitment. All constraints have the (obvious) pre-condition that the constraint
should not appear in the community commitment and the inclusion in the commu-
nity commitment as a post condition. For a constraint x, there is

Pre-condition x 6∈ c
Post-condition x ∈ c

For some specific constraints, different pre- and post-conditions apply. The con-
straints are handled as follows:
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Internal and External Uniqueness Constraints An internal uniqueness con-
straint spanning one role can be put on either role of a lexon. The external
uniqueness constraint will be put on two or more roles over two or more lex-
ons, all referring to the same term. Depending on how one looks at an internal
uniqueness constraints spanning one role, it can be either read as a functional
role, or an identifying role. In other words, EACH Person has AT MOST ONE
Name. is the name as EACH Person IS IDENTIFIED BY (Name of Person).
With this knowledge, the internal uniqueness constraint spanning only one
role can be seen as an identifying constraint, and can be treated in the same
way as external uniqueness constraints identifying terms do.
An identifying constraint x identifies a term t ∈ T via one or more paths
π1, ..., πn. Each path πi is an ordered set of path-segments s1, ..., sn of the form
〈t1, r, t2〉 where t1, t2 ∈ T and r ∈ R. Intuitively, a path-segment denotes a
term playing a role on another term. Π is a function that returns the paths of
a constraint.

Pre-condition ∀π ∈ Π(x)(∀〈t1, r, t2〉 ∈ π(∃r′ ∈ R(〈γ, t1, r, r′, t2〉 ∈ σ)))
∀π ∈ Π(x)(∀i ∈ [1, |π| − 1](nth(i, π).t2 = nth(i+ 1, π).t1)
∀π ∈ Π(x)(nth(|π|, π).t2 = t)

Post-condition

The first pre-condition states that there should exist a lexon in the community
commitment for each segment in a path. The second states that every two
segments in a path should be “chainable”, meaning that the second term of
the first segment should be the first term in the second segment. Finally , the
third pre-condition ensures that every last segment in the constraint ends with
the term.

Mandatory Constraint A mandatory constraints states which roles must be
played at least once by a term t. Similarly to uniqueness constraints, a manda-
tory constraint involves paths and segments. The difference, however, is that
each path is composed of exactly one segment and that the role is the one
played by the term t of the constraint x.

Pre-condition ∀π ∈ Π(x)(∀〈t1, r, t2〉 ∈ π(∃r′ ∈ R(〈γ, t1, r, r′, t2〉 ∈ σ)))
∀π ∈ Π(x)(|π| = 1)
∀π ∈ Π(x)(nth(1, π).t1 = t)

Post-condition

Every segment should have a corresponding lexon in the community commit-
ment for the mandatory constraint as well. The number of segments in a path
should be exactly one, and every segment should start with the term.

Lexicality of Term

Synonymy Will be handled later on in this section.

Request to remove lexon 〈γ, h, r, r′, t〉.
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Pre-condition 〈γ, h, r, r′, t〉 ∈ σ
∀x ∈ c(Π(x) 6= ∅ →

(∀π ∈ Π(x)(@〈l,m, n〉 ∈ π
((l = h ∧m = r ∧ n = t) ∨ (l = t ∧m = r′ ∧ n = h)))))

|λ(h, κ)| = 1→ @t′ ∈ T (@γ′ ∈ Γ(Link(γ, h, γ′, t′) ∈ c)
|λ(t, κ)| = 1→ @t′ ∈ T (@γ′ ∈ Γ(Link(γ, t, γ′, t′) ∈ c)
|λ(h, κ)| = 1→ IsLexical(h) 6∈ c
|λ(t, κ)| = 1→ IsLexical(t) 6∈ c

Post-condition 〈γ, h, r, r′, t〉 6∈ σ

The pre-conditions are fairly straightforward. If the lexon to be removed is used
in a constraint, its removal cannot be executed. For mandatory and uniqueness
constraints, the motivation is clear; “relaxing” the constraints by removing the paths
in which this lexon is referred to, changes the whole meaning of the constraint.
Discussing the constraints to be changed before the removal of this lexons thus
seemed appropriate, as the community will then make a thoughtful decision. The
same approach was adopted for synonymy links and the lexical nature of terms
(only when the number of lexons in which this term is occurring equals to one).
The constraints and synonyms have thus to be removed if this term will completely
disappear from the community commitment.

Request to change the supertype of a term t. Allows a community to discuss the
taxonomy of the community’s concepts. The concept hierarchy is constructed with
a lexon whose roles bear a special meaning (the taxonomic relation, e.g. with
role and co-role “is a” and “subsumes”). The taxonomic relation is assumed to be
transitive. A function is defined is a which returns true when the first operand is
a specialization of the second operand.

isa(x, y) =


1 if 〈γ, x, is a, subsumes, y〉 ∈ σ
1 if ∃z(〈γ, x, is a, subsumes, z〉 ∈ σ ∧ isa(z, y))
0 Otherwise

When no supertype was defined, a taxonomic relation is added between the two
terms. For adding 〈γ, t, is− a, subsumes, s〉

Pre-condition 〈γ, t, is a, subsumes, s〉 6∈ σ
¬isa(s, t)

Post-condition 〈γ, t, is a, subsumes, s〉 ∈ σ

When such a relation t, is a, subsumes, s′, where s 6= s′, already exists between the
terms and another super terms, the existing taxonomic relation is removed before
the creation of the new one. The additional pre- and post-conditions for this case
are added:

Pre-condition 〈γ, t, isa, subsumes, s′〉 ∈ σ
Post-condition 〈γ, t, isa, subsumes, s′〉 6∈ σ
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Request to change “super lexon” of a lexon. Which indicates that the population
of a lexon is a subset of the more general lexon. A special operation, as it corre-
sponds with a subset constraint on both roles of the two lexons [HM08, TTM07].
The subset constraint, however, will be modeled to create role hierarchies, hence
the reference to “super lexon”. Pre-conditions for this constraint is that both terms
of the more specialized lexon are in a taxonomic relation with the corresponding
terms of the more general lexon in direct line. The subset constraint is – as it name
implies – a constraint. But since it will be used to create role hierarchies, a special
interaction was assigned to this constraint in a similar way that subtype relations
are modeled via a special interaction.
The following conditions for a subset constraint x between lexons 〈γ, l,m, n, o〉 and
〈γ, p, q, r, s〉 apply.

Pre-condition 〈γ, l,m, n, o〉 ∈ σ
〈γ, p, q, r, s〉 ∈ σ
(isa(p, l) ∨ isa(l, p)) ∧ (isa(s, o) ∨ isa(o, s))
x 6∈ c

Post-condition x ∈ c

Request to remove a constraint. The removal of a constraint has no implication on
the community commitment or on the glossary. The pre- and post-condition of this
social interaction, if accepted, are trivial.

Pre-condition x ∈ c
Post-condition x 6∈ c

Request to add gloss φ, for a particular term t ∈ T or lexon λ ∈ Λ in a community
γ ∈ Γ, or request to g1(γ, t) ← φ or g2(λ) ← φ. In order to maintain glossary
coherence, terms in a lexon need to be articulated before that same lexon can be
articulated.

For a: term t lexon λ = 〈γ, a, b, c, d〉
Pre-condition @x ∈ Gloss(〈γ, t, x〉 ∈ g1) ∃x ∈ Gloss(〈γ, a, x〉 ∈ g1)

∃x ∈ Gloss(〈γ, d, x〉 ∈ g1)
@x ∈ Gloss(〈λ, x〉 ∈ g2)
λ ∈ σ

Post-condition 〈γ, t, φ〉 ∈ g1 〈λ, φ〉 ∈ g2

A gloss is always gloss-equivalent with itself. So when there was already a commu-
nity using a particular gloss and this gloss is used to describe the concept a term
or lexon is referring to, the community has immediately knowledge of all terms and
lexons annotated with that same gloss by the previous community.
In the situation that the community uses a gloss that has already been used by
another community and inside a gloss-equivalent agreement with different gloss,
the gloss-equivalences remain. However, if that community disagrees with the gloss-
equivalence, either the community starts processes to remove this equivalence with
all involved communities, or they change the gloss to reflect the difference.
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Request to remove a gloss φ. To remain glossary coherent, one can choose to remove
all articulated lexons around a described term when the gloss of that term is re-
moved, or one can choose not to allow this operation to happen yet. The second
approach was adopted in this thesis, as changing the gloss would be more appro-
priate and also to preserve the agreements on term glosses.

For a: term t lexon λ = 〈γ, a, b, c, d〉
Pre-condition 〈γ, t, φ〉 ∈ g1 〈λ, φ〉 ∈ g2

@λ = 〈γ, l,m, n, o〉 ∈ σ( λ ∈ σ
(t = l ∨ t = o)
∧∃x ∈ Gloss(〈λ, x〉 ∈ g2))

Post-condition 〈γ, t, φ〉 6∈ g1 〈λ, φ〉 6∈ g2

Removing a gloss from a term or lexon has no impact on any existing gloss-
equivalence agreements. Indeed, it is not because a community deems that a partic-
ular gloss should be removed from a term, that this gloss should cease to exist and
the agreement with another community that this gloss refers to the same concept as
another gloss removed. If no term or lexon of the first community is linked with the
gloss, the other community still agrees that the glosses were gloss-equivalent, this
gloss-equivalence and thus remain in EQG. This explanation is depicted graphically
in Figure 3.10 using terms, but the same applies for lexons.

γ1,t1 γ2,t2

gloss1 gloss2
EQG

γ1,t1 γ2,t2

gloss1 gloss2
EQG

Situation before Situation after

g1 = {<γ1,t1,gloss1>,<γ2,t2,gloss2>}

EQG = {<gloss1,gloss2>}

g1 = {<γ2,t2,gloss2>}

EQG = {<gloss1,gloss2>}

Figure 3.10: Visualization of the situation of the state after the removal of a gloss from a term.

Request to change a gloss with φ.

For a: term t lexon λ = 〈γ, a, b, c, d〉
Pre-condition 〈γ, t, φ〉 6∈ g1 〈λ, φ〉 6∈ g2

∃x ∈ Gloss(x 6= φ ∧ 〈γ, t, x〉 ∈ g1) ∃x ∈ Gloss(〈λ, x〉 ∈ g2)
λ ∈ σ

Post-condition 〈γ, t, φ〉 ∈ g1 〈λ, φ〉 ∈ g2

@x ∈ Gloss(x 6= φ ∧ 〈γ, t, x〉 ∈ g1) @x ∈ Gloss(〈λ, x〉 ∈ g2)
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The situation where a community decides to change the gloss is trickier. A com-
munity can have multiple terms and lexons pointing to the same gloss. In that
way, the community either decides to change the gloss for all these terms or lexons,
or just a few. The problem here is what should happen with any previous gloss-
equivalences? Similarly to a gloss-removal, any gloss-equivalences remain as they
have been previously agreed upon. For all terms and lexons whose gloss has been
changed, however, social interactions are started to investigate gloss-equivalences
with the update. In other words, if a community γ1 wishes to change the gloss φ1

of term t into φ2. Social interactions for gloss-equivalence are started between all
communities in

{γ2|∃φ ∈ {〈φ1, φ〉 ∈ EQG}∧
(∃t ∈ T (〈γ2, t〉 ∈ g1))∨
(∃t, t′ ∈ T (∃r, r′ ∈ R((〈〈γ2, t, r, r

′, t′〉, φ〉 ∈ g2))))

)}

This explanation is depicted graphically in Figure 3.11 using terms, but the same
applies for lexons.

γ1,t1 γ2,t2

gloss1 gloss2
EQG

γ1,t1 γ2,t2

gloss1 gloss2
EQG

Situation before Situation after

g1 = {<γ1,t1,gloss1>,<γ2,t2,gloss2>}

EQG = {<gloss1,gloss2>}

g1 = {<γ1,t1,gloss3>,<γ2,t2,gloss2>}

EQG = {<gloss1,gloss2>}

gloss3
EQG?

Figure 3.11: Visualization of the situation of the state after the change of a gloss from a term.

Request to add synonym s = link(γ1, t1, γ2, t2). A request to link terms across differ-
ent communities, so that ci(γ1, t1) ≡C ci(γ2, t2) where t1, t2 ∈ T and γ1, γ2 ∈ Γ.

Pre-condition s 6∈ c1 ∧ s 6∈ c2

∃a(∃b(∃c(〈γ, t1, a, b, c〉 ∈ σ1)))
∃a(∃b(∃c(〈γ, t2, a, b, c〉 ∈ σ2)))

Post-condition s ∈ c1 ∧ s ∈ c2
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Request to remove synonym. This social interaction can be initiated when two com-
munities deem that the definitions of both concepts referred to by these terms
diverge in such a way that they do not handle about the same anymore, or it
becomes clear that the terms referred to different concepts.

Pre-condition s ∈ c1 ∧ s ∈ c2

Post-condition s 6∈ c1 ∧ s 6∈ c2

Request to add gloss-equivalence. This social interaction can be initiated between
two communities γ1 and γ2 if the two communities deem that their respective glosses
φ1 and φ2 used to articulate one of their terms or lexons are referring to the same
concept.

Pre-condition EQG(φ1, φ2) 6∈ EQG

Post-condition EQG(φ1, φ2) ∈ EQG

Request to remove gloss-equivalence. Two communities γ1 and γ2 can initiate this
social process to remove from EQG the assertion that two glosses φ1 and φ2 which
the communities respectively used to annotate their terms or glosses do not refer
to the same concept anymore.

Pre-condition EQG(φ1, φ2) ∈ EQG

Post-condition EQG(φ1, φ2) 6∈ EQG

At any given point, in order to achieve unification, discussions between users can take
place. One can compare such discussions with posts and Web forums. By linking posts
with their replies, one can create threads. An item in such discussion can be a trigger for
an ontology operation or a task assigned to a person. A link is therefore kept between
a task and an ontology operation if the post in question was the source of this action.
For example, users who do not feel comfortable with formal ontology operators or do not
know how to solve a problem might request an edit.

Request for edit. A general request for edit (or solving a problem). For instance used
when a member feels he has not enough responsibility over the concept to propose
the actual changes.

Request for information. Not to be confused with a request for edit for glosses, but
rather a request for clarification. Such a request might result in a request for edit
or as a request for an ontology operation.

Request for peer review. An invitation to review some aspects of the ontology, e.g.
inviting members of the community to give comments to certain proposed changes,
even though they are not immediately affected by the concepts in question.

Request for help in contributing to certain aspects of the Hybrid Ontology Descrip-
tion.
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Comment. A comment to a post or a concept, a general class of posts that are not
related to the other types of posts.

Reply. All posts not belonging to any category in a thread. For DILIGENT, Pinto et
al. provided the following types of arguments in a discussion [PST04]: elaboration,
justification, example, counterexample, evaluation, and alternative. NeOn adopted
this classification, but did not take into account alternative proposal [DEMB+08].
NeOn does, however, provide more structure. They propose: supporting and object-
ing examples, supporting and objecting evaluations, and supporting and objecting
justifications. For this thesis, the classification used by NeOn is used, but the
alternative is added. Thus, for hybrid ontology engineering, the types of replies
are:

• Supporting example;
• Supporting justification;
• Supporting evaluation;
• Objecting example;
• Objecting justification;
• Objecting evaluation;
• Alternative.

Concluding a discussion. All social interactions have to be concluded. When conclud-
ing, one member of the community summarizes the outcome of the discussion. On
acceptance, the operation on the hybrid ontology that has been discussed is carried
out. The operation carried out might be different from the initial proposition. For
instance, the community can discuss a now gloss for articulating a term, yet agree
on a different version of that gloss that will be entered.

The removal of a term-gloss results in the removal of the lexon-gloss if the lexon(s)
involved were articulated as well. All gloss-equivalence assertions around this term-gloss
are removed as well. Here again, if a particular term is again articulated with the same
gloss at a later term, those assertions need again to be agreed upon. The same happens
when glosses are changed. The gloss-equivalences have to be reconsidered in order to be
kept.

This thesis follows [Gua98, Hep08] in that an ontology conceptualization should be sep-
arated from its instances. Instances should therefore not be part of the community
commitment. Examples, however, often clarify the concepts that are being modeled by
the community. We therefore introduce social processes for managing examples that will
serve as so-called test populations [HM08].

Request to add an example.
Request to update an example.
Request to remove an example.

Note that these examples are not the same as the supporting and objecting examples
in the reply social process. Supporting examples however, can be introduced via these
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requests. Note also that these instances will not be included in the community commit-
ment. Rather, they will be stored separately as to follow the strict separation between
conceptualization and instances. This artifact can be seen as a “sandbox” application
commitment.

Chapter 6 will later on describe how these examples in that application commitment as
well as those of real applications will be used to test statements made by the community.
For example, by testing whether a constraint violates the population of lexons made
with the examples. The outcome of these tests will steer the social processes within the
community.

3.6 Conclusions

This chapter started from the DOGMA framework for hybrid ontology engineering and
limited the context identifiers of lexons to pointers to a community, as all agreements take
place within one or across communities. The ownership of knowledge is now given back
to the community. To facilitate meaning agreements within a community, a glossary was
introduced which facilitates the alignment of a community to formally describe concepts.
The glossary adds also an additional layer of meaning agreements; in this framework
communities can agree that not only terms in labels refer to the same concept, but
also individual glosses. To facilitate interactions, the possible social interactions in this
framework have been described.

A framework is only one thing. One needs a method to guide the community in reaching
a consensus. As Vrandecic et al. reported in an experiment, not prescribing processes will
render the ontology engineering method inefficient [VPST05]. This motivates the need
for a method. By limiting the context identifiers to pointers to a community, part of the
ontology’s ownership is given back to the community. The next chapter will present a
method that will “orchestrate” all social interactions described in this chapter in such a
way that communities are guided in reaching consensus and communities are in charge
of making decisions. The method will therefore support the community in owning and
maintaining their own ontology.
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Chapter 4

Hybrid Ontology Engineering Method

4.1 Introduction

Chapter 3 introduced a framework for hybrid ontology engineering that is built on top
of DOGMA, a fact-oriented ontology engineering framework. We also defined several
social processes enabling a community to alter the hybrid ontology towards a closer
approximation of that community’s domain.

This chapter introduces a method for hybrid ontology engineering. A method prescribes
certain guidelines and steps to achieve a certain goal; here the construction of a hybrid
ontology. The method adopts and orchestrates the social processes defined in the previous
chapter. To exemplify the claims and definitions, a fictional case in the cultural domain
will be presented and used as a running example.

The method in this chapter is called GOSPL, which stands for Grounding Ontologies
with Social Processes and natural Language. Figure 4.1 summarizes the different pro-
cesses in GOSPL. Starting from co-evolving communities and requirements, the articula-
tion of key terms have to be gathered before formally describing those concepts. These
formal descriptions can be constrained and then committed to by applications using
Ω-RIDL application commitments. During the processes from creating the glossary to
committing to the hybrid ontology description, the communities can make agreements
on gloss-equivalences and synonyms. The hybrid ontology, and the data described with
those commitments can then be re-internalized by the community for another iteration,
gradually approximating the domain that needs to be captured by the ontology.

Manage
Community

Manage Semantic 
Interoperability 
Requirements

Articulate 
with glosses

Create 
Lexons

Constrain 
Lexons Commit

Gloss-
Equivalence Synonym

Figure 4.1: The GOSPL method.
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4.1.1 Running Example

To exemplify the claims and definitions, this section presents a running example inspired
from a case study in the cultural domain (see Chapter 8).

Brussels is becoming popular amongst tourists for weekend getaways (also called “city
breaks”) and holidays, as observed in an increase of overnight stays1. Brussels has al-
most 90 museums, dozens of theaters and as many galleries. All are offering cultural
events that could possibly interest tourists. However, getting appropriate information on
when, where and for what price events are available, might be cumbersome for tourists
to find out, certainly while walking around the city. Luckily, some organizations, such as
BOZAR2, provide detailed information on the different events taking place in their build-
ings. The events are, however, often limited to the ones organized by that organization.
Other organizations – such as VISITBRUSSELS asbl3 – aim at providing a portal with
information about cultural events organized around the city. The information on such
portals, however, are shallow and most information are unstructured. One also needs to
know the existence of those organizations and websites in order to find the information.

As tourists often walk in front of buildings hosting cultural events, we wonder if informa-
tion could be delivered to them based on their proximity to these buildings. The Open
Semantic Cloud for Brussels4 project aims at providing the cultural sector a service for
uploading pictures of a building returning – if possible – information about the events
taking place in that building. The different organizations form a community with the
developer of that service. Portals aggregating the different events will be able to directly
request the data from the organizers rather than duplicating the same information in sep-
arate databases, which may become out of sync as organizers update information about
events. Furthermore, such portals will be able to provide more detailed and structured
information to their users.

In this running example, the different stakeholders (BOZAR, Agenda.be, etc.) will con-
stitute a community that will be called the “Cultural Domain Community”.

4.2 Semantic Interoperability Requirements

GOSPL is tailored towards communities of stakeholders representing autonomously de-
veloped and maintained information systems with the need to have their information
systems exchange information in a meaningful manner. That need is then translated
into a goal, and the goal is represented by the semantic interoperability requirements
(SIRs, see Definition 10 in Section 3.5). From this follows that a community is partly
identified by its semantic interoperability requirements. More specifically, communities
are identified by their requirements and its set of members.

The semantic interoperability requirement for the cultural domain community in this

1http://visitbrussels.be/bitc/static/front/img/db/img\_7291.pdf
2http://www.bozar.be/
3http://www.visitbrussels.be/
4http://www.oscb.be/
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example can look as follows:

A description of
- Event
- Schedule
- Location
- Ticket price
- Target audience
- Artist
- Work of Art

for
- the exchange of information of events in the cultural domain.

To discuss (changes to) the semantic interoperability requirements, the community starts
by the following social processes:

• Request to add a key term;
• Request to remove a key term;
• Request to add a goal;
• Request to remove a goal.

The post-conditions that both sets of key terms and goals are non-empty, need to be met.

4.3 Building the Glossary

Semantic interoperability is achieved by annotating the application symbols of an infor-
mation system with terms and relations in the hybrid ontology. In the previous chapter
we already described how – in a hybrid ontology – terms are on one hand articulated
with natural language descriptions called glosses for humans, and described formally for
annotating information systems and their computerized systems on the other.

The term- and role labels in lexons evoke concepts within the members of a community.
Different terms may evoke similar concepts to member of the community, while the use
of the same term does not always mean that the same concept is evoked to different
members of that community. The relation between a symbol (in this case the labels), the
concept it evokes and the referent the symbol stands for and referred to by the concept
has been captured in the famous semiotic triangle [OR23], shown in Figure 4.2. The
semiotic triangle implies that the referent of an expression (which can be a word, a sign
or a symbol) is relative to different interpreters. The expression invokes for the interpreter
a certain idea (thought) that refers to something (the referent) that symbol is standing
for. Note that [Pei35] extended this semiotic triangle with the notion of interpreters as
symbols stand to somebody for something in some respect or capacity.

To ensure all members of a community are referring to the same referent for a particular
label, the community needs to align their ideas of the concept symbolized by the term.
This process is called alignment. Alignment is achieved by (1) describing the concepts
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referred to by these labels and (2) having the community members agree on such one
description per label.

Figure 4.2: The semiotic triangle by Ogden and Richards [OR23]

There are two ways to describe a concept. On the one hand, concepts can be described
by providing an (unambiguous) definition in natural language that everyone can under-
stand. The meaning of this term is then determined by this definition if this definition is
agreed upon by the community. On the other hand, one can describe the term formally
by decomposing and agreeing upon every little detail, which in turn will need to be de-
composed and agreed upon as well. The descriptions of these details will be based on
other concepts and therefore hampered by the fact that they also need to be described
formally.

To facilitate alignment, GOSPL imposes terms to be articulated before formal descrip-
tions are added, starting with the list of key terms in the semantic interoperability re-
quirement. To this end, the community can use the following social processes:

• Request to add a gloss to a term
• Request to change a gloss of a term
• Request to remove a gloss of a term

During the first iteration, there are no lexons. A community needs to wait for lexons to
emerge before they can start articulating those. Lexons can be articulated with a gloss
only if both its terms are articulated in order to maintain glossary coherence.

A community is able to articulate all the lexons. However, GOSPL strongly encourages
articulating at least those lexons whose internal uniqueness constraints span more than
one role. In other words, GOSPL encourages the articulation of non-attributive relations.
In the absence of an internal uniqueness constraint, the uniqueness constraint is assumed
to be spanning the two roles (as with the CSDP procedure for the development of closed
information systems [HM08]). Such relations must correspond with a concept in the
domain that needs to be approximated by the ontology. This is in contrast with so called
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“attributive” relations, which can be too “trivial” to fully articulate as they are often
meronymic (i.e., part-whole relations).

Take for instance the lexon 〈Cultural Domain Community, Artist, contributed to, with
contributor, Work Of Art〉. This lexon can be losslessly decomposed into a series of
lexons with functional roles as seen in Figure 4.3. As this figure shows the link between
a complex relation and a concept, it becomes clear why the community is encouraged to
articulate such lexons: the lexon symbolizes a reference for an referent in the real world; in
this case a relation. Note that this also enables communities to obtain gloss-equivalences
between lexon- and term-glosses. In the example of 〈C2, Artist, born on, of birth of,
Date〉 with an artist born on at most one Date, date (of birth of) becomes an attribute
of Artist. Describing the relation as being the occurrence of people having a birth date is
therefore not needed. Non-attributive relations thus denote concepts and therefore need
to be articulated by the community. Example of decomposition

29 March 2012 17:49 Page 2 of 2

with contribution of /contributed to

Work_Of_Art Artist

Artist
Work_Of_Art

with /of

Contribution

by /making

U

Figure 4.3: Decomposing a lexon with a uniqueness constraint spanning two roles into a two
lexons; a lossless transformation.

The social processes for articulating lexons are similar to those of articulating terms:

• Request to add a gloss to a lexon
• Request to change a gloss of a lexon
• Request to remove a gloss of a lexon

If no internal uniqueness constraint is specified on a lexon, it is implied that a uniqueness
constraint spanning both roles is holding. In other words, the absence of a uniqueness
constraint spanning only one role on a lexon implies that the roles are non-attributive.

During the first iteration, the cultural domain community needs to start articulating the
key terms and their semantic interoperability requirements as per the aforementioned
social process. The members in that community can look up definitions in dictionaries,
in house documentation or even come up with new definitions that will hold in their
community. After such an iteration, the glosses could look as follows5:

5The glosses come from the experiment conducted for this thesis (see Chapter 8). The “quality” of
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• (〈Cultural Domain Community, Location〉, “A location describes the position of an
object or a place on Earth. It can be identified by either specifying an address or
its geographical coordinates.”)
• (〈Cultural Domain Community, Artist〉, “An artist is a person who engages in one

or more activities that are considered a work of art.”)
• (〈Cultural Domain Community, Work of Art〉, “A cultural object/act that was cre-

ated with the intent of being aesthetic, rather than serving some practical purpose.”)
• ...

4.4 The Creation of Lexons

Lexons can only be entered in the lexon base if and only if at least one of the terms
in those lexons have already been articulated. Indeed, it would be undesirable to de-
scribe a relation between two terms if both terms playing the roles in that relation are
not described themselves, meaning that their intended meaning has not yet been made
explicit. If at least one of the terms is described, one can assume that the lexon proposed
around that term is in function of the articulation of that term and/or the semantic
interoperability requirements6.

Figure 4.4 depicts this process. In this figure, where blank circles denote terms with no
articulation, non-blank circles are terms that are articulated and an edge between two
circles denotes a relation between two terms. Step 1 represents the concepts taken from
the semantic interoperability requirement. Those terms are – in that stage – not yet
articulated. Communities need to articulate those terms (step 2) before adding relations
between those terms (step 3). Lexons added in step 3 may contain terms that are not yet
defined, which will first need to be articulated (step 4) before using them in other lexons
(step 5). Ultimately, all the terms should be articulated in the hybrid ontology for that
community (step 6).

At this stage, the community can perform the following social processes provided at least
one of the terms is articulated:

• Request to add lexon
• Request to remove lexon

Using these two requests, a community is able to agree upon relations that are plausible
in their universe of discourse. The community can for instance agree that the following
lexons hold in their domain (where ‘C’ stands for “Cultural Domain Community”):

<C, Affiliation, of, with, Artist>
<C, Artist, born on, of birth of, Year>

these glosses may be disputed. The communities, however, at the time deemed those glosses adequate
for alignment.

6The relation between glosses and their impact on the community commitment will be described in
Chapter 5.
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Step 2Step 1 Step 3

Step 4 Step 5 Step 6

Figure 4.4: Lexons can only be added around a term if and only if the community articulates
the term.

<C, Artist, contributed to, with contribution of, Work Of Art>
<C, Artist, with, of, Gender>
<C, Artist, with, of, Name>
<C, Location, has, of, Address>
<C, Location, is positioned at, positions, Coordinate>
...

These lexons will help the community in exchanging information across heterogeneous
information systems. Furthermore, they enable a community to define the relations
holding between concepts in their domain. In the previous chapter, a motivation for
a special type of community – the community commitment – was given to capture the
shared constraints. This will ensure proper interoperability. The creations of constraints
on the shared lexons will be explained in the next section.

4.5 Constraining Lexons

Application commitments contain next to a selection of lexons from the hybrid ontol-
ogy and mappings from application symbols to terms and roles in that selection also
constraints on that selection that indicates how that particular application uses those
concepts. Some of these constraints have to be shared and agreed upon by the commu-
nity in order to meet the interoperability requirements. Those constraints should not
stem from the individual applications, but be part of the domain that is being modeled.

An important combination of such constraints occurs when they constitute a unique, total
identification7 for a given (usually stored) concept. Such identifiers are called a unique
simple reference when only one lexon is involved, or a unique composite reference in the

7The terms “Unique”, “total” and “identifying” are all used as in ORM, see Section 3.2.1.1.
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case of more than one lexon. Definitions for both simple and unique compound references
are given below and Figure 4.5 shows an example of a simple and a unique composite
reference using the graphical notation by [HM08].

Definition 11 (Unique Simple Reference)
Let A be a non-lexical object type, B an object type and 〈A, r1, r2, B〉 a fact type
between them. Then 〈B r2〉 is called a unique simple reference for A if and only if r2

is an identifying role and r1 is a identifying and mandatory role.

Definition 12 (Unique Composite Reference)
Let A be a non-lexical object type, B1, ...Bn object types and 〈A, r11, r12, B1〉
, ..., 〈A, rn1, rn2, Bn〉 a fact type between them. Then 〈B r12, ..., B rn2〉 is called a
unique composite reference for A if and only if there is a uniqueness constraint iden-
tifying A and involving exactly the roles r12, ..., rn2 and each of the r11, ...rn1 is a
identifying and mandatory role.

A classic example of such a combination is book being uniquely, and totally identified by
its ISBN number. Unique references are needed to ensure proper semantic interoperation
between the different systems, and hence proper business between the different organiza-
tions owning those systems. As described in the previous chapter, those constraints will
– once agreed upon – be stored in the community commitment.

The community thus might need to agree on constraints to meet the goals captured by
their semantic interoperability requirements. A distinction is made between two con-
straints: on terms or on (roles of) lexons. In both cases, the GOSPL method imposes the
terms to be articulated with a gloss. Indeed, it would be unreasonable to constrain the
use of a term, a role, or a lexon whose intended meaning has not yet been made explicit
and agreed upon by the community.

Agreements can be made on all constraints described in the previous chapter (manda-
tory constraint, uniqueness constraint, etc.). In our method, the emphasis will be put on
the necessary constraints to create reference structures. To achieve agreement on iden-
tification or disambiguation any term referring to a type of concept, indeed must also
necessarily possess a lexical reference construct that allows to uniquely refer, at the type
level, to every eventual instance of that concept. In other words, any such (“non-lexical”)
type term must have a fixed set of one or more attributes (a first normal form candi-
date key, in database speak) that are agreed/declared to totally and uniquely identify
any given instance of that type. Such a concept/non-lexical object type is then called
referable. Note that the attributes involved can be lexical, or non-lexical if the latter
recursively are referable, and that in general such reference schemes will be “information
bearing”, i.e. need to be subject of a formal commitment to the lexon base.

Reference schemes for non-lexical object types are essential for system and enterprise
interoperability as they are part of the domain rules that help software agents distinguish
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Figure 4.5: An example of a simple and a composite unique reference.

or merge instances. The same holds for the Semantic Web and Linked Data, where
one only has URIs to identify resources and (debatable) OWL constructs to establish
equivalences. An application that wishes to exploit the availability of billions of triples
will keep its semantics inside its program (e.g. rejecting a bunch of triples belonging to
a resource not fulfilling the requirements), thus offering little improvement when these
agents want to exchange data. For a theoretical treatment of the complexity issues of
identification and unique referencing in databases when considered in a semantic web
context, see [CDGL01], who represents functional dependencies in Description Logic.

Given the definition of RM-referability, every “leaf” in the RM-referability structure needs
to be a lexical object type. To this end, users are allowed to agree upon the fact that some
terms in the hybrid ontology are lexical. Unlike the mandatory or uniqueness constraint,
this is a constraint on the term (in lexons thus a term) and not on a role.

The reason for focusing on these constraints is that there exists an algorithm that trans-
forms (maps) an ORM schema into a (normalized) relational database schema with ad-
ditional constraints. The algorithm is described in detail in Appendix A.

For managing constraints in a hybrid ontology, the social processes are:

• Request to add a constraint
• Request to remove a constraint

For the social process “Request to change superlexon of lexon”, it is required that the four
terms of both lexons involved be articulated. Indeed, how can one imply that an instance
playing a particular role “r1” implies that same instance playing another role “r2” if the
terms or the relation itself are not specified. Lexons can be articulated as well if and only
if both its terms are articulated.

• Request to change supertype of a term (as the subsumption relations ship is a lexon
whose role labels have a special interpretation, e.g. “is a / subsumes”).

In the running example, it is assumed that the above-mentioned social interactions lead
to the following constraints:
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EACH Year IS LEXICAL.
EACH Artist with AT MOST 1 Name.
EACH Artist with AT LEAST 1 Name.
EACH Artist IS IDENTIFIED BY (Name of Artist) AND (Year of birth of Artist).
EACH Artist born on AT LEAST 1 Year.
EACH Artist born on AT MOST 1 Year.

Those constraints have been agreed upon by the community because these constraints
are either general (thus holding in every domain related to these concepts and relations)
or because they need to be complied with by the different stakeholders to ensure proper
interoperability. When committing the different applications to the ontology, stakeholders
will often add extra lexons and enterprise-specific constraints. Either to express their view
(i.e. their intended use of the concepts and relations) or to ensure proper annotation of
their information. The next section describes how enterprise-specific knowledge aids
stakeholders in annotating foreign keys to connect the pieces of information in their
databases.

4.6 Committing to the Hybrid Ontology

Once there is a first version of the hybrid ontology, stakeholders will already be able
to start annotating their information systems with the hybrid ontology by means of an
application commitment.

Each application commitment is an ordered triple 〈σ, α, c〉 where σ ⊂ Λ is a selection of
lexons from the lexon base, α : Σ→ T ∪R is a mapping called an annotation from the set
Σ of application (information, system, database) symbols to terms and roles occurring
in that selection, and c is a predicate over T ∪ R of that same selection expressed in a
suitable first-order language.

Application commitments can even contain enterprise-specific lexons and applications
specific constraints over all the lexons, capturing how the application uses the lexons
represented by these lexons. A typical use for enterprise-specific lexons and constraints
is to cope with identifiers used within one organization. The lexons and constraint inside
this commitment originate from the community commitment to which this particular
application is committing to.

Assuming that the community commitment is depicted graphically in Figure 4.6 (the
context identifier is implied to refer to the Cultural Domain Community). Take for
instance the lexon, 〈Cultural Domain Community, Artist, contributed to, with contributor,
Work Of Art〉. From Figure 4.6, it shows that an artist is identified by its name and date
of birth. Many artists can contribute to many works of art, and a work of art can be
the result of the contribution of many artists. Assume there is an application with a
relational database using artificial keys to identify artists and work of arts.

Figure 4.7 depicts a (E)ER diagram of a relational database. An application commitment
for this application could look as follows: see Figure 4.8.

In the application commitment of Figure 4.8, the lexons and constraints agreed upon
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Figure 4.6: Example of a RM-reference complete ORM schema

PK id
U1 name
U1 birthyear

artist
PK a_id
PK p_id

artistpiecePK id
U2 name
U2 year

piece

Figure 4.7: (E)ER diagram of a relational database.

by the stakeholder owning this information system are incorporated by referring to the
community with [’Cultural Domain Community’]. For instance, the community agreed
that all instances of Year have exactly one Number and that each Number identifies a Year.

The enterprise-specific lexons are not (necessarily) shared across applications, and the
information annotated with that knowledge is not necessarily understood by other ap-
plications. Every instance is uniquely identified by their artist ID AID (cfr. lines with
numbers 1, 2 and 3) and every instance of a work of art by their Work of Art ID WID
(cfr. lines with numbers 4, 5 and 6). The foreign keys in the join table are anno-
tated with those identifiers. With those annotations, it is for external applications now
possible to ask questions such as LIST Name of Artist contributed to Work Of Art
with Title “Bal au Moulin Rouge” as the Ω-RIDL parser will be able to perform a
join based on those IDs, populating the lexon 〈Cultural Domain Community, Artist,
contributed to, with contributor, Work Of Art〉 in the correct way.

The application commitments allow for the different information systems to be annotated
and enable the exchange of information residing in those systems. With every (closer)
approximation of the domain, the commitments will provide access to instances of con-
cepts that can be used for defining and/or refining the definitions, lexons and constraints
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BEGIN SELECTION
# Selection of the community.

[’Cultural Domain Community’]
# Enterprise-specific lexons
<’MyOrganization’, Artist, with, of, AID> # AID stands for Artist ID
<’MyOrganization’, Work Of Art, with, of, WID> # WID stands for Work of Art ID

END SELECTION
BEGIN CONSTRAINTS
LINK(’Cultural Domain Community’, Artist, ’MyOrganization’, Artist).
LINK(’Cultural Domain Community’, Work Of Art, ’MyOrganization’, Work Of Art).
# List enterprise-specific constraints
EACH Artist with AT MOST 1 AID. #(1)
EACH Artist with AT LEAST 1 AID. #(2)
EACH AID of AT MOST 1 Artist. #(3)
EACH Work Of Art with AT MOST 1 WID. #(4)
EACH Work Of Art with AT LEAST 1 WID. #(5)
EACH WID of AT MOST 1 Work Of Art. #(6)

END CONSTRAINTS
BEGIN MAPPINGS
MAP ’Artist’.’name’ ON Name of Artist.
MAP ’Artist’.’birthyear’ ON Year of birth of Artist.
MAP ’Artist’.’id’ ON AID of Artist.
MAP ’piece’.’name’ ON Title of Work Of Art.
MAP ’piece’.’year’ ON Year of Work Of Art.
MAP ’piece’.’id’ ON WID of Work Of Art.
MAP ’artistpiece’.’a_id’ ON AID of Artist contributed to Work Of Art.
MAP ’artistpiece’.’p_id’ ON WID of Work Of Art with contributor Artist.

END MAPPINGS

Figure 4.8: Example Ω-RIDL commitment for describing the database shown in Figure 4.7.

in the hybrid ontology description. How these instances are used for the creation and
refinement of definitions, lexons and constraints is described more fully in 6.

The instances accessible via the application commitments furthermore influence the in-
ternalization of the ontologies by providing extensional interpretations of the hybrid on-
tologies, which can be used by the community to check and test the validity of the hybrid
ontologies.

4.7 Gloss-equivalences and Synonyms

At any point in time, two communities can agree that the glosses describing their respec-
tive terms and lexons actually refer to the same concept, even when glosses are not yet
used to articulate terms or lexons. This can be achieved by asserting a gloss-equivalence
between two glosses. Note that there are two special cases of gloss-equivalence: term
equivalence occurs when two (or more) communities share the same terms, while commu-
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nity equivalence occurs when different terms represent the same concept within a single
community.

Gloss-equivalences can be created and removed with the following social processes:

• Request to add gloss-equivalence
• Request to remove gloss-equivalence

Note also that for every two community-term pairs whose glosses are identical or consid-
ered gloss-equivalent, there should be an agreement that the terms referring are referring
to the same concept. This is a necessary property for a hybrid ontology to be glossary-
consistent (cfr. Section 3.3.4). The inverse should not necessarily hold, two concepts can
be deemed synonyms by the communities, but their glosses not equivalent.

Synonyms can be managed with the following two requests:

• Request to add synonym
• Request to remove synonym

The distinction between these two requests allows agreements to be made not only at the
level of the glossary, but also at the level of the formal lexons. Although two (or more)
communities may agree that terms are synonyms, they may disagree that their glosses
are equivalent. The following example gives two glosses for the term color originating
from two different communities. Their glosses (seem to) refer to the same concept, and
therefore the community agrees that both community-term pairs are synonyms. However,
their glosses are not equivalent as they describe different aspects of the same concept from
different perspectives.

• g1(γlcd, color) = “The quality of an object or substance with respect to light reflected
by the object, usually determined visually by measurement of hue, saturation, and
brightness of the reflected light; saturation or chroma; hue.”8

• g1(γphysics, color) = “The electromagnetic radiation characterized by its wavelength
(or frequency) and its intensity. When the wavelength is within the visible spectrum
(the range of wavelengths humans can perceive, approximately from 390 nm to 750
nm), it is known as visible light.”9

Unlike the previous requests, which happen at the level of one community. The requests
involving gloss-equivalences and synonyms can and will occur across communities, making
these inter-community social processes.

Again, when two communities γ1, γ2 ∈ Γ agree that the glosses used to describe their terms
t1, t2 ∈ T are gloss-equivalent EQG, then it is not automatically implied that ci(γ1, t1) ≡C
ci(γ2, t2). Both terms should refer to the same concept; however, both agreements can

8Definition taken from http://dictionary.reference.com/browse/color, June 2011
9Definition taken from http://en.wikipedia.org/wiki/Color, June 2011
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be established separately. Gloss-equivalences are on the level of the glossary whereas ≡C
resides on the formal descriptions of the concepts (i.e. the lexons). It is necessary that
for ≡C , the term must appear in a lexon. This implies that a term will only be in the
community commitment if and only if that term plays at least one role (otherwise the
term has no purpose for this community). If the term would end up in a taxonomy, then
it plays the role of being the sub- or supertype of another term (e.g. with the roles “is
a/subsumes”), hence satisfying the condition. Communities can start gradually building
their glossary before formally describing their concepts. However, nothing should prevent
the community for having agreements on the “sameness” of descriptions across or within
their own community. If the definition would impose ≡C on the formal descriptions, the
community first needs to agree on at least one lexon concerning that term.

The glossary-consistency principle then becomes a driver for agreement processes, as
terms in to community are supposed to be synonymous when the two communities agreed
that two descriptions – used to articulate those terms – were referring to the same concept.
Glossary-consistency will thus aid in validating previously established agreements.

4.8 Community and SIR Co-evolution

Currently, this chapter explained how a community starts the development of hybrid
ontologies by first defining their semantic interoperability requirements, articulating the
key terms and gradually constructing agreements on lexons, glosses, constraints, gloss-
equivalences and synonyms. Communities and their semantic interoperability require-
ments are, however, not static. They are evolving and even co-evolving. In this section,
we dot not intend to provide a taxonomy of reasons why semantic interoperability re-
quirements or a community changes, but briefly elaborate on this co-evolution.

With the addition of a new stakeholder, the community changed not only with the pres-
ence of a new member, but also with the addition of new ideas, new perspectives and
possibly new requirements for the community. External forces, such as legislation changes,
may also lead to the articulation of new requirements. The community’s constitution does
not necessarily need to change for the semantic interoperability requirements to evolve, a
community can come to the conclusion that the current approximation of the domain by
the hybrid ontology description does not suffice to meet their needs even though it com-
plied with the requirements. In some cases, a better understanding of the domain may
lead a community to changing/adapting the original requirements through negotiation.

Changes to the constitution of a community or changes to the original semantic inter-
operability requirements inherently means the community has evolved. As described in
the beginning of this chapter, a community is identified by its members and their seman-
tic interoperability requirements, but an evolving community is not the same thing as a
new community. This means that the insights of the evolved community could lead to a
reconsideration of previously established agreements.
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4.9 GOSPL w.r.t. other DOGMA Based Methods

Now that the method has been defined, the GOSPL method will be compared with other
methods built around DOGMA. The first section describes the GOSPL framework and
method with respect to DOGMA-MESS, while the second section takes a closer look at
the differences with Business Semantics Management (BSM). Both DOGMA-MESS and
BSM have been described in Chapter 2.

4.9.1 Compared with DOGMA(-MESS)

There are important differences between GOSPL and DOGMA-MESS [dMDM06] even
though both methods start from the DOGMA ontology engineering framework. Below,
a comparison between GOSPL and DOGMA-MESS is given.

• In GOSPL, glosses and community agreements are first-class citizen. In DOGMA-
MESS the context identifiers refer to information sources from which the lexons
are elicited from, whereas the context identifiers are pointers to communities in
GOSPL.

• In [DdMM07], which described the context-dependency management in DOGMA-
MESS, the articulation of a concept was defined as follows:

Definition 13 (Articulation in DOGMA-MESS)
artConcept(〈γ, t〉, c) maps a term t ∈ T in a particular context γ ∈ Γ onto a
concept c ∈ C, provided ct(γ, t) is not defined.

In this definition, the function ct corresponds with this thesis’ function ci to map
context-term10 pairs to a concept. [Jar05] also stated that every context-term pair
is mapped onto one unique ConceptID. However, in GOSPL, the ci corresponds
with the concept invoked by a certain term in a community and is in no way an
explicit operation performed by the community (as done in [DdMM07]).

• Another important difference between DOGMA-MESS and hybrid ontology egi-
neering is how concepts and glosses relate to each other. The Concept Definition
Server (CDS) [DBSM04, DdM05, Jar06] in DOGMA-MESS is based on the popular
lexicon WordNet [Fel98]. The CDS serves as a database in which one can query
with a term and get a set of different meanings or concept definitions (called senses
in WordNet) for that given term. That concept definition is identified unambigu-
ously by a natural language description. In DOGMA-MESS, an injective mapping
between concept identifiers and concept definitions is defined [DdMM07]).

In hybrid ontology engineering, different communities can agree that their described
terms refer to the same abstract concept, while employing different glosses. This

10Remember that the context identifiers are limited to communities in GOSPL.

81



implies that one concept can be related to many glosses. Also, given that in an
ideal situation, every term described with the same gloss should refer to the same
concept, this kind of constraint would be too restricting to be practical. From this
follows that one gloss can be related to many concepts. The redefinition (on the use)
of glosses and concepts allows for scalability (by letting communities diverge and
converge over time) and accentuates the importance of capturing the community
agreements in the ontology engineering process.

• In [DdMM07], three ontology evolution operators for changing the taxonomy were
defined: defineGenus(〈γ, t1〉, 〈γ, t2〉) to insert a lexon stating that 〈γ, t2〉 is a 〈γ, t1〉,
pullUp(〈γ, t1〉, 〈γ, t2〉) to pull up an already defined concept (including its children)
higher in the taxonomy as a child of 〈γ, t2〉 and pullDown(〈γ, t1〉, 〈γ, t2〉) to pull
down an already defined concept (including its children) lower in the taxonomy as
a child of 〈γ, t2〉. All these operations can be achieved with the ontology operator
resulting from a request to change type.

• The operations introduceTerm and dropTerm were introduced in [DL09]. The first
was to enter a term t as a subtype of Thing, thus the lexon 〈γ,t, is a, subsumes,
Thing〉 was added to the ontology. The latter was to remove a term from the ontol-
ogy. Different strategies for handling the lexons around that term were proposed;
the choice fell on: for every lexon around that term, add a lexon in which that term
is replaced with the term of all its immediate children.

In Hybrid Ontology Engineering, the action “drop Term” is not proposed. Instead
if a particular term needs to be removed from the ontology, all lexons involving that
term should be removed. It is thus the responsibility of the community to build the
ontology step by step.

• The defineDiff operation is used to add a series of non-taxonomical lexons to the
ontology. This corresponds to the ontology evolution operator resulting from a
request to add lexon. The difference however is: (i) that the defineDiff operator is
used to add a series of lexons around a particular 〈γ, t〉 and (ii) that the 〈γ, t〉 has to
be already be somewhere in the ontology. In [DdMM07], terms are first introduced
via the defineGenus operator before they can be used in other lexons. Although not
explicitly defined in [DdMM07], every ontology contains implicitly the term Thing,
denoting the most general concept in the community and is the parent of all other
concepts.

• Finally, [DdMM07] defined two operators specialiseDiff and generaliseDiff to re-
place (one of the) terms in a lexon with more specific or more general terms re-
spectively. It is by definition a “destructive” operation in which the replaced lexon
is removed from the ontology. GOSPL is restricted to operations for adding and
removing lexons based on and after community agreement.

It is important to note one more difference. DOGMA-MESS and the above-mentioned
operators were defined to support context-dependencies. This section will not go in too
much depth on their nature, and the reader is referred to [DdMM07] for more details. But
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the idea of context-dependencies was to capture ontology evolution by letting the stake-
holder extend an ontology with their plausible lexons that represents their view (called
a perspective). These resulted in several versions of the ontology and those perspectives
needed to be unified. Users were able to immediately perform those operations on the
ontology, and stored in a different branch for that stakeholder. In Hybrid Ontology En-
gineering, every operation is the result of a social process and is not performed until the
community agrees with the operation. The ontology evolution operators are thus the re-
sult of a social process, whereas the social processes (meaning negotiation) happens after
everyone has performed the ontology evolution operators to generate their perspective in
DOGMA-MESS.

There are some differences between the notion of gloss and its role in formal ontology
engineering proposed by in [Jar06]. Jarrar gave several guidelines for a proper gloss
[Jar06]. A gloss should:

1. start with the principal or supertype of the concept being defined. In other words,
a gloss should start with a term.

2. be written in the form of propositions.
3. focus on the distinguishing characteristics of the concept being defined.
4. be supportive (examples are encouraged).
5. be consistent with the formal axioms in the ontology.
6. be sufficient, clear and easy to understand by the members of the community.

The author did not give a formal definition for glosses, but one can deduce that glosses
are given a context-term pair and reside in a namespace. Each gloss is identified by a
URI, the question whether two glosses with the same lexical values are identical has not
been addressed. In [Jar06], glosses are only used for high level reasoning among human
stakeholders, the guidelines provided by the author are a means to facilitate the process
and ensure quality of the glosses. The purpose of a gloss is not only to provide or catalog
general information and comments about a concept, but also to render factual knowledge
that is critical to understanding a concept, but that is unreasonable, implausible, or very
difficult to formalize (e.g., the context in which one uses a particular concept). The glosses
and concepts are given a URI and those URIs are used to implement an ontology in, for
instance, OWL. The URIs also contain the source of the gloss. The problem, however, is
that if the community agrees on adopting another gloss from another source, that URI
should change. This brings down the scalability of ontology versioning. In GOSPL, the
lexons (the formal part) are transformed into other formalisms and the glosses are used
to provide documentation and links between the formal parts.

4.9.2 Compared with Business Semantics Management

Business Semantics Management (BSM) [DCM10] draws from best practices in ontology
management [DLM08] and ontology evolution [HDdS08]. The representation of business
semantics was originally based on the DOGMA approach. BSM adopts the Semantics of
Business Vocabulary and Business Rules (SBVR) [OMG09] to capture concepts and their
relationships in fact types. Like DOGMA, SBVR is a fact-oriented modeling approach.
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As DOGMA’s lexons and constraints are fully compatible with SBVR (supported by
OMG), BSM recently adopted SBVR for representing the business domain and rules.
SBVR does provide constructs that were not available in the DOGMA frame-work, such
as support for unary fact types to represent characteristics of a business entity (e.g.
Project is terminated).

BSM consists of two complementary cycles: semantic reconciliation and semantic appli-
cation (see Figure 4.9) that each groups several activities:

Figure 4.9: Processes in the Business Semantics Management method

• Semantic Reconciliation is the first cycle of the method. In this phase, business se-
mantics are modeled by extracting, refining, articulating and consolidating lexons
from existing sources such as natural language descriptions, existing metadata, etc.
Ultimately, this results in several consolidated language-neutral semantic patterns
that are articulated with glosses (e.g. WordNet [Fel98] word senses). These pat-
terns are reusable for constructing various semantic applications. This process is
supported by the Business Semantics Glossary.

• Semantic Application is the second cycle. During this cycle, existing information
sources and services are committed to a selection of lexons, as explained earlier. In
other words, a commitment creates a bidirectional link between the existing data
sources and services and the business semantics that describe the information assets
of an organization. The existing data itself is not moved nor touched.

The first cycle, semantic reconciliation, is supported by the Business Semantics Glossary
(BSG) shown in Figure 4.10 (taken from [DDS+11]). This figure shows a screenshot
of the term “Project” (within the “Project” vocabulary of “CERIF” speech community
that is part of the “FRIS” semantic community). The software is currently deployed at
EWI for managing business semantics of CERIF terms. A term (here “Project”) can
be defined using one or more attributes such as definitions, examples, fact types, rules
sets, categorization schemas (partly shown in taxonomy), and finally milestones for the
life cycle. “Project” in this case is a subtype of “Thing” and has two subtypes: ”large
academic project” and “small industrial project”. Re governance: in the top-right corner
is indicated which member in the community (here “Pieter De Leenheer”) carries the
role of “steward”, who is ultimately accountable for this term. The status “candidate”
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indicates that the term is not yet fully articulated: in this case “Project” only 37.5%.
This percentage is automatically calculated based on the articulation tasks that have to
be performed according to the BSM method. Tasks are related to defining attributes and
are distributed among stakeholders and orchestrated using workflows.

percentage is automatically calculated based on the articulation tasks that have to be performed 
according to the business semantics management methodology (De Leenheer et al., 2010). Tasks 
are related to defining attributes and are distributed among stakeholders and orchestrated using 
workflows. 

 

!
Figure'3:''CommunityIbased'vocabulary'management'in'the'context'of'CERIF.'

5. Establishing Semantic Interoperability 

Community-agreed CERIF vocabularies and rules in SBVR form the basis for forward 
engineering of software (i.e. UML and ER diagrams) and Web applications (including OWL and 
Common Logic) and vice versa: existing models can be reverse engineered to feed SBVR 
modelling (Gasevic et al., 2009).  

Figure 4.10: Screenshot of Collibra’s BSG supporting the semantic reconciliation process of
the BSM method by providing domain experts means to enter simple key fact types in natural
language, natural language definitions of fact types and terms in those fact types as well as
constraints (in BSG called “rule sets”).

The scope activity is used to set out – during an iteration of the method – the scoped terms
that are needed to establish semantic interoperability. During the create activity, every
scoped term is syntactically defined as well as rules for these terms and the roles they play
in their fact types are created. During this phase, inspiration can be drawn from existing
sources (manuals, users, standards, etc.). While refining fact types and constraints that
were created during the creation activity are refined so that they are understandable to
both business and technology. The refined fact types and constraints should be (i) correct,
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(ii) useful, (iii) reusable, and (iv) elegant. In the articulation process, informal meaning
descriptions are created as extra documentation. These descriptions include definitions
and examples and can serve as anchoring points when stakeholders have used different
terms for the same concepts (i.e. detecting synonyms). Where available, already existing
descriptions can be used to speed up the process and facilitate reuse.

The main difference with GOSPL is that BSM is not driven by the glosses. Instead, a
community first needs to create and refine the formal descriptions. Thus agreements on
the formal descriptions are not driven by alignment processes, even though key terms
have to be defined.

Users with the appropriate rights, can change the formal description. Additions have a
flag of their status (e.g. candidate, accepted, etc.). Deletions, however, are immediately
carried out. The versioning behind BSG allows for easy rollbacks. They can possibly, as
mentioned in the state-of-the-art, render discussion or agreement processes less efficient
as ontology evolution is not the immediate result of discussion. One also needs to examine
the status of each part of the ontology to see which parts have been accepted or deleted.
This is not so much a problem as the documentation actually imply that with every
iteration of the method, a new version of the ontology is actually “compiled and published”
into something that is needed for the ontology project (e.g. and XSD on the Web).

4.10 Conclusions

This chapter answered the second research question: “How can hybrid ontology con-
struction be supported in a necessarily complex collaborative setting?” and presented a
method for hybrid ontology engineering called GOSPL, which stands for Grounding On-
tologies with Social Processes and natural Language. The method is built on top of the
hybrid ontology engineering framework introduced earlier in this thesis and was designed
so that the ontology engineering process is driven by the informal concept descriptions
by appropriately orchestrating the social processes defined in Chapter 3. The ontology
ownership belongs to the community, which is a consequence of ontology evolution being
defined as the result of incremental agreements processes within that community. Each
of the different processes in GOSPL was exemplified with a running example stemming
from a use case. Also a comparison with other methods built on top of DOGMA was
presented.

Now that a method has been presented, one can ask how different parts or processes of
this method can be (semi-)automated. Two important artifacts within this framework
are the glosses and the application commitments. In subsequent Chapters, the use of
both glosses and commitments to steer or even start social processes within a community
will be examined.
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Chapter 5

Evolving Glosses
A gloss is a (brief) description of a concept and thus helps in providing the meaning of
a term or lexon. The purpose of a gloss is not to provide or catalog general information
and concepts about a concept, as conventional dictionaries and encyclopedias do, but
is supposed to render factual knowledge that is critical to understanding a concept in
ontology engineering [Jar05].

A gloss is composed of one or more sentences constructed with the community’s usual
alphabet. Those sentences have to be themselves human-interpretable in order for the
gloss to become understandable. S is used to denote the set of all possible sentences
that can be constructed with those alphabets. Whether this set contains sentences (or
parts thereof) that are valid syntax- and grammar wise is “ignored” in this thesis. As the
community will choose and discuss the elements of this set used for constructing a gloss,
they will make sure that what is chosen makes sense (at least for this community).

Use of the word “truth” will be avoided in this chapter, since we are not in a formal logical
context. “Truth” will be almost exclusively used in the context of the mapping between
an ontology and application symbols (the formal semantics). Occasionally and carefully,
the word will be used for addressing the agreement on validity assumed to exist in the
community. In other words, truth is relative to the community; if there is an agreement
on something, that something is assumed to be valid.

Every part of a gloss should contribute to a better understanding of the concept described.
As a consequence, some of these parts should correspond with parts of the formal de-
scription of that concept. In other words, as the glosses evolve, so should the lexons and
constraints.

This chapter will thus present how the evolution of glosses used and agreed upon by the
community has an impact on the hybrid ontology description presented in Chapter 3.
Key for this process will be to describe how different parts of a gloss relate to each other.

5.1 Discrete Gloss Evolution

The articulation of a term or a lexon with a gloss can and will evolve over time. Those
changes happen for a reason, which is then discussed by the community. This reason is
captured by the motivation of the change and the communities’ discussion. How the gloss
changes, can be formalized. There are two types of gloss updates. The first is a complete
change of a gloss. In this thesis, this kind of update is deemed to happen only accidentally;
as such a change would imply that the community – as a whole – misinterpreted the term
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being described in the context of that community (and their goals).

The second type of change is a (more gradual) refinement of the gloss. Glosses are
composed of one or more sentences. Sentences or parts of sentences can be added or
removed. The sentences that have been added or removed serve (or served in the case
of the latter) a particular modality for that gloss. This modality captures and describes
how the gloss and those sentences were related. One can define many such modalities.
In the context of discourse relation, these modalities correspond with Discourse Segment
Purposes [GS86]. In this thesis, the set of modalities is referred to by Θ.

Example 1
In the following example of a modality, the second span has the modality of “elabo-
rating” on what has been stated in the first span.

Gloss evolution is a mapping from a set of glosses to another set of glosses that is the
result of a community applying a modality in Θ to add or remove parts of a gloss. The
linguistic amalgamation operators to add or remove (a part of a) sentence from a gloss
are defined as:

• ⊕ : Gloss×Θ× S → Gloss for adding an element of S to a gloss
• 	 : Gloss×Θ× S → Gloss for removing an element of S from a gloss

Example 2
Starting from the previous example, a gloss-amalgamation operator can be applied
on that gloss to add a third span providing the modality of “purpose” on the whole.

For the sake of presentation, the exact locations where sentences would be added (before,
after or somewhere in another sentence) or which part of a sentence is removed are not
displayed. Those are assumed to be additional parameters of above-mentioned operators.
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5.2 Gloss Evolution Modalities

This section will provide a proposal for the elements in Θ. Many approaches are possible,
we choose to draw inspiration from discourse theory, and more concretely Rhetorical
Structure Theory [MT88]. Elements from RST are furthermore refined and complemented
with elements introduced specifically for GOSPL. One such element specific to GOSPL is
adopting a gloss via term-adoption (See Definition 9 in Chapter 3), where one community
explicitly states to adopt the gloss of another community.

The goal is not to provide an exhaustive list, as it can vary depending on the type of
community or even the type of language used. The framework is therefore defined in such
a way that new elements can be introduced to Θ.

A distinction is made between elements that affect the community commitment and
elements that merely serve to provide additional text to (better) understand the concept
described.

The application of some gloss-amalgamation operators might imply the introduction of
lexons, constraints and even instances in the community commitment. Lexons and con-
straints are useful for building up the lexon base and community commitments. The
instances are useful to validate the constraints explicitly agreed upon by the community.

5.2.1 Drawing Inspiration from Rhetorical Structure Theory

For the elements of Θ, inspiration is – as already stated above – first drawn from RST.
RST was originally developed as part of research on computer-based text generation. RST
was intended to describe texts by means of two types of “relations”, each at a different
level. The first is the “nucleus-satellite relation” and is the most frequent structural
pattern. It involves two (usually adjacent) spans1 which are related in such a way that
one of them has a specific role relative to the other. The other type is “multinuclear
relations”, grouping a set of nuclei2.

In RST, somewhat unfortunately the roles that spans play on other spans are confusingly
labeled “relations”, a term obviously not suitable for computer science texts, such as this
thesis. The authors of RST are linguists and the “relations” they propose actually refer to
“functionalities”, their purpose. Therefore these “functionalities” will be called modalities,
as the elements in Θ. This will not pose a problem as we explicitly state which of the
RST modalities will be adopted and included in Θ.

RST thus allows one to describe how two segments of discourse are connected to one
another. With elements of the first type, the nucleus (N) is part the of the text on which
the satellite (S) will play a particular role.

1A span is a part of a sentence or text.
2http://www.sfu.ca/rst/, on March 2012
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Example 3
Consider the sentence: “Employees are urged to complete new beneficiary designation
forms for retirement or life insurance benefits whenever there is a change in marital or
family status.” The part “Employees are urged to complete new beneficiary designation
forms for retirement or life insurance benefits” is the nucleus. The part “whenever
there is a change in marital or family status” is the satellite and expresses a condition.

Glosses need to concisely describe terms or lexons employed by the community. Their
(implicit) “meaning” also has to be agreed upon by that same community. Opinions or
statements in favor of a particular gloss are part of the discussion leading to an agreement,
and not part of a gloss itself. As RST provides modalities with sometimes a subjective
nature (e.g. the antithesis that describes ideas favored by the author), only a subset of
these modalities that is deemed relevant for gloss evolution will be presented. This is in
line with the guidelines on the construction of glosses given in [Jar06]: a gloss should (i)
start with the term of the principal or supertype of the concept being defined; (ii) be
written in the form of propositions; (iii) focus on the distinguishing characteristics of the
concept being defined; (iv) be supportive (examples are encouraged); (v) be consistent
with the formal axioms in the ontology and (vi) be sufficient, clear and easy to understand
by members of the community.

The modalities provided by RST that were not taken into consideration are:

1. Modalities for expressing opinions: antithesis, concession, and justify.
2. Modalities aimed at enabling the reader in undertaking actions: enablement.
3. Modalities at interpreting and evaluating text: restatement, interpretation and

evaluation.
4. Modalities concerned at relating information with causes and effects: non-volitional

cause, non-volitional result, volitional cause and volitional result.

In the following examples, the community employing the term is implied and denoted
with γ. Throughout the descriptions, N will be used to refer to a nucleus and S to refer
to a satellite.

• With background, S is used to facilitate the understanding of N. S thus adds
additional background information for understanding the information inside the
gloss N by the community γ as well as other communities who wish to negotiate
the sameness of concepts across communities.

Example 4
Given the gloss g for the term “color”: “The visual perceptual property corre-
sponding in humans to the categories called RGB and others. Color derives
from the spectrum of light interacting in the eye with the spectral sensitivities
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of the light receptors.” and the sentence s = “(distribution of light energy ver-
sus wavelength)”, the application of g ⊕ Background(s) results in “The visual
perceptual property corresponding in humans to the categories called RGB and
others. Color derives from the spectrum of light (distribution of light energy
versus wavelength) interacting in the eye with the spectral sensitivities of the
light receptors.”

• Circumstance is the modality that denotes that a part of a gloss S sets the frame-
work for interpreting N, another part of that same gloss. It is different from back-
ground in that both N and S are about a single situation.

Example 5
Given gloss g for the term “opportunity cost” as “The cost of passing up the
next best choice when making a decision”. The circumstance of “The cost of
passing up the next set choice” is “when making a decision.”

• A condition is a modality used for stating that the truth-value accorded to the
proposition in a part N of the gloss depends on the truth-value accorded to the
proposition in another part S of that same gloss.

Example 6
S = “that are in order” expresses the condition for a set to be a sequence in the
following gloss for “sequence”: “A sequence is a set of things (usually numbers)
that are in order. If the sequence goes on forever it is called an infinite sequence,
otherwise it is a finite sequence.”

TheUnconditional is a modality that relates S and N in such a way that the truth-
value of the proposition in N does not depend on the truth-value of the proposition
in S. Such sentences typically start with “even if”, “even when”, etc.

Otherwise is a modality used to state that if the truth-value of the proposition
in N is not true, the truth-value of the proposition in S will be. This modality is
typically used to create so-called if-then-else statements. Such statements are for
instance useful to describe the conditions to classify an instance of a concept as an
instance of one of that concept’s subtypes in the type hierarchy. In the example
above, this modality is used to state that a sequence is a finite sequence when the
sequence does not go on forever.

Unless expresses the modality that the truth-value of the proposition in N is true
only when the truth-value of the proposition in S is false. As the name of this
modality implies, such satellites typically start with – as the name implies – “unless”.
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• Elaboration denotes modality of adding information in a part of the gloss S to
already available information in another part of the gloss N. It is different from
the background modality in that the additional information provides further detail
on the concept described in the gloss rather than providing a framework for better
understanding the remainder of the gloss.

Example 7
Given the following gloss g for the term “color”: “The visual perceptual prop-
erty corresponding in humans to the categories called RGB and others”. One
would want to provide additional information. For instance, the addition of
sentence s = “Color derives from the spectrum of light interacting in the eye
with the spectral sensitivities of the light receptors.” ∈ S. The following oper-
ation g ⊕ Elaboration(s) would result in the following gloss g′ = “The visual
perceptual property corresponding in humans to the categories called RGB and
others. Color derives from the spectrum of light interacting in the eye with the
spectral sensitivities of the light receptors.”

RST described some specific types of elaboration modalities:

1. Instantiation. N describes the abstract concept, and S presents an instance.
2. Meronymy. N presents the whole, and S provides a part.
3. Step. N describes a process in which S is a step.
4. Attribute. N describes an object, and S presents an attribute of that object.
5. Specification. N describes a “supertype”, and S provides a subtype.
6. Generalization. N describes a “subtype”, and S presents supertype.
7. Membership. N describes a set, and S presents an element of that set.

Note that those specific types of elaboration modalities are not exhaustive. In fact,
a special case concerning the identification of the concept described will be proposed
in the next section.

All but Membership were taken into account for this thesis. Membership relates a
member in a satellite to the set described in the nucleus. In the context of hybrid
ontology engineering, terms and lexons are sets. The elements of these sets are
examples of the concepts represented by these terms and lexons. As the goal of a
gloss is to describe a concept, the instantiation modality already covers relating
examples as members of a set.

• Evidence Evidence is a sentence S that supports a claim N . In this case, the claim
is expressed by the gloss. Examples are typically used as evidence; they support
the definition contained in the gloss. Examples, however, are already present as
a special case of the elaboration modality (instantiation). The type of evidence is
therefore restricted to information supporting a claim.

Another type of evidence are analogies. By drawing comparisons between two
different things, one can help illustrate or clarify one of the two. In this case,
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comparisons are made to show the reader similarities. When comparisons are made
to show the differences, a contrast (see later) is made. Below an example of the
use of evidence3.

Example 8
The gloss g = “The cost of passing up the next best choice when making a
decision. For example, if an asset such as capital is used for one purpose, the
opportunity cost is the value of the next best purpose the asset could have been
used for. Opportunity cost analysis is an important part of a company’s decision-
making processes, but is not treated as an actual cost in any financial statement.”
illustrates the use of an example to support the definition of “opportunity cost”.

• Means is a modality used by a community to denote the sentence S presenting an
instrument used for achieving the concept described in sentence N.

Example 9
Given the gloss g = “An algorithm is a process or set of rules to be followed
in calculations or other problem-solving operations” for the term “algorithm”,
adding the means s = “, esp. by a computer.” to this gloss with g ⊕Means(s)
results in “An algorithm is a process or set of rules to be followed in calculations
or other problem-solving operations, esp. by a computer.”

• With the Preparation modality, the sentence S is used to prepare the reader
to expect and interpret the sentence in N. According to the guidelines of [Jar06],
a gloss should start with the term or its supertype. This corresponds with the
preparation, as the term will give an idea to the reader what the gloss’ subject will
be. However, all sentences that aid the reader orienting his thoughts are considered
preparations. This modality is different from the background modality in that it
prepares the reader for what to expect, and the background modality is used to
provide information needed to understand the rest of the gloss.

Example 10
For example, given the following gloss g for the term “Color” “The visual per-
ceptual property corresponding in humans to the categories called RGB and oth-
ers.” with s = “Color is”, the community can thus apply g ⊕ Preparation(s)
returning “Color is the visual perceptual property corresponding in humans to
the categories called RGB and others.”

3Gloss taken from http://www.investorwords.com/3470/opportunity_cost.html, retrieved on
February 2012.
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• The Purposemodality is used to describe that an activity in N needs to be initiated
in order to achieve what is described in S. In other words, S describes the purpose
of doing the activity described in N.

Example 11
For instance, in the following gloss for “cardiopulmonary resuscitation” given
below, the sentence S “for restoring normal heartbeat and breathing to victims
of heart failure, drowning, etc.” expresses the purpose in the type of emergency
medical procedure N: “Cardiopulmonary resuscitation is an emergency medical
procedure.”

“Cardiopulmonary resuscitation is an emergency medical procedure for restoring
normal heartbeat and breathing to victims of heart failure, drowning, etc.”

• In RST, Solutionhood describes the modality of N presenting a solution to the
problem described in S. In other words, the concept described in N provides a
solution for the problem described in S. Solutionhood is defined as: “A solutionhood
relation is an interpropositional relation in which a proposition(s) is presented as
an answer or remedy for a problem, such as one of the following, communicated in
another proposition(s).4”

In RST most modalities describe the role of sentence S on sentence N. Solutionhood,
however, was described from the perspective of N. In other words, the role N plays
on S. To have the direction of modalities consistent, solutionhood was renamed to
problem-for. This way, the form of each modality in Θ from RST is defined in a
consistent way.

Example 12
In the following gloss, the problem is a dispute or conflict and the settlement is
a solution: “A settlement is an official agreement intended to resolve a dispute
or conflict.”

All the elements of Θ described so far involve a satellite playing a role on a nucleus.
However, RST also describes modalities that relate multiple nuclei.

All but two of these types are taken into account. The multinuclear restatement was not
considered, as for the same reason as the restatement modality; it aids at interpreting
another sentence without providing additional information. Also the joint modality was
not considered, as it is used to “glue” two pieces of text that are not related. As a gloss
needs to present a brief description of the described term, all parts in that gloss need to
be relevant.

The modalities involving multiple nuclei used in this thesis are:
4http://sil.org/linguistics/GlossaryOfLinguisticTerms/WhatIsASolutionhoodRelation.

htm
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• Conjunction. The items are conjoined to form a unit in which each item plays a
comparable role. Items can be combined with words such as “and” and “nor”.
• Disjunction. An item presents an alternative for the other(s). The disjunction is

not necessarily an exclusive disjunction.
• Contrast is used for at most two nuclei. The two are understood to be similar (or

the same) in many respects and to differ in a few respects, and both are compared
with respect to those differences.
• List for linking items are comparable to each other and sequence for linking items

with a logical succession, e.g. steps to perform a task.

The multi-nuclei modalities are included in Θ so that one sentence plays a particular
role on another sentence. This means that for the multi-nuclei modalities that can have
more than two nuclei, the sentences have to be nested with their modality. In other
words, if a conjunction A and B and C were to hold, this would have to be rewritten as
(and A (and B C)). Later on will be described how the community members will have
access to syntactic sugar taking care of this.

5.2.2 Other Gloss Evolution Modalities

RST provides a foundation for choosing gloss-evolution modalities. However, the hybrid
ontology engineering framework also needs to treat certain processes that result in gloss
evolution not covered by these modalities.

One example of a social interaction evolving glosses not covered by the RST modalities
are term-adoptions (See Definition 9 in Chapter 3). Given two communities γ1, γ2 ∈ Γ
and their respective terms t1, t2 ∈ T and γ2 has articulated t2 with a gloss g, community
γ1 is able to adopt g for describing t1. It is obvious that this operation evolves the gloss
for 〈γ1, t1〉. The implications of the adopted gloss on the hybrid ontology remain within
the original community, but are known to the adopting community as this operator links
both terms.

Chapter 3 explained the importance of the identification of the set of attributes that
uniquely and totally identify instances of a concept in database management and knowl-
edge representation in IT. As a natural consequence, semantic interoperability between
autonomously developed information systems should take into account these constraints
to properly identify instances in each of those systems. RST does not provide modalities
to capture this attribute. A special kind of modality is thus introduced: identifies. With
this modality, a community relates a sentence S to a sentence N such that S provides in-
formation on how to identify instances of the concept described in N. One will then later
be able to identify these attributes – by means of simple NLP techniques, see Section
5.2.3 – and start the necessary social processes to agree on those lexons and constraints
(unique, total and identifying).
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5.2.3 A Grammar to Structure and Process Glosses

In order to illustrate the mechanism for annotating glosses, we defined a simple grammar
to create a gloss modality parser. The grammar – developed with the ANTLR Parser
Generator5 – is shown below. The parsers takes appropriate measures depending on the
modality encountered. The different measures are presented in a Table at the end of this
section. Note that white spaces are ignored. In modalities involving a nucleus and a
satellite, the satellite provides additional information with a particular “purpose”. The
satellite, however, may appear on either side of the nucleus. The grammar expresses this
with modalityDirection.

// PARSER RULES
// Top rule, starting point of span

rule: span ;
span: sentence | modality | multinuclei ;

// Simple sentence: a unstructured string
sentence: STRING ;

// Application of a modality
modality: ’(’ span modalityDirection span ’)’ ;
modalityDirection: (’<-’ modalityName) | (modalityName ’->’) ;
modalityName: LITERAL;

// Application of a multinuclei
multinuclei: ’{’ LITERAL (span)+ ’}’ ;

// LEXER RULES
LITERAL: (’A’..’Z’)+; // Words in capital letters
STRING: ’"’ ACTUALSTRING ’"’; // Quoted Strings
fragment ACTUALSTRING: ~(’\\’|’"’)*;

A possible annotation of the gloss “A planet, in astronomy, is one of a class of celestial
bodies that orbit stars. Examples are Mercury, Mars and Earth.” to parse with this
grammar is shown in Example 13.

Example 13
((("A planet," <- BACKGROUND "in astronomy,")

<- GENERALIZATION ("is one of a class of celestial bodies"
<- ELABORATE "that orbit stars."))

<- INSTANTIATION
{CONJUNCTION "Examples are Mercury," "Mars" "and Earth."})

One is now able to parse structured glosses and to some extent reason on this structure
with this grammar. In the next section, this structure will be examined to support
glossary and community commitment co-evolution. The grammar is defined in such a

5ANTLR Parser Generator: http://www.antlr.org/
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way that the possible gloss-evolution modalities are not pre-determined. Software agents
implementing this grammar can thus implement different strategies depending on the
label of a modality encountered.

5.3 Glossary and Commitment Co-evolution

We are now ready to introduce one of the key methodological principles of our approach,
which links the management of glosses to the engineering of ontologies within a given
community. This principle is called co-evolution.

The elements in Θ and the amalgamation operators enable us to implement the support
for the so-called co-evolution of communities, ontologies and glossaries. Changes in the
requirements of the community are reflected in the formal part of the ontology and
possibly require the refinement of the glosses based on the newly defined gloss evolution
operators. In turn, these changes might start a series of social processes for the formal
part of the hybrid ontology to reflect those changes accordingly. At any time, changes in
both the lexon base and the glossary will influence the communities’ next decisions. Some
elements of Θ provide only additional information to the community for understanding
the gloss. Other elements however, can and should have an impact on the hybrid ontology.
These elements influence the hybrid ontology at three levels:

1. The introduction of one or more pre-lexons in the Lexon Base.
2. The introduction of pre-constraints.
3. The introduction elements in the population of a term or a lexon.

Pre-lexons are “raw” lexons that have not yet been refined by the community (e.g. proper
stemming of verbs in roles, the introduction of the co-role, etc.). Some gloss-evolution
modalities result in lexons of which roles, concepts or generalization of concepts are
known. For instance, when describing a specialization of a concept, the roles is a /
subsumes – interpreted as the taxonomic relation – will be proposed. Pre-constraints are
constraints expressed in terms of the pre-lexons.

Example 14
Given some community γ ∈ Γ wishing to articulate the term “Car” with a gloss,
the application of the following generalization (a type of elaboration): “A car” ⊕
Generalization(“is a road vehicle”) results in the following pre-lexon:

- 〈γ, Car, is a, subsumes, road vehicle〉

The roles are underlined as they are pre-filled and have a special interpretation.
Nothing prevents the community to refine this pre-lexon and change its role labels.
But as the gloss has evolved with a generalization, one would expect that this would
reflect with the addition of a taxonomic relation in the hybrid ontology.

Once refined, the execution of this gloss evolution triggers social processes for adding
this lexon.
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Example 15
Taking the following gloss g for “Car” in some community γ ∈ Γ: “A car is a road
vehicle”. One can elaborate on this term by adding the following sentence s “powered
by an internal combustion engine and able to carry a small number of people.”. The
sentence s is actually the result of a conjunction s′ ⊕ Conjunction(s′′) where s′ =
“powered by an internal combustion engine” and s′′ = “and able to carry a small
number of people.”

Elaborating g with the conjunction contained in s with g⊕Elaboration(s) results in
the following pre-lexons:

- 〈γ, Car, powered by, ., an internal combustion engine〉
- 〈γ, Car, able to carry, ., a small number of people〉

These pre-lexons have to be refined by the community by starting social processes
adding new lexons in the hybrid ontology (cf. the social processes defined in 3). Either
a community member proposes an initial refinement of the lexon or the community
will immediately discuss how to refine the pre-lexons.

- 〈γ, Car, powered by, powering, Internal Combustion Engine〉
- 〈γ, Car, carrying, carried by, Group〉

Instances can be elicited from glosses and used as a test population in hybrid ontology
engineering via requests to add examples (see Chapter 3).

Example 16
Given a gloss g = “A planet, in astronomy, is one of a class of celestial bodies that
orbit stars.” for the term “planet”, one can elaborate this gloss by giving examples.
s = “Examples are Mercury, Mars and Earth.”

g ⊕ Instantiation(s) = “A planet, in astronomy, is one of a class of celestial bodies
that orbit stars. Examples are Mercury, Mars and Earth.”

The instances of planets are proposed to be taken into account, and will – once ac-
cepted – serve as a test population for ontology engineering. Population(γ, P lanet) =
{Mercury,Mars, Earth}

What is particularly interesting about instances is that they refer to elements in the
community’s domain and therefore the information about these instances should fit in
one of that term’s reference structures. In other words, the labels used to refer to actual
instances of a concept should be attributes that uniquely and totally identify those in-
stances that have agreed upon by the community. A member of the community will thus
be asked – as will be shown later on – to select either existing total, unique identifying
lexons in which the instances can be placed, or propose a set if none (adequate) are found.
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There are several ways to discover constraints in glosses. Gloss-evolution modalities such
as the conditional can express subset constraints between roles of lexons. Others, such
as the elaboration, contain hints on frequency or totality constraints within a pre-lexon.

Example 17
Given a gloss g =“A proposal results in a project” for the term “Proposal” in
a certain community γ ∈ Γ and assuming that the lexon 〈γ, Proposal, results
in, result of, Project〉 is already present, by adding a condition by applying g ⊕
Condition(“when the proposal is accepted by the review board.”), the following pre-
lexon and subset constraint are elicited:

- 〈γ, Proposal, is accepted by, ., review board〉
- Subset constraint from “is accepted by” to “results in”.

The community can refine the pre-lexon as well as the subset constraint and trigger
social processes to accept these in the formal part of the hybrid ontology.

Eliciting and refining pre-lexons, -constraints and instances are community processes. To
aid the community, these processes can be partly derived by a software agent that applies
natural language processing techniques and reason over the modalities the community has
annotated their glosses with.

While extracting the pre-lexons for a modality f1, the detection of terms in the nucleus
will often follow the same steps. In essence, if the nucleus is a sentence, then noun-
extraction will be applied on this sentence. However, if the satellite is a modality f2,
then the nucleus of that modality should be examined. If the modality f1 would be
applicable to the nucleus of this modality f2, then the structure of this gloss would look
different.

This becomes clear if the application of elements of Θ for glosses are visualized as a tree
(see Figure 5.1). On the left, the wheels are part of the car, which is the nucleus of
the modality. On the right, however, the meronymy modality is pointing to the road
vehicle. It is up to the community to ensure that the structure of the gloss corresponds
makes sense.

GENERALIZATION

"A car" "is a road vehicle."

MERONYMY

"It has four wheels."

GENERALIZATION

"A car" MERONYMY

"is a road vehicle." "It has four wheels."

N S

N S

N S

N S

Figure 5.1: Tree representation of differently structured glosses that appear the same.

When the gloss is defined by means of prepositions, those prepositions can easily be
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structured according to these rules. In case of a multi-nucleic modality, the terms will be
detected in each element of that relationship. The multi-nucleic modalities are mainly
used to illicit a series of pre-lexons that serve a particular modality. For instance, in the
case of an identification modality in Example 18 in some community γ, the disjunction
modality will denote distinct reference structures, whereas the conjunction will indicate
which attributes belong together.

Example 18
Given the following gloss for the term “employee” in some community γ,

("An employee" <- IDENTIFIES
{DISJUNCTION {CONJUNCTION "is identified by their first-"

"and last name"}
"or an employee number"})

the pre-lexons in the example are:

• 〈γ, employee, with, of, first-〉
• 〈γ, employee, with, of, last name〉
• 〈γ, employee, with, of, employee number〉

The pre-constraints (in terms of these pre-lexons) are:

EACH employee with AT LEAST 1 first-.
EACH employee with AT MOST 1 first-.
EACH employee with AT LEAST 1 last name.
EACH employee with AT MOST 1 last name.
EACH employee IS IDENTIFIED BY (first- of employee)

AND (last name of employee).
EACH employee with AT LEAST 1 employee number.
EACH employee with AT MOST 1 employee number.
EACH employee IS IDENTIFIED BY (employee number of employee).

When the community refines those pre-lexons, the constraints are updated accord-
ingly.

The table below presents what information we elicit for each of the described gloss-
evolution modalities. It is assumed that both S and N are analyzed independently as
they can be themselves structured with elements of Θ. For each modality, a check mark
indicates whether pre-lexons, -constraints and lexons can be elicited. The description
briefly explains – at a high level – how. Cells that are grayed out mean that the modality
has no implication on the hybrid ontology either because the modality provides infor-
mation not immediately related to the concept being described (e.g. the background
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modality) or because the modality is only useful in combination with other modalities
(e.g. the conjunction).

Gloss-evolution modality P
re
-l
ex
on

s

P
re
-c
on

st
ra
in
ts

In
st
an

ce
s

Background. Meanly intended for providing more information to comprehend
the nucleus. This modality does not have any implication on the formal part of
the hybrid ontology. The structure of the satellite, however, will be analyzed
separately.
Circumstance. Similar to background.
Conditional. The conditional modality expresses a constraint on the nu-
cleus, namely that the description (lexons and constraints) in the satellite must
be true in order for the description in the nucleus to be true. Two possibilities
are identified. If the condition is on a generalization, a subtype definition
is identified. Otherwise, a subset constraint is identified. Pre-lexons can be
elicited from the condition if not mentioned elsewhere.

3 3

Elaboration. The elaboration modality has several special cases (each de-
noted with an arrow) that are treated somewhat differently. When this element
is used, however, one will look for the verb phrases within the satellite to define
the role the term in the nucleus is playing on (a) term(s) in the satellite.

3 3 3

→ Attribute. The satellite provides one or more attributes of the concept
being described. As an attribute, the concept plays the attributive role on
each and one of these attributes at most once. Thus next to some pre-lexons
with the roles “with / of”, a series of pre-constraints are also proposed.

3 3

→ Generalization. The satellite provides information on a more general
concept denoted in the nucleus. One thus needs to detect the term in the
nucleus and construct “is a/subsumes” pre-lexons with co-terms found in the
satellite.

3

→ Instantiation. The goal of the instantiation modality is to provide exam-
ples of the terms or lexons described within one community. Here, the goal is
thus to identify these examples and propose the community to use these exam-
ple as test population in the hybrid ontology engineering process. Looking for
noun phrases and proper nouns in the satellite identifies the examples. Some
noun phrases, however, are for this particular modality filtered. For instance,
in the fragment “Examples of planets are Mercury, Mars and Earth”, the label
“Example” is also a noun phrase.

3

→ Meronymy. The satellite provides information of the concepts that are
part of the concept described in the nucleus. One thus needs to detect the term
in the nucleus and construct “with part/part of” pre-lexons with co-terms found
in the satellite.

3

→ Specification. The satellite provides information on a more specific con-
cept denoted in the nucleus. The term in the nucleus thus needs to be detected
to construct “subsumes/is a” pre-lexons with co-terms found in the satellite.

3
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→ Step. With this modality, the satellite provides information of a step be-
longing to a process described in the nucleus. To capture this information, the
process and sub-processes are elicited from the nucleus and satellite respec-
tively and introduce these processes as subtypes of the concept “Process”. The
lexon “Process containing / part of Process”, if not yet present in the hybrid
ontology, is furthermore introduced.

3

Evidence. The type of evidence is restricted to information, such as analogies
as explained in Section 5.2.1. Hence, it is treated in the same way as the
background modality.
Means. With this modality, the satellite presents a method or tool for the
concept described in the nucleus. Thus, next to providing the pre-lexons with
roles “uses / used for”, the pre-lexons “X is s / subsumes Tool” and “X is a /
subsumes Method” where X is the method or tool presented in the satellite are
also presented to the community. It is then up to the community to refine and
choose the appropriate pre-lexons.

3

Otherwise presents an alternative to a conditional or unless modality. Again
here, subtype definitions or set-constraints are proposed depending on the type
of modality the conditional or unless modality was put on.

3 3

Preparation. Similar to background
Problem-for. The satellite provides a problem solved with the concept de-
scribed in the nucleus. “solving / solved by” pre-lexons are elicited from this
gloss as proposals for new lexons in the hybrid ontology.

3

Purpose. With this modality, the satellite provides the purpose of the activity
described in the nucleus. This allows the distill subclasses of the concept
“process” in the nucleus and subclasses of the concept “goal” in the satellite.

3

Unconditional. This modality relates S and N such that the truth-value of
the proposition in N does not depend on the truth-value of the proposition in S.
It thus does not provide information about possible lexons (otherwise it would
be an elaboration), information about a constraint or instances. However,
it remains interesting to keep this modality to make a distinction with an
elaboration modality.
Unless. This modality is similar to the conditional modality, but this time
the description (lexons and constraints) in the satellite must be false in order for
the information in the nucleus to be true. Again, here one can distill a subtype
definition or an exclusion constraint, depending whether this modality is on
a generalization modality or another. Pre-lexons can be elicited from this
modality.

3 3

Conjunction and Disjunction. For the definition of glosses, the use of dis-
junction and conjunction only make sense when applied in a modality. Indeed,
the sentences have to be written to describe a term or lexon. The combination
of the logical connectives “and” and “or” are used to provide more information
on the mandatoriness of lexons when combined.
Contrast. The nuclei in a contrast are not used to distill any information. It
is purely informational. A contrast is used to highlight the difference between
two concepts. However, this should actually be contained in the description of
the other concept by means of a generalization and conditions.
Both List and Sequence will be used to iterate over the spans.
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Term adoption. Term adoption does not have any implications on the hybrid
ontology except for all meaning agreements in the adopted gloss automatically
being used by the adopting community. As these can be considered constraints
on the interpretation of the concept described, we checked the second column.

3

Identifies. The satellite provides a set of attributes that uniquely and totally
identify the concept described in the nucleus. This allows an agent to propose
the community the constraints necessary to build the reference structure.

3 3

Other. Not applicable. One can indeed parse the sentence and look for any
pre-lexons. We, however, decided to store the information as is.

5.3.1 Processing Structured Glosses

Even though any details on the implementation of tool support for the method proposed
in this chapter of the thesis are not for until Chapter 7, a demonstration of commu-
nity commitment and gloss co-evolution becomes more tangible by showing a prototype
implementing these ideas.

Figure 5.2 depicts a screenshot of a client which – after prompting for the community
member’s credentials – retrieves the gloss for a particular term or lexon and parses it.
After parsing (1) the “pretty gloss” is shown to the member as well as information about
the gloss’ tree-structure. In this picture, the Instantiation modality was selected for
processing and retrieving the instances mentioned in the gloss (2). These instances should
correspond with a reference structure for the term being articulated. If that is the case,
the community member should be able to choose a set of lexons to populate. The com-
munity member can choose to use from the community commitment an existing set of
unique, total and identifying attributes (see Section 3.2.1.1), or propose a new set which
can contain new lexons (3), of which details are shown in Figure 5.3. After this step,
social processes for new lexons, new constraints and the acceptance of lexon- and term
populations are launched (4).

The social processes that are triggered are motivated by the gloss-evolution purpose being
processes, and thus also the gloss. How these social processes are implemented is not yet
of importance in this chapter, but details thereof can be found in Chapter 7.

Selecting and processing other modalities yield in different proposed pre-lexons and pre-
constraints, depending on the actions that have been taken, described in the table of
previous section. For example, using the same gloss of Figure 5.2, processing the in-
stantiation modality would result in the following pre-lexon: 〈γ, Planet, is a, subsumes,
class of celestial bodies〉. Processing the elaboration modality would have resulted in
discovering 〈γ, class of celestial bodies, orbits, ., stars〉.

5.4 Relation with Related Work

Concerning the modalities adopted in this thesis, we would like to note the work of
Hovy [Hov93]. Hovy discussed and provided a taxonomy for several discourse-relation
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(1)

(2)

(3)
(4)

Figure 5.2: Processing a structured gloss for the term “Planet” in the ‘Planet Community’.

Figure 5.3: Populating the attributes to process the mentioned instances.

approaches and makes a distinction between formalist and functionalist analyses. For-
malist analyses focus on the structure of the text, but are not that suitable for describing
the actual content of the resources. Functionalist analyses assume that the internal struc-
ture of a discourse are defined by a communicative purpose and define the “functions”
that segments of text have on other segments. Functionalist analyses, however, tend to
be less suitable for describing the actual structure of the text. Hybrid approaches are
also possible. As the content of the gloss is vital for our approach, we have adopted
a method of the second category: Rhetorical Structure Theory. Hovy created a taxon-
omy of modalities in which he noted the number of researchers taking into account each
modality. Most modalities of RST that are not subjective in nature appeared in that
taxonomy, which gives an indication of the confidence on the relevance of those modal-
ities in discourse relations [Hov93]. We thus analyzed the use of RST as a method for
structuring and managing glosses and the impact on the formal descriptions of the de-
scribed concepts thereof, thereby using glosses for more than merely meaning alignment
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or meaning negotiation. However, not all modalities adopted in this chapter came from
RST. We introduced some modalities that are specific to GOSPL.

Our approach to extract semantics from natural language definitions is very different
from related work on ontology learning from text: we do not apply machine learning
techniques and require the community to annotate the (type of) contribution they make
while evolving the glosses. Buitelaar et al. provided a “layer cake” in which related
work on ontology learning from text can be classified: terms > synonyms > concepts >
concept hierarchies > relations > rules [BCM05]. What is interesting for us is to look
at the techniques that learn relations and rules from text. As stated by Buitelaar et al.
in that same paper: “most of the work on text mining combines statistical analysis with
more or less complex levels of linguistic analysis, e.g. by exploiting syntactic structure and
dependencies for relation extraction.” In [BOS04], for instance, the authors developed a
framework for parsing texts via NLP techniques and declare how some structures should
be transformed into statements in OWL. [CGR+05] start from texts in which the named
entities and corresponding ontology concepts have been identified and parses this input
to obtain the structure of the text to create a graph between the instances and concepts.
This graph is then used to “learn” relations via statistical analysis. [GGA+02] proposed
a method in which an agent first learns and classifies the positions of named entities in
a corpus and then applies so-called “interpretation rules” to declare how specific classes
need to be interpreted to construct the ontology.

5.5 Conclusions

Chapter 3 provided a framework for hybrid ontology engineering in which social interac-
tions lead to formal descriptions of concepts and those social interactions are supported
by a glossary to facilitate meaning agreements. This chapter provided a description on
how the evolution of glosses has an impact on the hybrid ontologies by triggering social
interactions that depend on the kind of gloss evolution, thus providing additional support
for creating formal descriptions of these concepts. This was achieved by modeling (i) dis-
crete gloss evolution, (ii) define a non exhaustive list of modalities relating sentences and
(iii) propose how each modality could (or should) impact the community commitment by
generating the necessary social interactions that will take place. This chapter thus con-
tributed in helping the externalization processes of the communities. The next step is to
aid those communities in re-internalizing the hybrid ontologies after agreements has been
reached on glosses of- and formal descriptions of concepts. The next chapter will thus
focus on the use of the formal descriptions of concepts and the annotated information
systems to steer discussions within a community.
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Chapter 6

Using Commitments for Steering Social
Interactions
Commitments provide valuable information on the terms and lexons the different mem-
bers of the community commit to. These were the results of the social interactions leading
to the formal descriptions of concepts (described in Chapter 3) and the impact of gloss
evolution on the community commitments (Chapter 5, more precisely in Section 5.2.1).
Now we will describe how the formal representations of concepts can be used to steer the
discussions in the community.

This chapter presents how the formal descriptions of concepts in both community- and
application commitments will be examined to drive social processes within the commu-
nity. First, the lexons and constraints in commitments will be translated in a suitable
Description Logic dialect that preserves a bijective mapping between all permitted popu-
lations of the commitment and its translation. In other words, a lossless transformation.
The Chapter then proceeds to explain how the formal descriptions and annotated datasets
are used to drive the discussions by looking for support for certain claims. Finally, this
chapter also shows how this translation can be used to retrieve instances from annotated
datasets via the lexons, thus using the lexons as a query language.

Note to the reader: this chapter will occasionally mention the word “ontology”. In
this chapter, an ontology will refer to a DL ontology and not to a hybrid ontology, i.e. it
refers to the DL implementation of the hybrid ontology.

6.1 Translating Commitments into DL

This section presents a lossless schema transformation [DTMP83] for community com-
mitments in GOSPL in DL-LiteA,id. A lossless schema transformation is a transformation
of a schema that allows one to preserve each permitted population [DTMP83]. In other
words, the populations can be reconstructed unambiguously and thus a bijective mapping
between both sets of permitted populations must exist. The “losslessness” of a transfor-
mation needs to be shown.

This section first introduces DL-LiteA,id and the translation of statements in DL-LiteA,id
into first-order logic (FOL). This is followed by a presentation of the translation of fact
types and constraints of the DOGMA ontology engineering framework and demonstrate
the population equivalence.
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6.1.1 The Description Logic DL-LiteA,id

The alphabet of DL-LiteA,id [CDL+08] consists of symbols for atomic concepts, value-
domains, atomic roles, atomic attributes, and constants. The value-domains considered
for this description logic are those adopted from RDF – i.e. XSD data types – representing
sets of values T1, ..., TN that are pairwise disjoint.

C denotes the alphabet for constants assumed to be partitioned in two sets: CV as the set
of constants for values (in turn partitioned into CV1 , ..., CVn for each of the value-domains)
and CO for the set of constant symbols for objects.

Before providing the specification of the language, first the notation used by [PLC+08]
is introduced. A denotes an atomic concept, which is denoted by a name. B stands
for a basic concept and C for a general concept. The syntax for both basic and general
concepts will be given in the table below. Finally, TC stands for the universal concept.
A basic value-domain is denoted with E and F stands for a value-domain expression.
TD finally stands for the universal value-domain. P,Q and R will be used to refer to an
atomic role, a basic role and a general role respectively. An atomic role is a role denoted
by a name. Basic and general roles are role expressions, which will be described later
on. U denotes an atomic attribute, and VC a general attribute. An atomic attribute is
an attribute denoted by a name, and a general attribute is a concept expression. The
syntax of these concept expressions will follow.

Given an attribute U , the domain of an attribute refers to the set of objects that U
relates to values. The domain of an attribute is denoted with d(U). The domain of an
attribute refers thus to a concept. Similarly, the range of an attribute U refers to the set
of values that the attribute relates to objects. The range of an attribute is denoted with
r(U). The range of an attribute refers to a value-domain.

The expressions in DL-LiteA,id is defined as follows:

Concept expressions Value-domain expressions
B ::= A|∃Q|d(U) E ::= r(U)
C ::= TC |B|¬B F ::= TD|T1|...|Tn
Role expressions Attribute expressions
Q ::= P |P− VC ::= U |¬U
R ::= Q|¬Q

Note that only basic concepts can be negated and explicit disjunction is not allowed
[CDL+05].

The semantics of this description logic is given in terms of FOL interpretations. An
interpretation I is a pair (∆I , .I), where ∆I is the interpretation domain and .I is the
interpretation function. The interpretation domain is the union of two disjoint sets: ∆I

O

(the domain of objects) and ∆I
V (the domain of values). The domain of values is the

union of v(T1), ..., v(Tn) where v(Ti) refers to the set of instances of a particular data
type Ti. Each a ∈ CV is interpreted as one specific value and is denoted as v(a). The
interpretation function .I assigns an element of ∆I to each constant in C, a subset of ∆I
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to each concept and value-domain, and a subset of ∆I ×∆I to each role and attribute in
such a way that [PLC+08]:

• For each a ∈ CV , aI = v(a)
• For each a ∈ CO, aI ∈ ∆I

O

• For each a, b ∈ C, a 6= b→ aI 6= bI

• For each Ti, T Ii = v(Ti)
• And the following conditions are satisfied:

T IC = ∆I
O AI ⊆ ∆I

O r(U)I = {v|∃o : (o, v) ∈ U I
C}

T ID = ∆I
V (¬U)I = (∆I

O ×∆I
V )− U I

C d(U)I = {o|∃v : (o, v) ∈ U I
C}

P I ⊆ ∆I
O ×∆I

O (¬Q)I = (∆I
O ×∆I

O)−QI (P−)I = {(o, o′)|(o′, o) ∈ P I}
U I
C ⊆ ∆I

O ×∆I
V (¬B)I = ∆I

O −BI (∃Q)I = {o|∃o′ : (o, o′) ∈ QI}

The authors in [PLC+08] defined the interpretation in such a way that the unique name
assumption is adopted. In other words, each constant is interpreted differently in the
domain. An ontology in DL-LiteA,id is a pair O = 〈T ,A〉 where T represents the ter-
minology box (TBox) containing the intensional knowledge and A is the assertion box
(ABox) containing the extensional knowledge. The assertions in the TBox in this de-
scription logic are of the following forms:

• B v C - concept inclusion
• Q v R - role inclusion
• E v F - value-domain inclusion
• U v VC - attribute inclusion
• (funct Q) - role functionality
• (funct U) - attribute functionality
• (id B π1, ..., πn) - identification assertion

A role functionality assertion expresses the functionality of a role. In the case where
Q = P , the functionality constraint is imposed on an atomic role, while in the case
where Q = P−, it is imposed on the inverse of an atomic role. An attribute functionality
assertion expresses the functionality of an atomic attribute.

Identification assertions were first introduced in [CDL+08]. In identification assertions,
every πi is a path. A path is either:

• An atomic role or the inverse of an atomic role;
• An atomic attribute or the inverse of an atomic attribute;
• A composition of two paths πa, πb denoted as πa ◦ πb, where ◦ denotes the compo-

sition operator on two paths;
• A test relationD? representing the identity relation on instances ofD (either a basic

concept or a value-domain). Test relations are used to impose involving instances
of a certain concept or value-domain in the paths.
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At least one of the paths in an identification assertion has to have a length of one, i.e. be
an atomic role or attribute (or the inverse thereof).To define the semantics of identification
constraints, the semantics of paths first need to be specified. The extension πI of a path
π in an interpretation I is defined as follows:

• If π = S, then πI = SI (where S is an atomic role or attribute);
• If π = D?, then πI = {(o, o)|o ∈ DI}
• If π = π1 ◦ π2, then πI = πI1 ◦ πI2

Negative inclusion assertions are assertions of the form B1 v B2, and are also possible
for role and value-domain assertions.

Some notation:

• As a notation, [CDL+08] proposed to write πI(o) to denote the set of π-fillers for o
in I. In other words, πI(o) = {o′|(o, o′) ∈ πI}. This notation will be used to define
the interpretation to satisfy an identification constraint.
• An atomic attribute U is called an identifying property in a TBox T , if T contains a

functionality assertion (funct U). An atomic roleQ is called an identifying property
in a TBox T , if T contains a functionality assertion (funct Q).
• Let X be an atomic attribute or a basic role. X is said to be appearing positively

in the RHS of an inclusion assertion a if a has the form Y v X and X is said to be
appearing negatively in the RHS of an inclusion a if a has the form Y v ¬X.
• An atomic attribute or a basic role is called primitive in a TBox if it does not

appear positively in the RHS of an inclusion assertion and does not appear in an
expression of the form ∃Q.C in that same TBox.
• A DL-LiteA,id TBOX is said to be a finite set of DL-LiteA,id intensional assertions

satisfying the condition that every identifying property in this TBox is primitive.
In other words, identifying properties cannot be specialized by appearing in the
RHS of an inclusion assertion.

Given a TBox T in DL-LiteA,id, an interpretation I satisfies:

• A concept inclusion assertion B v C if BI ⊆ CI

• A value-domain inclusion assertion E v F if EI ⊆ F I

• A role inclusion assertion Q v R if QI ⊆ RI

• An attribute inclusion assertion U v VC if U I ⊆ V I
C

• A role functionality assertion (funct Q) if

∀o, p, q ∈ ∆I
O : (o, p) ∈ QI ∧ (o, q) ∈ QI → p = q

• An attribute functionality assertion (funct U) if

∀o ∈ ∆I
O,∀v, w ∈ ∆I

V : (o, v) ∈ U I ∧ (o, w) ∈ U I → v = w

• An identification constraint assertion (id C π1, ..., πn) if

∀o, o′ ∈ CI : (πI1 (o) ∩ πI1 (o′) 6= ∅ ∧ ... ∧ πIn(o) ∩ πIn(o′) 6= ∅)→ o = o′ (6.1)
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I is a model of a DL-LiteA,id TBox T , i.e. I satisfies T if and only if I satisfies all
intensional assertions in T . This is written as I |= T .

Note that even though conjunction and disjunction are not explicitly allowed in DL-
LiteA,id, one can simulate these constructs in a few cases [CDGL+07]. A disjunction on
the lefthand side of a concept inclusion AtB v C is equivalent with the pair of assertions
A v C and B v C. A conjunction on the righthand side of a concept inclusion A v BuC
is equivalent with the pair of assertions A v B and A v C.

6.1.2 Lossless Schema Transformation

A Lossless Schema Transformation is defined as follows [DTMP83]: given S a graph of
lexons and C a set of declared constraints, P is a permitted population of (S, C) if and
only if P satisfies all constraints in C. Π(S, C) defines the set of all permitted populations
of (S, C). A transformation t = (tS, tP ) is a lossless schema transformation if and only if
tS : (S, C)→ (S ′, C ′) such that tP : Π(S, C)→ Π(S ′, C ′) is bijective.

One thus needs to prove that the proposed translation into DLA,id is lossless. Both the
model in the community commitment and the translation in DLA,id are translated in a
set of FOL formulas and tested for their equivalence to shot this. The first translation
is done by adopting the formalization provided by [Hal89] and the latter by [BHS08]
(see Chapter 2). Testing their equivalence means showing that one formula is the logical
consequence of the other and vice versa.

Description logics are decidable fragments of FOL. Concept names are unary predicates
and role names are binary predicates. Concept descriptions correspond to FOL formulas
with one free variable, which will be bound when used in a concept inclusion statement
[BHS08]. The translation of assertions in a DL into FOL formulas are provided by
[BHS08]. The translation of concept description C into a FOL formula with one free
variable τx(C) is defined as follows:

1. τx(A) := A(x) for all concept names A
2. τx(C uD) := τx(C) ∧ τx(D)
3. τx(C tD) := τx(C) ∨ τx(D)
4. τx(¬C) := ¬τx(C)
5. τx(∀r.C) := ∀y(r(x, y)→ τy(C)), where variable y is different from x
6. τx(∃r.C) := ∃y(r(x, y) ∧ τy(C)), where variable y is different from x

Given a TBox T with concept-inclusions, the translation τ(T ) of T is given by:

τ(T ) :=
∧

CvD∈T

∀x(τx(C)→ τx(D))

6.1.2.1 Binary Fact Types

The translation of a binary fact type into DL-LiteA,id is shown in Table 6.1. To prove
that this translation is lossless, their equivalence will be demonstrated by means of a
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semantic tableau1 to demonstrate that |= Σ↔ Φ holds.

All roles with the same label are translated in such a way that the labels become unique.
For instance, in 〈γ,A,r,s,B〉 and 〈γ,C,r,s,D〉 the labels of the first roles are the same, but
the roles are different: the first has domain A and range B, the second domain C and
range D. During translation, they are thus transformed into r1 and r2. The same is done
for both roles with label s.

Table 6.1: Translating a binary fact type into DL-LiteA,id.

DOGMA DL

A R S B

∃R.> v A (6.2)
∃R−.> v B (6.3)

DOGMA to FOL Σ DL to FOL Φ

∀x(∀y(R(x, y)→ (A(x) ∧B(y)))) (6.4) ∀x(∃yR(x, y)→ A(x)) (6.5)
∀x(∃yR(y, x)→ B(x)) (6.6)

The semantic tableaux in Figures 6.1 and 6.2 both close, meaning there are no counterex-
amples for both Σ |= Φ and Φ |= Σ. Since each is a consequence of the other, both sets
of FOL formulas are equivalent. As they are equivalent, so are their possible extensions.
Because of this equivalence, it follows naturally that both sets of formulas are population
equivalent.

6.1.2.2 Mandatory Constraints

The translation of a mandatory constraint into DL-LiteA,id is shown in Table 6.2. First:
a mandatory constraint over one role. As the reader can see below, both translations in
FOL yield the exact same formula and are thus equivalent.

1Note the term “semantic” in semantic tableau is different from how this term is used in this thesis.
Semantic tableaux are an efficient and convenient means to test whether a formula φ is a logical

consequence of a set of formulas Σ in FOL. This is done by trying to make φ false with respect to
Σ by looking for counterexamples for the sequent Σ ◦ φ. Sequents are two sets of formulas φ1, ..., φn
and ψ1, ..., ψm separated by the symbols ◦. An evaluation V is called a counterexample of a sequent
φ1, ..., φn ◦ ψ1, ..., ψm if V (φ1) = ... = V (φn) = 1 and V (ψ1) = ... = V (ψm) = 1. When a formula φ
occurs on both sides of the sequent, the evaluation of φ returns both 1 and 0. In that case, the sequent
contains a contradiction and thus has no counterexample.
Formulas on the LHS of a sequent have to be made true and formulas on the RHS of a sequent false.

For instance, in Σ, α ∧ β ◦ Π, α ∧ β is true if and only if both α and β are true, which then yields the
subproblem Σ, α, β ◦ Π (by using the ∧L rule, where the ‘L’ stands for left). A branch is considered
closed if it contains the same formula both on the LHS and RHS in one of the sequents of a branch.
Otherwise the branch is open and a counterexample is found. A counterexample is a model that makes
the LHS of the top sequent true, but the RHS false. For more details on semantic tableaux and the
notation adopted in this thesis, see [vBvDHK+03].
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Figure 6.1: Semantic tableau to show that Σ |= Φ (cf. Table 6.1)

Figure 6.2: Semantic tableau to show that Φ |= Σ (cf. Table 6.1)

Inclusive mandatory constraints are easily translated into DL, but one needs to have
concept disjunction in order to achieve this. This construct is not included in the DL
dialect that is adopted for this thesis and can thus not be translated. However, such a
translation would be lossless if it were possible to include this DL construct (see Section
6.1.3).
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Table 6.2: Translating mandatory constraints into DL-LiteA,id

DOGMA DL

A R S B

A v ∃R.> (6.7)

DOGMA to FOL Σ DL to FOL Φ

∀x(A(x)→ ∃y(R(x, y))) (6.8) ∀x(A(x)→ ∃yR(x, y)) (6.9)

6.1.2.3 Internal Uniqueness Constraints

Since only binary fact types are considered for this thesis, only five cases need to be
examined: 1) no external uniqueness constraint, 2) one spanning only the first role, 3)
one spanning only the second role, 4) one spanning the first role and one spanning the
second role (a so-called one-to-one relation) and finally 5) one spanning both roles. Cases
1 and 5 are the same. This section will only elaborate on an internal uniqueness constraint
on the first role. The third case is the same as the second, but using the inverse role.
The fourth is a combination of cases 2 and 3. The translation is shown in Table 6.3 and
the translations of both the DOGMA and DL-LiteA,id into FOL are equivalent.

Table 6.3: Translating internal uniqueness constraints into DL

DOGMA DL

A R S B

(funct R) (6.10)

DOGMA to FOL Σ DL to FOL Φ

∀x(∀y(∀z((R(x, y) ∧R(x, z))→ y = z)))
(6.11)

∀x(∀y(∀z((R(x, y) ∧R(x, z))→ y = z)))
(6.12)

6.1.2.4 External Uniqueness Constraints

The translation of an external uniqueness constraint into DL-LiteA,id is shown in Table
6.4. Equation (6.1) for the interpretation of an identification constraint actually states
that: for any two instances of a1, a2 ∈ A, if the intersections of the interpretation of each
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path π in the identification constraint for these two instances are not empty, then these
two instances are actually the same instance.

Note that in DOGMA, one does not have the notion of “test populations” for identifi-
cation constraints, which limit the population taken into account for a particular filler
(or combination of fillers). First the atomic roles are treated, as they are important for
RM-referability.

The interpretation of a particular path π is limited to the interpretation of an atomic
attribute or role. In other words, if two instances share for every atomic role or attribute
at least one instance in their range of these roles and attributes, they are deemed to be
the same instance. Sharing an instance for a particular role implies that the intersection
of the interpretations for that role for two instances of A is not empty. This corresponds
with testing whether a1 and a2 play the same role with some concept y. So even though
the interpretation in equation (6.1) was in terms of set theory, its translation into FOL
is the same as that of the DOGMA model.

Table 6.4: Translating external uniqueness constraints into DL

DOGMA DL

A

R1 B1

Rn Bn
... ...

(id A R1 ... Rn) (6.13)

DOGMA to FOL Σ DL to FOL Φ

∀x1(∀x2(∀y1(...∀yn((R1(x1, y1)∧
... ∧Rn(x1, yn) ∧R1(x2, y1) ∧ ...∧

Rn(x2, yn))→ x1 = x2)...))) (6.14)

∀x1(∀x2(∀y1(...∀yn((R1(x1, y1)∧
... ∧Rn(x1, yn) ∧R1(x2, y1) ∧ ...∧

Rn(x2, yn))→ x1 = x2)...))) (6.15)

It is interesting to note that using the graphical notation of ORM, the external uniqueness
constraint is tested by means of a conceptual join. In an ORM schema, to navigate from
one predicate to another, one must pass through an object type, performing a conceptual
join on that object type [HM08]. The external uniqueness constraint is then tested by
performing the natural join on the populations of each predicate in that constraint and
checking whether the join does not contain any duplicates for that set of attributes. But
as already noted in [Hal89], neither NIAM nor ORM diagrams can handle the following
ambiguity arising from the graphical notation. Take for example the ORM diagram in
Figure 6.3. In this diagram, it is not clear which of the following two constraints written
in RIDL mentioned in the Figure are true. Hence, such a diagram in NIAM or ORM is
illegal, as explained in [HM08]. In other words, RIDL is more expressive for modeling
external uniqueness constraints.
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A

C

R S B

V W D

T U

EACH A IS IDENTIFIED BY (B S A) AND (D W C U A).

EACH C IS IDENTIFIED BY (D W C) AND (B S A T C).

Figure 6.3: Example of an ambiguous external uniqueness constraint with the ORM diagram
notation.

6.1.2.5 Subtyping

Translating concept hierarchies in DOGMA and DL-LiteA,id into FOL is straightforward.
Graphically, subtype relations are denoted by an arrow from the more specialized object
type to the more general object type in ORM. Notice that the translation of a subtype
declaration – shown in Table 6.5 – into FOL provided by [Hal89] is the same as the
translation of the corresponding concept-inclusion in DL-LiteA,id, and thus equivalent.

Table 6.5: Translating subtypes into DL-LiteA,id

DOGMA DL

AB B v A (6.16)

DOGMA to FOL Σ DL to FOL Φ

∀x(B(x)→ A(x)) (6.17) ∀x(B(x)→ A(x)) (6.18)

The problem with subtyping, however, is that the instances of all non-subtype object
types are considered to be disjoint. Halpin calls these object types primitive [Hal89]. For
any conceptual schema, there will be a finite number of such primitive object types. The
disjointness of the instances of these object types are given with the following rule: given
A1, ..., An primitive object types

∀x(¬(A1(x) ∧ A2(x)) ∧ ¬(A1(x) ∧ A3(x)) ∧ ... ∧ ¬(An−1(x) ∧ An(x))) (6.19)

In other words, it is prohibited for an instance to be a member of two object types from
the set of primitive object types.

In order to be population equivalent, this same restriction needs to be modeled in the
DL language adopted in this chapter. The problem, however, is that DL-LiteA,id has no
means for describing disjointness in an explicit way. In order to solve this, the disjoint
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concepts need to be modeled via binary Horn inclusions: the concept-inclusion A v ¬B
is asserted for every two concepts A and B that are disjoint. A v ¬B states that an
instance of A is not an instance of B. It is not necessary to assert B v ¬A as well, as the
translation of both concept inclusions into FOL show that both formulas are equivalent as
one is a quantification of the contraposition of the other formula: ∀x(A(x)→ ¬B(x))↔
∀x(B(x)→ ¬A(x)).

For every two object types in the primitive object types of the DOGMA model, such a
concept-inclusion is added in the translation into DL-LiteA,id. Now we need to show that
the translation of these concept-inclusions into FOL is equivalent with the FOL formula
in equation (6.19). Again, this is shown by means of the two semantic tableaux in Figures
6.4 and 6.5.

Figure 6.4: Semantic tableau

Figure 6.5: Semantic tableau
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6.1.3 “Untranslatable” Constraints

DL-LiteA,id has been developed to remain tractable, as all members of the DL-Lite fam-
ily are. This, however, has as a consequence that some ORM constraints cannot be
translated into that specific DL. Luckily, this poses not too much of a problem as all con-
straints necessarily for conceptual reference structures can be translated into equivalent
statements in DL-LiteA,id. This section provides translations for these constraints that
are not mapped. It is important to note, however, that one then must adapt a DL that
is more expressive.

6.1.3.1 Inclusive Mandatory Constraint

The translation of an inclusive mandatory constraint in ORM to DL is straightforward.
The translation is given in the Table 6.6. The table is followed by the two semantic
tableaux in Figures 6.6 and 6.7 showing the equivalence of the two FOL formulas.

Table 6.6: Translating inclusive mandatory constraints into DL-LiteA,id.

DOGMA DL

A

R1 B1

Rn Bn

... ...

A v ∃R1.> t ... tRn.> (6.20)

DOGMA to FOL Σ DL to FOL Φ

∀x(A(x)→ ∃y(R1(x, y) ∨ ... ∨Rn(x, y)))
(6.21)

∀x(A(x)→ (∃yR1(x, y) ∨ ... ∨ ∃yRn(x, y)))
(6.22)

In ORM, total participation is depicted graphically with a full circle to which all partic-
ipating is-a relations are connected with a dashed line. This constraint actually imposes
that all instances of A must be an instance of B or an instance of C. In other words,
A = B ∪ C. Note that instances can be an instance of B and C at the same time. The
translation into FOL is given below. It is clear that the translation of the corresponding
statement in DL into FOL is the same; and thus equivalent. This translation is shown in
Table 6.7.

6.1.4 Relation with Related Work

In the last few years, several authors addressed the problem of providing an encoding
for ORM diagrams in DL knowledge bases [Kee07, Jar07b, Jar07a, HJ10, FMS12]. Only
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Figure 6.6: Semantic tableau to show that Σ |= Φ (cf. Table 6.6)

Figure 6.7: Semantic tableau to show that Φ |= Σ (cf. Table 6.6)

the work of Keet [Kee07], and Franconi and Mosca [FMS12] can be considered to have
tackled the problem from a formal perspective. At the time of writing this thesis, the
work of Franconi and Mosca was only available as an extended abstract. The authors
do, however, have a technical paper providing more details on the linear transformation
from ORM to a DL [FM12].

The inadequacy of the mapping proposed in [Jar07a, HJ10] can easily be shown by means
of semantic tableaux. Note that the translation in [HJ10] contains quite a few syntactical
errors, but builds further upon the work presented in [Jar07a]. Consider the binary fact
type:
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Table 6.7: Translation of totality on subtypes into DL-LiteA,id.

DOGMA DL

A

B C

A v B t C (6.23)

DOGMA to FOL Σ DL to FOL Φ

∀x(A(x)→ (B(x) ∨ C(x))) (6.24) ∀x(A(x)→ (B(x) ∨ C(x))) (6.25)

A R S B

The translation proposed in [Jar07a, HJ10] is as follows:

A v ∀R.B (6.26)
B v ∀S.A (6.27)
R v S− (6.28)

Not only is the last statement incorrect and should be replaced with R ≡ S−, one can
still find – after correction – a counterexample for the translation of the binary fact type
into FOL according to Halpin and the translation of these DL statements into FOL. The
formulas below provide the latter translation.

∀x(A(x)→ ∀y(R(x, y)→ B(y))) (6.29)
∀x(B(x)→ ∀y(S(x, y)→ A(y))) (6.30)

∀x(∀y(R(x, y)↔ S(y, x))) (6.31)

Indeed, an interpretation I with I(R) = {〈d, e〉}, I(S) = {〈e, d〉}, I(A) = {} and
I(B) = {} is a model for above FOL formulas, but not for the translation provided by
Halpin: ∀x(∀y(R(x, y) → (A(x) ∧ B(y)))). In other words, there are counterexamples
and therefore there is not a bijective mapping between the two.

In [Jar07b, Kee07], both Jarrar and Keet provided a translation of ORM into a DL
that supports n-ary relations where n ≥ 2, namely the dialect DLRifd [CDGL98]. The
problems with translation proposed by Jarrar were examined by Keet in the second
version of this paper2. Keet criticized the inaccuracy of Jarrar’s work with respect to

2The first version of her paper was published in 2007 in the Computer Research Repository. Later
on, she provided a second version of her paper with corrections, more extensive related work, etc. in
2009. Both versions of the paper can be found here: http://arxiv.org/abs/cs.LO/0702089
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the syntax and semantics. Franconi, in turn, provides critique on Keet’s work on several
inaccuracies [FM12, FMS12]. Both proposals are thus inadequate for the translation
proposed in this thesis, even though the idea was appealing. However, as DOGMA
limits itself to the use of binary lexons and DL-LiteA,id provides constructs for a lossless
translation, there is no need for constructs to support arbitrary n-ary relations.

Franconi and Mosca provided a translation of ORM into ALCQI, thus using the DL ALC
extended with qualified cardinality restrictions and inverse roles. In essence, they “reify”
fact types with uniqueness constraints spanning two or more roles by first introducing
a new concept and then transform each of the involved roles into a DL role where the
domain is the newly introduced concept and the range is the object type to which the
ORM role was connected to. Those new roles are then declared to be functional. Indeed,
each instance of that relation only plays each role once. As they claim, their translation
is indeed sound and complete. Every model of the ORM translation into FOL is also a
model for their DL translation into FOL. But, as will be seen, the inverse is not true.

Their translation is actually a lossy schema transformation (as shown in Figure 6.8).
The figure presents a binary fact type and its lossless schema transformation using only
attributive fact types. Lets call this translation (A). The figure also contains the “corre-
sponding” ORM diagram for the DL translation proposed by Franconi and Mosca. Lets
call this translation (B). Assuming that the FOL translation of (A) is contained in Σ
and that of (B) in Φ. It is easy to see that due to the additional constraints in (A), every
model of Σ is also a model for Φ, but the inverse is not true. Φ is thus a logical conse-
quence of Σ, but not the other way round. Since the sets of formulas are not equivalent,
there cannot exist a bijective mapping between the two. Hence, the translation proposed
by Franco and Mosca is not lossless.

Figure 6.8: A binary fact type, its lossless schema transformation using only attributive fact
types and the “corresponding” lossy translation by Franconi and Mosca [FMS12].
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6.1.5 Conclusions

The first section in this chapter proposed a translation of community- and application
commitments in DL-LiteA,id. This DL dialect contains all constraints necessary for model-
ing reference structures and was therefore adopted in this thesis. This particular dialect is
furthermore proven to be tractable. The translation that was presented here was lossless,
meaning that there is a bijective mapping between the two sets of permitted populations.
The losslessness of this translation was proved by means of semantic tableaux. Some
constraints in GOSPL, such as the inclusive mandatory constraint, are not supported by
the DL adopted.

More expressive DLs are able to support these translations, albeit loosing the tractability
of reasoning and querying tasks. Whether this is an issue is left for future investigation.

Starting from this mapping, the next section will present how this translation is used
to annotate legacy databases from closed information systems to look for support and
counterexamples for claims made by the community.

6.2 Application Commitments in the Feedback Loop

Commitments provide valuable information on the terms and lexons the different mem-
bers of the community representing their organization commit to. This selection will now
be used to inform those members when changes are requested (and occur) in the ontology
as to stimulate discussion.

The mapping α in those commitments is furthermore used to delve into the annotated
data in search for support or counterexamples for certain statements made by the commu-
nity, e.g. to notify the community whether proposed constraint is true for all annotated
information systems currently known in the community. This process will guide the com-
munity in its dialogue to achieve agreement. This is done by generating the necessary
queries using the commitments of each of the applications, populating the lexons in the
conceptual schema and then reason over the data in terms of lexon populations. This
tool is called Ω-DIPPER. Figure 6.9 extends and depicts the place of Ω-DIPPER in the
feedback loop.

6.2.1 Semantics of Constrained Lexons

The previous section presented an encoding of lexons and constraints in Description Logic
(DL) so that DL-reasoners can be utilized for reasoning tasks over the resulting ontologies.

The OpenWorld Assumption (OWA) in DLs allows the existence of unknown information.
However, in many cases, information needs to be as complete as possible to support the
goal for which semantic interoperability between the information systems is needed - as
defined by the semantic interoperability requirements of a community of stakeholders.
In other words, the instances in the annotated information systems must follow certain
business rules to ensure proper business.
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Figure 6.9: Feedback loop from the ontologies to the community by not merely taking into
account the lexons committed to by the application, but the data in the annotated organization
information systems as well.

For example, in some cultural domain community, it could be that every “Event must
have at least one explicit associated Location”. The OWA, however, cannot capture this
intuition of constraints that need to be imposed, a different semantics for the translation
of constrained lexons in DL is needed to treat those constraints as OWL integrity con-
straints [MHS09, TSBM10]. The purpose of this section is to present how the translated
constraints can be used as integrity constraints for the annotated data.

To achieve this, a combination of the Open World Assumption and Closed World As-
sumption (CWA) will be adopted. OWA is used in reasoning to derive new knowledge,
and CWA is adopted when validating the integrity of the application data. A survey of
existing approaches for OWL integrity constraints is presented3 that will lead us to an
interpretation suitable for this section. This thesis follows [Gua98, Hep08] in that an on-
tology conceptualization should be separated from its instances. For presentation’s sake,
however, both the axioms and assertions are considered when discussing the integrity
constraints in this section. Also for improving the readability of the example, we use a
set of assertions as an abbreviation of a model.

Definition 14 (Integrity constraints by consistency [Kow78])
An ontology O satisfies an integrity constraint IC if and only if O∪ IC is satisfiable.

3Note that some authors will refer to an ontology as a knowledge base.
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Example 19
Suppose that O1 consists of the following axioms

∃has.> v Event (6.32)
∃has−.> v Location (6.33)

MusicEvent v Event (6.34)
MusicEvent(boomtown) (6.35)

and IC1 contains only

Event v ∃has.> (6.36)

It is easy to see that, under OWA, O1 ∪ IC1 is satisfiable. So O1 satisfies IC1 by
Definition 14. However, it does not fit the understanding of the constraint as done in
this thesis: wanting that every event has explicit location, boomtown is an event but
its location is not explicitly presented.

Definition 15 (Integrity constraints by entailment [Rei88])
An ontology O satisfies an integrity constraint IC if and only if O |= IC.

Example 20
Considering another example in which IC2 contains only the constraint (6.36),
O2 consists of all axioms of O1 and {has(boomtown, ghent), Location(ghent)}.
Intuitively, one might think that O2 satisfies IC2. However, there is also a
model I1={MusicEvent(boomtown), has(boomtown, ghent), Event(boomtown), Loca-
tion(ghent), Event(polepole)} of O2 for which I1 6|= IC2. By Definition 15, O2 does
not satisfy IC2. That contradicts the intuition.

Definition 15 states that the integrity constraints must be entailed by all models. The
above example, however, suggests that entailment in Definition 15 should be restricted
to minimal models of O. I is a minimal model of O if and only if I is a model of
O and there is no model J of O such that J ⊂ I. Therefore, Definition 15 should
be formalized as follows: O satisfies IC if and only if all minimal models of O entail
IC. This idea has been nicely captured in [MHS09, MHS07], where ontology axioms are
expressed as FOL formulas [Bor96] and skolemization [NW01a] is applied to deal with
existential quantifiers.
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Definition 16 (ICs by minimal models & skolemization [MHS09, MHS07])
Let π(O) and π(IC) be FOL formulas that express axioms in O and IC respectively,
sk(O) be the set of formulas obtained by outer skolemization of π(O). Outer skolem-
ization generates new Skolem functions that get all the universally quantified variables
as arguments the formula under consideration depends on [NW01b]. O satisfies in-
tegrity constraint IC if and only if I |= π(IC) for every minimal Herbrand model I
of sk(O). We sometimes write I |= IC instead of I |= π(IC).

Reconsidering Examples 19 and 20 with respect to Definition 16. In Example 19, the only
minimal Herbrand model of O1 is I ′1 = {MusicEvent(boomtown), Event(boomtown)}.
By Definition 16, O1 does not satisfy IC1 because I ′1 6|= IC1. It follows the intuitive
interpretation of avoiding an unknown Location for Event. In example 20, the only
minimal Herbrand model of O2 is I2 = I1 \ {Event(polepole)} and I2 |= IC2, then
O2 satisfies IC2. This also fits the intuitive interpretation, however in some cases the
skolemization could lead to unexpected consequences.

Example 21
Let O3 consists of following axioms:

∃has.> v Event (6.37)
∃has−.> v Location (6.38)

MusicEvent v Event (6.39)
Event v ∃has.> (6.40)

MusicEvent(boomtown) (6.41)

IC3 contains only the axiom: MusicEvent v ∃has.>

The minimal Herbrand model of O3 is of the form I3 = {MusicEvent(boomtown),
hasLocation(boomtown, u), Event(boomtown), Location(u)} where u is generated by
skolemization of axiom (6.38) and (6.40). We see that I3 |= IC3, so O3 satisfies the
IC3 although the exact location of boomtown is unknown.

Definition 16 almost captures the intuition of integrity constraints, but it has some draw-
backs as discussions in [TSBM10]. To avoid the problem of unknown individual and avoid
unintuitive meaning of integrity constraints, this thesis proposes an alternative semantics
for OWL integrity constraints. Before that, however, the Herbrand-based model of a DL
ontology is first defined, which is similar to the Herbrand model in FOL.

Definition 17 (Herbrand-based model)
Given an ontology O = {T ,A}. We call I a Herbrand-based model of O if I is a
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model of O, ∆I consists of ABox’s individuals, and every individual is mapped to
itself.

A Herbrand-based model I of an ontology O is minimal if there is no Herbrand-
based model J of O such that: ∆I ⊂ ∆J and interpretation function ·J contains
every mapping in the interpretation function ·I .

Now the integrity constraint interpretation is defined for interpreting the translated
GOSPL constraints. For each ontology, there is at most one such interpretation. In
case of unsatisfiable ontologies, there is no such interpretation.

Definition 18 (Integrity constraint interpretation)
Given an ontology O = {T ,A} and M = {I1, . . . , In} where each Ii is a minimal
Herbrand-based model of O. Concept name A, role R, and individual d in integrity
constraints are interpreted by the following integrity constraint interpretation IIC =
{∆IIC , ·IIC}, where ∆IIC is a set of all individuals in A, as follows:

AIIC = {dIIC | dJ ∈ AJ , for all J ∈M}
RIIC = {(cIIC , dIIC ) | (cJ , dJ ) ∈ RJ , for all J∈M}
dIIC = d

The extension of IIC to inverse roles and complex concepts is done as normal.

Now the definition of how an ontology satisfies an integrity constraint. Note that this the-
sis only considers satisfiable ontologies. In other words, ontologies for which its integrity
constraint interpretation exists.

Definition 19 (Integrity constraint satisfaction)
Given an ontology O and its integrity constraint interpretation IIC , O satisfies an
integrity constraint IC if and only if IIC |= IC.

Reconsidering the previous examples and check whether Definition 19 captures the intu-
ition of integrity constraints.

Example 22
Reconsidering Example 19 with respect to Definition 19. Every minimal Herbrand-
based model of O1 is of the form Ii = {MusicEvent(boomtown), Event(boomtown),
has(boomtown, loci),Location(loci)} where loci is different in each model. We have
EventIIC = {boomtown} but (∃has.>)IIC = ∅. Thus, O1 does not satisfy IC1. This
matches the intuition of integrity constraints in this section.
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It is easy to check that Definition 19 also matches the intuition in Example 20. Reconsider
Example 21 in the light of Definition 19, we have:

Example 23
Every minimal Herbrand-based model of O3 is of the form Ii = {Location(ui), Mu-
sicEvent(boomtown), has(boomtown, ui), Event(boomtown)} where ui is different in
each Ii. We have MusicEventIIC = {boomtown}, but (∃has.>)IIC = ∅. Thus O3

does not satisfy IC3 as expected.

Our proposal resembles the IC-interpretation in [TSBM10]. This approach differs from
[TSBM10] in using minimal Herbrand-based models instead of classical models. To val-
idate integrity constraints, the approach described [TSBM10] is adopted with one dif-
ference: adopting the Unique Name Assumption instead of the Weak Unique Name As-
sumption [TSBM10].

The next part presents the process of checking integrity constraints.

6.2.2 Checking Constraints over Annotated Data

Note that in hybrid ontology engineering, the proposed constraints are not yet in the
community commitment if the community has not yet agreed on this constraint. To
ensure proper semantic interoperability between the information systems belonging to
that community, it is possible that some constraints have to be complied with by all
information systems. To this end, the previous section was devoted to defining an in-
tegrity constraint satisfaction function. The integrity constraint satisfaction function in
Definition 18 whether an ontology is valid with respect to an integrity constraint IC.

Inspired by [TSBM10], we show how IC validation is done by querying the annotated
datasets. In [TSBM10], SPARQL ASK queries were constructed for IC constraints such
that the evaluation of the query (a Boolean value) determines whether this IC is violated.
For our purpose, however, it is more interesting to find the counterexamples, as the
community will examine those counterexamples during their discussion. Queries are thus
written in such a way that a non-empty set of results indicate counterexamples for a given
IC.

Some SPARQL queries (without prefix) to check the validity of those integrity constraints
and get the counterexamples are shown below. To get complete answers, the HermiT4

reasoner was used to classify the ontology and then perform materialization before run-
ning those SPARQL queries. Note that the method presented here works correctly with
ontology languages in which classification tasks can be done without taking assertions
into account.

Mandatory constraint C v ∃R.>
4http://www.hermit-reasoner.com
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PREFIX ont: <http://path.to.my.ontology/#>
SELECT ?x WHERE {

?x a ont:C.
OPTIONAL {?x ont:R ?y.}
FILTER (!BOUND(?y))

}

Internal uniqueness constraint (funct R)

PREFIX ont: <http://path.to.my.ontology/#>
SELECT ?x WHERE {

?x ont:R ?y1.
?x ont:R ?y2.
FILTER (?y1 != ?y2)

}

External uniqueness constraint (id C R1 ... Rn)

PREFIX ont: <http://path.to.my.ontology/#>
SELECT ?x1 ?x2 WHERE {

?x1 a ont:C.
?x1 ont:R1.
...
?x1 ont:Rn ?yn.
?x2 a ont:C.
?x2 ont:R1 ?y.
...
?x2 ont:Rn ?yn.
FILTER (?x1 != ?x2).

}

Is Lexical Constraint

For testing whether a term is truly of lexical nature in the annotated datasets, the
following steps needs to be taken: determine all fact types with a role played by
this term (as those concepts disappear in the OWL implementation of the hybrid
ontology). For every corresponding co-role r1, ...rn, look up the OWL predicates
R1, ..., Rn and use these predicates to construct the following query:

PREFIX ont: <http://path.to.my.ontology/#>
SELECT DISTINCT ?s ?p ?o WHERE {

{ ?s ?p ?o. FILTER(!isLiteral(?o) && ?p = ont:R1).}
UNION
...
UNION
{ ?s ?p ?o. FILTER(!isLiteral(?o) && ?p = ont:Rn).}

}
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This section investigated the adoption of a proper interpretation for constraints for ex-
amining annotated data. To this end, the tension field between both Open and Closed
World Assumptions were analyzed. Since data will be annotated for semantic interoper-
ability (e.g. to do business), it was opted to go for a closer world assumption and treat
constraints as integrity constraints. Constraints can therefore be tested by: 1) applying a
reasoned to the annotated data and 2) translating those constraints into SPARQL queries
to look for counterexamples.

6.3 Controlled Natural Language Querying

An application commitment contains information on how a particular information relates
to the ontology via mappings and – possibly – additional enterprise-specific knowledge and
constraints. One can thus obtain information from different annotated applications via
those commitments. We explain how the translation of the community commitment into
DL-LiteA,id is used to query those databases via the lexons in the community commitment.
This is done in two steps. First, we explain how queries with lexons are translated into
queries using the DL translation. For this part, it is assumed that there exist such
annotated datasets with this particular DL translation. Secondly, we explain how such
DL annotations can be generated from an application commitment.

In this section, the namespace declaration and details of the OWL ontologies in the
SPARQL queries have been omitted. The predicates are intentionally kept as human
readable as possible to render the examples clear.

Information retrieval can be made easier for the user by hiding some of the complexity (e.g.
learning standards such as XML, RDF and OWL) [Sch05]. Some of these standards are
at odd with how users perceive the world, which is often a natural language perspective.
Here, an approach to bridge this gap between questions in natural language and the
popular Semantic Web query language SPARQL [PS08] – a W3C Recommendation for
querying RDF – will be presented.

Human communication constitutes the exchange of facts, which can be generalized into
fact types. In those fact types, concepts are playing roles on other concepts, and the
name (or label) of that role changes depending on the direction. For instance, people
have names, but a name is of a person. This bi-directionality is present in questions such
as: “What are the names of artists with a gender with code F”. OWL supports inverse
object properties (relations between non-lexicals), but not for data properties (between a
non-lexical and a lexical). The following SPARQL query returns all the names of artists
with gender code ‘F’:

PREFIX myOnto0: <http://localhost:8080/gospl/ontology/10#>
SELECT DISTINCT ?name WHERE {

?a myOnto0:Artist_having_Name ?name.
?a myOnto0:Artist_with_Gender ?gender.
?gender myOnto0:Gender_with_Code ’F’.

}
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This example shows clearly that constructing this query starts from artists having a name,
rather than the names of artists. So, not only do users have to learn new formalisms in
order to model and query information, users also have to consider that some of the
predicates in those formalisms have to be addressed in the other direction in order to
obtain the information. This section thus explores how lexons can be adopted for querying
annotated datasets while the community discusses changes in the ontology.

To query data via lexons, a query language using those binary fact types needs to be
either created or adopted. For this thesis, the latter was chosen and the fact-oriented
query language RIDL [Mee82] was adopted.

RIDL, which stands for Reference and IDea Language, was created to provide formal syn-
tactic support for information and process analysis, semantic specification, and constraint
definition as well as a query/update language at a conceptual level in the early eighties.
The RIDL language manipulated, defined and restricted information structures and flows
described using the NIAM [Win90] method, albeit restricted to binary fact types. RIDL
was one of the first query languages to access the data via the conceptualization, which
resulted from a natural language discourse between the users (of an information system).
Because of its groundings in natural language, it was easier for users to retrieve informa-
tion out of the system. A guide and description of the RIDL grammar are described in
[DTMP83].

RIDL is a Controlled Natural Languages (CLN), which are subsets of natural language
whose grammars and lexicons have been restricted, making it less complex and ambigu-
ous [Sch05]. CLNs makes information retrieval and ontology engineering tasks easier
on the user by hiding some of the complexity (e.g. learning standards such as XML,
RDF and OWL) [Sch05]. RIDL also inspired Ω-RIDL [TTM07], a language to describe
mappings between application symbols (e.g. fields in a database) to concepts in an on-
tology. Using a concatenation of lexons, sentences can be constructed to describe those
application symbols.

Statements entered by the user are parsed following a grammar based on the original
RIDL language (see [DTMP83]). The part adopted from RIDL has been refined to cope
with Hybrid Ontology Descriptions. The RIDL language for fact-oriented querying of
RDF – dubbed R-RIDL – has been defined using ANTLR [Par07], which can be found
in Appendix C.

The goal of R-RIDL is not to replace SPARQL, which is excellent for building application
on top of annotated data. The goal of R-RIDL is to allow exploring annotated data
via the lexon, which represents knowledge grounded in natural language. As a natural
consequence, those queries will be closer to the language used by the community.

R-RIDL statements are transformed into intermediate SPARQL queries used for populat-
ing the object types and lexons, applying set-operations on those populations to construct
the result of the R-RIDL query. The specific set-operations depend on keywords such as
AND, OR, NOT and so forth. At all times, a link to a community commitment is needed to
bridge between the RDF and lexons in the hybrid ontology description. How an appli-
cation commitment can be used to atomize a relational database as RDF triples will be
explained later on.
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One major difference between RIDL and R-RIDL is that the former did not allow listing of
non-lexical object types. In other words, it was impossible to query all artists. Instead,
lexical attributes of non-lexical object types had to be queried. In the context of the
Semantic Web, everything should have a URI (or is a blank node). Moreover, in the
context of Linked Data, everything must have a URI. Since URIs identify resources,
users are able to formulate such queries and display the URI in the listing. When a
resource happens to have more than one URI (e.g. via an owl:sameAs predicate), one is
just chosen. This poses no problem as the URI can serve as a starting point to explore
that resource and thus observe the other URIs.

Some statements in R-RIDL and their equivalent SPARQL queries will be shown below.
The namespaces have been omitted, the namespace myOnto0 is assumed to point to the
OWL implementation of the Hybrid Ontology Description.

Example 1

R-RIDL: LIST Artist
SPARQL: SELECT DISTINCT ?a WHERE { ?a a myOnto0:Artist }

Notice that in this example, the type of the resource needs to be specified in the
SPARQL query, whereas a list of artist can be immediately obtained via the term
label in R-RIDL.

Example 2

R-RIDL: LIST Name of Artist
SPARQL: SELECT DISTINCT ?n WHERE { ?a a myOnto0:Artist.

?a myOnto0:Artist_having_Name ?n. }

With the name being a non-lexical object type, this example shows clearly the
unidirectional nature of SPARQL.

Example 3

R-RIDL: LIST Name of Artist with Gender with Code = ’F’
SPARQL: SELECT DISTINCT ?n WHERE { ?a myOnto0:Artist_having_Name ?n.

?a myOnto0:Artist_with_Gender ?g.
?g myOnto0:Gender_with_Code ’F’. }

Example 4

R-RIDL: LIST Artist NOT with Gender with Code = ’M’
SPARQL: SELECT DISTINCT ?a WHERE { ?a a myOnto0:Artist.

OPTIONAL { ?g myOnto0:Gender_of_Artist ?a.
?g myOnto0:Gender_with_Code ?c. }

FILTER(?c != "M" || !bound(?c)) }
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In this example, all artists not having a gender with code ‘M’ are listed. This
includes the artists whose gender was not explicitly stated. For the equivalent
SPARQL query, one thus needs to specify that gender is optional. The tension field
between open and closed world assumption is here apparent. This is done with the
OPTIONAL clause, which will leave the variables unbound if no such information is
available.

But merely testing the whether variable ?c does not equal ‘M’ does not suffice. As
apart from bound, all functions and operators that operate on RDF will produce a
type error if any arguments are unbound. Thus the result of a boolean test can be
true, false or error. Testing whether ?c != ‘M’ will thus result in an error and the
result will thus not taken into account for this query. One therefore needs to test
whether the variable does not equal ‘M’ or the variable is unbound. The logical-and
and logical-or truth table for true (T), false (F), and error (E) of SPARQL is given
in Table 6.8.

Table 6.8: The logical-and and logical-or truth table for true (T), false (F), and error (E) in
SPARQL [PS08]

A B A ∨B A ∧B A B A ∨B A ∧B
T T T T T E T E
T F T F E T T E
F T T F F E E F
F F F F E F E F

E E E E

Example 5

R-RIDL: LIST Name of Artist born_in Year >
(THE Year of Work_Of_Art with Title = ’A Bigger Splash’)

SPARQL: SELECT DISTINCT ?n WHERE { ?a a myOnto0:Artist.
?a myOnto0:Artist_having_Name ?n.
?a myOnto0:Artist_born_in_Year ?y.
?w a myOnto0:Work_Of_Art.
?w myOnto0:Work_Of_Art_with_Title "A Bigger Splash".
?w myOnto0:Work_Of_Art_made_in_Year ?y2.
FILTER (?y > ?y2) }

In R-RIDL set-expressions, as the name implies, return sets. When values need to
be compared to an occurrence in a set, the THE or ANY clauses can be used. The
first returns the only occurrence of a set (reporting an error when the cardinality of
a set does not equal to 1) and the latter returning any of the occurrences (reporting
an error if the cardinality is not at least 1). The THE clause in this example is thus
used to retrieve the year of a particular work of art to compare this value with the
values of another attribute.
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Example 6

R-RIDL: LIST Name
SPARQL: SELECT DISTINCT ?n WHERE {{ ?a myOnto0:Artist_having_Name ?n. }

UNION { ?a myOnto0:Art_Movement_with_Name ?n. } }

Assume that in the Hybrid Ontology Description, both artists and art movements
have names, which are lexical. In R-RIDL, one merely needs the term label to obtain
the set of all names. This is not possible in SPARQL as lexical attributes result in
object properties with their ranges being instances of rdfs:Literal. To achieve
the same effect, (i) one needs to look up all the lexons in which that term plays
a role, (ii) find the corresponding data properties and (iii) construct the SPARQL
query using the UNION operator for each of those data properties.

6.4 Atomizing Relational Databases with Ω-RIDL

A mapping in an Ω-RIDL application commitment ω captures how an application symbol
relates to concepts and relations in the selection component of that commitment. For
a relational database (RDB), such a mapping will describe how a field in a table corre-
sponds to one or more lexons. A mapping µ is thus a triple 〈T, F, p〉 where T and F are
respectively labels for a table and a field in a relational database and p is a non-empty
set of lexons in the selection component of ω.

This section will explain how one can use an application commitment to “atomize” the
information inside a relational database into RDF triples. By “atomization”5 we mean
the process of generating triples out of RDBs, XML files, etc.

This process consists of two steps. First, one needs to be able to expose the contents of
relational databases as RDF triples. For this, an existing solution, D2R Server6, shall
be adopted. Such solutions, however, often can only base the RDF or OWL Schema
merely on the “flat” relationships between attributes and the entities in the database
schema without reference to the underlying “semantics” present when the database was
developed [SHH+09] – presumably for one organization. The resulting triples are thus not
properly semantic in nature7. The meaning of the generated classes and properties only
make sense for that organization. One will thus need to “augment” or refine the generated
classes and properties with the agreed upon semantics. One will even need to be able to
generate additional classes and properties based on the selection inside a commitment and
the lexons needed to achieve interoperability between the different information systems.
The process of adding semantics to the triples constitutes the second part of this process.

5A term coined by Robert Meersman in 2010, but which he never published or claimed.
6http://www.d2rq.org/
7Remember, that semantics stem from the agreement of a community of stakeholders.
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6.4.1 Creating RDF out of Relational Databases

A survey of RDB-to-RDF initiatives was given in [SHH+09]. Most of the methods follow
the steps proposed by [BL98]: a record is an RDF node; the field (column) name is
RDF propertyType; and the record field (table cell) is a value. The authors observed
that automatically generated mappings often do not capture complex domain semantics
that are required by many applications, but can serve as a starting point to create more
customized, domain-specific mappings. The survey concluded that one of the important
aspects of mapping RDB to RDF is the potential to explicitly model information that
was either implicitly modeled or not represented at all in the database. This motivates
the importance of using a domain ontology - developed and agreed upon by a community
of stakeholder - in addition to information from the database schema [SHH+09].

This section will address the problem of enriching the generated RDF with more meaning
coming from the hybrid ontologies via application commitments.

Even though there is currently an initiative under development for mapping relational
databases to RDF by means of the R2RML mapping language by the W3C RDB2RDF
Working Group8, D2R server was adopted for its maturity. The R2RML, or RDB to RDF
Mapping Language is a W3C Candidate Recommendations as of February 23, 2012 and
implementations of that standard are on their way. However, since their goals are similar,
the approach we are presenting will be easily applicable to other mapping languages as
well.

The D2RQ Platform provides means for accessing relational databases as virtual RDF
graphs by annotating the relational database with special predicates provided by the
D2RQ Mapping Language [CBG+12]. The platform not only allows databases to be
queried using SPARQL, but the content of that database is also published as Linked
Data: returning a human readable page when browsing and RDF for software agents.

Even though there is currently an initiative under development for mapping relational
databases to RDF by means of the R2RML mapping language by the W3C RDB2RDF
Working Group9, D2R server is adopted for its maturity. The R2RML, or RDB to
RDF Mapping Language is a W3C Recommendations as of September 27, 2012 and
implementations of that standard are on their way. However, since their goals are similar,
the approach presented here will be applicable to other mapping languages as well.

D2RQ provides a tool for generating a mapping by analyzing the schema of an existing
database, thereby using any primary keys, indexes and foreign keys specified. The foreign
keys, for instance, will be used to detect join tables and create an object property between
the two concepts referred to by the foreign keys As RDF only supports binary relations,
this is only done for join tables joining exactly two tables. Join tables joining three or
more tables are converted into classes.

Take for instance the following DDL statement for a work of art:

8http://www.w3.org/2001/sw/rdb2rdf/
9http://www.w3.org/2001/sw/rdb2rdf/
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CREATE TABLE piece (
id int(10) unsigned NOT NULL AUTO_INCREMENT,
name varchar(250) NOT NULL,
year int(4) NOT NULL,
price_value bigint(20) DEFAULT NULL,
currency varchar(3) DEFAULT NULL,
PRIMARY KEY (id), UNIQUE KEY name (name,year))

The annotation that D2RQ generated for this table is shown in Appendix B. This example
will be used to explain some of the predicates provided by the D2RQ mapping language.
More information of the D2RQ mapping language can be found in [CBG+12].

The following definition of a class map is taken from [CBG+12]: “A d2rq:ClassMap
represents a class or a group of similar classes of an OWL ontology or RDF(S) schema.
A class map defines how instances of the class are identified.” In other words, it relates
all records of a table - identified by a set of attributes - as instances of a given class. The
mapping generated creates such a class on the fly based on the name of that table, here
vocab:piece. Another important predicate in this annotation is the d2rq:uriPattern,
which specifies a URI pattern that will be used to identify instances of this class map.
The generated class map uses the primary key to construct this pattern.

map:piece a d2rq:ClassMap;
d2rq:dataStorage map:database;
d2rq:uriPattern "piece/@@piece.id@@";
d2rq:class vocab:piece;
d2rq:classDefinitionLabel "piece".

A d2rq:ClassMap has a set of d2rq:PropertyBridge descriptions which attach RDF
properties to the instances. In the snippet below, the field “year” of table “piece” is
assigned to the class map via the d2rq:column and d2rq:belongsTo ClassMap prop-
erties. A property is created on the fly and attached to this property bridge with a
d2rq:property predicate.

The example below creates a relation between the value of a field and instances of a class.
To create RDF properties between instances of two classes, one needs to specify the class
map the property refers to with the d2rq:refersToClassMap property.

map:piece_year a d2rq:PropertyBridge;
d2rq:belongsToClassMap map:piece;
d2rq:property vocab:piece_year;
d2rq:propertyDefinitionLabel "piece year";
d2rq:column "piece.year";
d2rq:datatype xsd:int.

D2RQ allows us to atomize databases and dump the content of that database as RDF
triples on the Web. The mappings generated with D2RQ need to be refined with on-
tologies if one wants to achieve interoperability. The fields in a table, for instance, are
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considered by the D2RQ mapping generator as attributes of the concept represented by
that table. However, this is often not the case. Imagine a community agreeing on the fact
types that prices are represented by a combination of a value and a currency code. In the
table given in the example, two fields represent the price of a work of art (price_value
and currency). The two fields became properties of a work of art via the property bridges.

map:piece_price_value a d2rq:PropertyBridge;
d2rq:belongsToClassMap map:piece;
d2rq:property vocab:piece_price_value;
d2rq:propertyDefinitionLabel "piece price_value";
d2rq:column "piece.price_value";
d2rq:datatype xsd:long.

map:piece_currency a d2rq:PropertyBridge;
d2rq:belongsToClassMap map:piece;
d2rq:property vocab:piece_currency;
d2rq:propertyDefinitionLabel "piece currency";
d2rq:column "piece.currency".

If one wishes to represent price as a concept and instances of price having the attributes
value and currency code, additional class maps and property bridges have to be defined.
Also the classes and properties agreed upon by the community need to be added at the
appropriate places.

Ω-RIDL application commitment files provide us with a means to leverage this task of
refining a D2RQ mapping file (or any other similar mapping language, for that matter).
The creation of the appropriate classes and properties can be guided by analyzing the
annotations of applications symbols (here, tables and fields) with the terms and roles
occurring in the selection. This process can even be automated, which will be shown
below.

6.4.2 Augmenting the D2RQ Mapping File

The mapping of fields of a table onto terms and roles in the selection component of an
Ω-RIDL application commitment always looks as follows:

MAP ’table’.’field’ ON <LOT> (<ROLE> <NOLOT>)+.

This is clear as a field always represents a lexical attribute of a non-lexical object type,
possibly playing roles with other non-lexical object types. Take for example the following
annotation:

MAP ’artist’.’gender’ ON Code of Gender of Artist.

Notice how every term-role-term combination actually correspond with one of the follow-
ing lexons:
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• 〈Cultural Domain Community, Artist, with, of, Gender〉
• 〈Cultural Domain Community, Gender, with, of, Code〉

Fields and tables are thus mapped onto a concatenation of lexons in one reading direction.
It is clear that a term-role-term combination can be used to identify a lexon in the selection
component of a commitment, and use this lexon to identify 1) which missing class maps
and property bridges have to be constructed, 2) which OWL classes have to be connected
to the class maps, and 3) which OWL data- or object properties have to be connected
to the property bridges. The OWL classes and properties can be found in the OWL
implementation of the Hybrid Ontology Description.

For every term-role-term combination in a mapping, the first will correspond with a data
property (a link between a non-lexical and a lexical entity), the rest of the combinations
correspond with an object-property. Most of the annotations can be processed in this
way, only the annotations of join tables needs to be treated differently.

The DOGMA framework’s Lexon Base is a (possibly vast) set of plausible binary fact
types. The advantages of binary fact types are manifold. First, all fact-oriented diagrams
can be losslessly transformed into diagrams with only binary fact types as we have ex-
plained in Section 6.1.2. Another advantage of only using binary fact types is avoiding
nested fact types. Fact types containing n roles with an internal uniqueness constraint
spanning n−1 cannot be nested. Given an attributive lexon, it should not be possible for
the community to even discuss nesting this lexon as this would lead to an invalid diagram.
By not allowing the use of nesting, one avoids such problems. Even though nesting allows
for seemingly less verbose diagrams and are generally convenient, the pitfall of nesting
is to “skip” thinking about the concept denoted by that many-to-many relation between
two object types. The relation denoted by the lexon is a concept playing roles with other
concepts, and we therefore ask the community to label that concept (with a term). One
can finally argue that by restricting the number of types of fact types the community
needs to agree upon, a part of the agreement process is leveraged in the sense that teach-
ing the community fact-oriented modeling becomes easier by presenting them with only
one construct for modeling knowledge.

Many-to-many relations in the domain are either represented as (1) lexons with no func-
tional roles or (2) as a non-lexical object type totally and uniquely identified by the
involved object types. In solution (1), the 7-step algorithm for creating a relational
model of a fact-oriented model (see Appendix A) would result in a so-called join table
with foreign keys pointing to field in the tables representing the other object types. For
(2), the result would be the same (1) provided there are no lexons connected to that con-
cept other than those for the reference structure. Figure 6.10 contain an example of both
(1) and (2) on the left and right respectively. The figure shows clearly that the resulting
table for the many-to-many relation is the same except for the additional attribute on
the right.

The mapping generated with D2R uses the foreign key constraints to determine whether
a table is a join table. This is done by checking whether a table is a reference table (all
fields are part of the primary key) and all fields are part of the foreign key constraints.
Note that D2R server only checks this for binary relations, as RDF only supports binary
relations. N-ary relations, where N is different from 2, have to be represented by means of
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Figure 6.10: Transforming many-to-many relations in ORM to the relational model.

classes. If the foreign keys are not specified, a d2rq:ClassMap for that table is generated.
This gives us four possibilities:

D2R identified m:n? Yes No
n:m as lexon?

Yes A B
No C D

(A) The relation is represented as a lexon in ω and as a m:n relation in δ. If the lexon
is part of the Hybrid Ontology Description, find the corresponding object property
in the OWL file generated from that Hybrid Ontology Description. If that lexon
is part of selection component of the commitment that is enterprise-specific, then
generate a property that D2R server can use. Check the direction of the object
property, if the domain and range of that property bridge are switched with respect
of the object property, take the inverse of that object property.

(B) The relation is represented as a lexon in ω and as a class map in δ. Create the
d2rq:PropertyBridge between the two d2rq:ClassMap descriptions. Use the an-
notations in the two class maps to construct the appropriate joins in that property
bridge. In other words, look what the primary keys are in the two class maps and
use those to describe a join between the foreign key and primary keys. The class
map describing the join table can remain in δ.

(C) The relation is represented as a term in ω and as a m:n relation in δ. Generate a new
resource of the type d2rq:ClassMap as done in the previous sections. Generate the
appropriate URI patterns for giving instances of this class a unique URI. Generate
two d2rq:PropertyBridge instances to connect this class map with the two class
maps composing this relation. The old m:n representation in δ can remain.
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(D) The relation is represented as a term in ω and as a class map in δ. No particularities
in this case, this falls in the same process as the previous section.

If a join table corresponds with a lexon, a pattern can be easily recognized and processed
accordingly. As an example we use the diagram and ER model of the left part of Figure
6.10: for instance, take the following lexons: 〈γ,A,with,of,LA〉, 〈γ,B,with,of,LB〉 and
〈γ,A,r1,r2,B〉. With each A being totally and uniquely identified by LA, each B totally
and uniquely identified by LB, and each A can play the role of r1 on many Bs and each
B can play the role of r2 on many As. Assuming one would have a join table AB with
fields LA and LB, the mapping of this join table to the lexon 〈γ,A, r1, r2, B〉 would look
as follows:

MAP ’AB’.’LA’ ON LA of A r1 B.
MAP ’AB’.’LB’ ON LB of B r2 A.

So, if there is a table with two annotations whose last term-role-term combinations can
reconstitute a lexon from the selection, there is an annotation of a join table for that
lexon. All the annotations are describing the attributes identifying the terms in that
lexon. Those attributes can in term be either lexical or non-lexical.

This section explained how one can use every term-role-term combination in a mapping to
identify the corresponding OWL classes and properties and the identification or creation
of the class maps and property bridges. Special care needs to be given in for lexons with
no functional roles and join tables, which has been extensively discussed in this section.
The algorithm that brings all proposes steps together is shown in Algorithm 1.

Algorithm 1 Semantically augmenting a D2RQ mapping file δ with an Ω-RIDL appli-
cation commitment ω
1: δ ← copyOf(δ)
2: processNonJoinMappings(ω, δ) // Described in Algorithm 2
3: processJoinMappings(ω, δ) // Described in Algorithm 3
4: return δ

As an example, the community commitment in the running example of Chapter 4 is
extended as follows (where ‘C’ stands for “Cultural Domain Community”):

<C, Affiliation, of, with, Artist>
<C, Affiliation, of, with, Art Movement>
<C, Art Movement, with, of, Name>
<C, Artist, born on, of birth of, Year>
<C, Artist, contributed to, with contribution of, Work Of Art>
<C, Artist, with, of, Gender>
<C, Artist, with, of, Name>
<C, Work Of Art, made in, of Year>
<C, Word Of Art, with, of, Title>

The constraints of this community commitment are:
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Algorithm 2 Semantically augmenting a D2RQ mapping file δ with an Ω-RIDL appli-
cation commitment ω
1: for all µ ∈ mappings(ω) do
2: list← termRoleTermsIn(µ)
3: if µ ∈ joinMappings(ω) then
4: // Remove last Term-role-term combination, will be processed later
5: list← list− {last(list)}
6: end if
7: ontCprev ← undefined
8: cMapprev ← undefined
9: for all trt ∈ list do
10: ontC2 ← ontClassOf(secondTermIn(trt))
11: cMap2 ← getConceptMappingFor(tableOf(µ), secondTermIn(trt))
12: Assert(commitsTo(cMap2, ontC2)) in δ
13: ontP ← ontPropertyOf(lexonCorrespondingWith(trt))
14: pMap← getPropertyMappingFor(tableOf(µ), fieldOf(µ))
15: assert(commitsTo(pMap, ontP ))
16: if equals(trt, first(list)) then
17: assert(domainCorrespondsWith(pMap, cMap2)) in δ
18: else
19: assert(domainCorrespondsWith(pMap, cMapprev)) in δ
20: assert(rangeCorrespondsWith(pMap, cMap2)) in δ
21: end if
22: ontCprev ← ontC2

23: cMapprev ← cMap2
24: end for
25: end for

Algorithm 3 Semantically augmenting a D2RQ mapping file δ with an Ω-RIDL appli-
cation commitment ω
1: visited← ∅
2: for all µ1 ∈ joinMappings(ω) do
3: if µ1 6∈ visited then
4: µ2 ← correspondingJoinMapping(µ)
5: visited← visited ∪ {µ1, µ2}
6: trt← last(termRoleTermsIn(µ1)
7: cMap1 ← getConceptMappingFor(tableOf(µ1), firstTermIn(trt))
8: cMap2 ← getConceptMappingFor(tableOf(µ1), secondTermIn(trt))
9: ontP ← ontPropertyOf(lexonCorrespondingWith(trt))
10: pMap← getPropertyMappingFor(tableOf(µ1), fieldOf(µ1))
11: assert(commitsTo(pMap, ontP )) in δ
12: assert(domainCorrespondsWith(pMap, cMap1)) in δ
13: assert(rangeCorrespondsWith(pMap, cMap2)) in δ
14: end if
15: end for
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EACH Artist IS IDENTIFIED BY (Name of Artist) AND (Year of birth of Artist).
EACH Gender with AT LEAST 1 Code.
EACH Gender with AT MOST 1 Code.
EACH Gender IS IDENTIFIED BY (Code of Gender).
EACH Affiliation of AT LEAST 1 Artist.
EACH Affiliation of AT LEAST 1 Art_Movement.
EACH Affiliation of AT MOST 1 Artist.
EACH Affiliation of AT MOST 1 Art_Movement.
EACH Affiliation IS IDENTIFIED BY (Artist with Affiliation)

AND (Art_Movement with Affiliation).
EACH Price with AT LEAST 1 Value.
EACH Price with AT LEAST 1 Currency.
EACH Price with AT MOST 1 Value.
EACH Price with AT MOST 1 Currency.
EACH Price IS IDENTIFIED BY (Value of Price) AND (Currency of Price).
EACH Currency with AT LEAST 1 Currency Code.
EACH Currency with AT MOST 1 Currency Code.
EACH Currency IS IDENTIFIED BY (Currency Code of Currency).

And finally, for a particular application there is the following application commitment:

BEGIN SELECTION
[’Cultural Domain Community’]
<’MyOrganization’, Artist, with, of, AID>
<’MyOrganization’, Art Movement, with, of, AMID>
<’MyOrganization’, Work Of Art, with, of, WID>
END SELECTION
BEGIN CONSTRAINTS
LINK(’Cultural Domain Community’, Artist, ’MyOrganization’, Artist).
LINK(’Cultural Domain Community’, Work Of Art, ’MyOrganization’, Work Of Art).
LINK(’Cultural Domain Community’, Art Movement, ’MyOrganization’, Art Movement).
EACH Art Movement with AT LEAST 1 AMID.
EACH Art Movement with AT MOST 1 AMID.
EACH Art Movement IS IDENTIFIED BY (AMID of Art Movement).
EACH Artist with AT LEAST 1 AID.
EACH Artist with AT MOST 1 AID.
EACH Artist IS IDENTIFIED BY (AID of Artist).
EACH Work Of Art with AT LEAST 1 WID.
EACH Work Of Art with AT MOST 1 WID.
EACH Work Of Art IS IDENTIFIED BY (WID of Work Of Art).
END CONSTRAINTS
BEGIN MAPPINGS
MAP ’artist’.’id’ ON AID of Artist.
MAP ’artist’.’name’ ON Name of Artist.
MAP ’artist’.’birthyear’ ON Year of birth of Artist.
MAP ’piece’.’id’ ON WID of Work Of Art.
MAP ’piece’.’name’ ON Title of Work Of Art.
MAP ’piece’.’year’ ON Year of Work Of Art.
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MAP ’piece’.’price value’ ON Value of Price of Work Of Art.
MAP ’piece’.’currency’ ON Currency Code of Currency of Price of Work Of Art.
MAP ’artist’.’gender’ ON Code of Gender of Artist.
MAP ’artistpiece’.’artist id’ ON AID of Artist contributed to Work Of Art.
MAP ’artistpiece’.’piece id’ ON WID of Work Of Art with contribution of Artist.
MAP ’movement’.’id’ ON AMID of Art Movement.
MAP ’movement’.’name’ ON Name of Art Movement.
MAP ’artistmovement’.’artist id’ ON AID of Artist with Affiliation.
MAP ’artistmovement’.’movement id’ ON AMID of Art Movement with Affiliation.
END MAPPINGS

Remember that [SHH+09] observed that automatically generated mappings often do not
capture complex domain semantics that are required by many applications, but can serve
as a starting point to create more customized, domain-specific mappings. With this
approach, one can easily provide richer annotations. For instance, some fields in a table
may not be lexical attributes of the entity stored in a record, but rather attributes of an
entity playing a role with the entity stored in the record.

D2RQ generates a lexical attribute for artist.gender in the database. However, the
community has decided that a gender is identified by a code and artists play a role
with gender. If one wants to obtain a list of all instances of genders, a class map for a
projection of that table needs to be generated. Gender is identified by its code and thus
that attribute is used to create its URL pattern. The gender code is also used to create
a property bridge. Once that is done, a property bridge between the two class maps
(artist and gender) is generated (note that namespaces have been omitted, the OWL
implementation of the hybrid ontology is assumed to reside in myOnto):

map:Gender_artist a d2rq:ClassMap;
d2rq:class myOnto0:Gender;
d2rq:dataStorage map:database;
d2rq:uriPattern "Gender/@@artist.gender|urlify@@".

map:Gender_with_Code_artist a d2rq:PropertyBridge;
d2rq:belongsToClassMap map:Gender_artist;
d2rq:column "artist.gender";
d2rq:property myOnto0:Gender_with_Code.

map:Gender_of_Artist_artist a d2rq:PropertyBridge;
d2rq:belongsToClassMap map:Gender_artist;
d2rq:property myOnto0:Gender_of_Artist;
d2rq:refersToClassMap map:Artist_artist.

The join table artistpiece was annotated with the lexon 〈γ, Artist, contributed_to,
with_contribution_of, Work_Of_Art 〉. The identifying attributes of both artists and
works of art were used to create two class maps used by the property bridge.

map:Work_Of_Art_artistpiece a d2rq:ClassMap;
d2rq:class myOnto0:Work_Of_Art;
d2rq:dataStorage map:database;
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d2rq:uriPattern
"Work_Of_Art/@@artistpiece.p_id|urlify@@"

map:Artist_artistpiece a d2rq:ClassMap;
d2rq:class myOnto0:Artist;
d2rq:dataStorage map:database;
d2rq:uriPattern
"Artist/@@artistpiece.a_id|urlify@@".

map:Artist_contributed_to_Work_Of_Art_artistpiece
a d2rq:PropertyBridge;
d2rq:belongsToClassMap map:Artist_artistpiece;
d2rq:property myOnto0:Artist_contributed_to_Work_Of_Art;
d2rq:refersToClassMap map:Work_Of_Art_artistpiece.

Next, the relation between an artist and an art movement were stored in a join table,
but the community decided to represent it as a concept: Affiliation. The table is used
in the construction of a class map for affiliation and the class maps for artist and art
movement were connected with appropriate property bridges.

map:Affiliation_artistmovement a d2rq:ClassMap;
d2rq:class myOnto0:Affiliation;
d2rq:dataStorage map:database;
d2rq:uriPattern "Affiliation/
@@artistmovement.a_id|urlify@@/
@@artistmovement.movement_id|urlify@@".

map:Artist_with_Affiliation_artistmovement
a d2rq:PropertyBridge;
d2rq:belongsToClassMap map:Artist_artistmovement;
d2rq:property myOnto0:Artist_with_Affiliation;
d2rq:refersToClassMap map:Affiliation_artistmovement.

map:Art_Movement_with_Affiliation_artistmovement
a d2rq:PropertyBridge;
d2rq:belongsToClassMap map:Art_Movement_artistmovement;
d2rq:property myOnto0:Art_Movement_with_Affiliation;
d2rq:refersToClassMap map:Affiliation_artistmovement.

map:Art_Movement_artistmovement a d2rq:ClassMap;
d2rq:class myOnto0:Art_Movement;
d2rq:dataStorage map:database;
d2rq:uriPattern
"Art_Movement/@@artistmovement.movement_id|urlify@@".

map:Artist_artistmovement a d2rq:ClassMap;
d2rq:class myOnto0:Artist;
d2rq:dataStorage map:database;
d2rq:uriPattern
"Artist/@@artistmovement.a_id|urlify@@".
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6.5 Conclusions

Chapter 3 described a framework for hybrid ontology engineering, in which the social in-
teractions of a community lead to formal descriptions of concepts. Those agreements are
supported by a special linguistic resource called the glossary. Chapter 5 then described
how gloss evolution has an impact on the hybrid ontologies, thereby supporting the ex-
ternalization processes of the community (or communities) involved in those interactions.
In this chapter, we describe how the result of that externalization process can be used to
the fullest to support the community in re-internalizing that result, thereby closing the
circle of social interactions, glossaries and formal descriptions.

Community- and application commitments in GOSPL are used to drive the discussions
between community members. The use of application commitments beyond semantic
interoperability is done in two ways: (i) by looking for counterexamples for statements
made by the community and (ii) by exploring the annotated datasets via the lexons in
the community commitment.

The first allows to validate the formal descriptions in the community commitment or
even ongoing discussions in the community. This required a suitable translation into a
Description Logic (DL) and an interpretation function for that DL to cope with the closer
world assumption, both presented in this chapter.

For the second, RIDL was adopted to provide a fact-oriented way for browsing and
querying datasets annotated with those DL translations of community commitments.
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Chapter 7

Implementation
An experiment took place in March, April and May 2011 that mainly validated the
social processes and the hybrid ontology engineering framework presented in Chapter 3.
This experiment – reported in [DM11] – adopted an existing method and tool namely
Business Semantics Management (BSM) and the Business Semantics Glossary (BSG). For
a description of both BSM and BSG, see Chapter 2. BSM, however, did not prescribe
a methodological sequence of processes on how articulation and the formal descriptions
should evolve. Instead, BSM also followed a wiki paradigm allowing for changes to be
immediately visible without prior discussion within that system. The method and tool
furthermore did not support changes to follow automatically from the outcome of a
discussion. Based on these experiences, the GOSPL method was proposed. For GOSPL,
specific tool support was needed that followed principles defined in Chapters 3 and 4.
BSG was deemed unfit mostly because of the wiki technology on which it was based; on
one hand it was not discussion oriented and the wiki paradigm was difficult to adapt to
support a specific sequence of processes. The decision therefore was to develop a tool
specifically designed for GOSPL rather than spending more effort in tweaking an existing
framework in following the GOSPL method.

This chapter presents a demonstration of a tool set that supports the GOSPL method
for hybrid ontology engineering. The tool bears the same name as the method. GOSPL
is supported by a web front-end, which is communicating with a hybrid ontology server.
The hybrid ontology server exposes services supporting the method allowing additional
clients to be developed, e.g. for advanced knowledge-engineering tasks. The examples
used in this chapter stem from various case studies in which GOSPL was used to model
ontologies for establishing semantic interoperability. These case studies will be described
in the next chapter.

7.1 Architecture

The choice for a web-based system is motivated by the fact that a web-based application
saves on-site installation time. For more advanced knowledge engineering tasks or anal-
ysis, however, the web-based application might not suffice. The design of the application
thus took into account a server onto which other clients could connect to. The web-based
client thus serves as an interface for the server.

The hybrid ontology server is developed as a J2EE project running in an application
server (e.g. JBoss Application Server1) using beans as an interface for the clients. The

1http://www.jboss.org/
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client is developed by means of a combination of JavaServer Pages2 and JQuery3.

The reasons a new tool was prototyped from scratch was manifold. First, the choice of the
Java programming language as most of the libraries available for Semantic Web languages
and technologies are developed in that language and would thus facilitate integration.
Second, most of the collaborative web-platforms aimed at ontology engineering were not
made for fact-oriented formalisms. Indeed, there is the Business Semantics Glossary4,
but its platform was not adopted as it was difficult to incorporate the social processes
defined in GOSPL. This leads us to the third reason; existing platform demanded often
too much time to tailor an instance to support hybrid ontology engineering. After briefly
experimenting with some existing platforms, the author of this thesis felt that all (mostly
technical) obstacles or challenges in adopting an existing platform did not outweigh the
effort of creating a new application to demonstrate some principles.

The JBoss Application Server is widely used in industry and the J2EE aspect of the
application makes it relatively easy for clients to connect to a server. It helps also to
ensure the scalability in collaborative environments. On the server side, the following
modules were developed:

1. Community-management: management of the key terms and goals of a community
and the members inside a community.

2. Commitment-management: managing the agreed-upon lexons, constraints, and
synonyms within and across communities. This module also takes into account
managing application commitments known to the platform (e.g. to reason over
the annotated data). This module is also responsible for the analysis of a hybrid
ontologies’ coherence and glossary-consistency and the NLP analysis of a gloss.

3. Glossary-management: the management of glosses and agreements on the equiva-
lence of glosses within and across communities.

4. Other modules are available for, for instance, transforming a community commit-
ment into OWL ontology.

For this research, two additional prototypes that act as clients for above mentioned server
have been developed; one to support discrete gloss evolution and one for querying RDF
via R-RIDL.

7.2 The Collaborative Ontology Engineering Platform

After following the address of an instance of GOSPL, the user is able to either login or
register (see Figure 7.1). After logging in, the user has access to a list of communities
currently working together on the development of hybrid ontologies. This is shown in
Figure 7.2. Note that a user is also able to start a new community. The discussions
involving the key terms or goals of a community are social processes, which will be
discussed later on.

2http://en.wikipedia.org/wiki/JavaServer_Pages
3http://jquery.com/
4http://www.collibra.com/
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Figure 7.1: GOSPL login and registration screen.

Figure 7.2: A list of all available communities of one particular GOSPL instance.

147



7.2.1 The Community Commitment and Glossary

Clicking on a community brings you to a new screen with several tabs. Each of the tabs
will be described in order. The first tab is called “ontology” and lists the lexons and
constraints currently agreed-upon by the community. This tab thus displays the current
community commitment. The lexons and constraints in Figure 7.3 have been respectively
filtered by keywords “Time” and “Minute” to make the screenshot fit the page.

Figure 7.3: The community commitment of the Date and Time Community.

Clicking on a term directs the user to a page that displays more information about the
gloss of that term (if any), including information about term adoption. It also provides the
user information about other terms (in other communities) that are currently considered
synonymous with the displayed term. Figure 7.4 displays a screenshot displaying the
community-term page of DateTime in the Date and Time Community.

Figure 7.5 provides a screenshot of the second tab called “glossary”. This tab lists the
glosses the community currently uses to articulate the terms and lexons that are part
of the community commitment. The tab also provides information about any gloss-
equivalences on these glosses if any.
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Figure 7.4: Screenshot of a community-term page.

Figure 7.5: The glossary of the Date and Time Community.
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7.2.2 Social Processes in GOSPL

GOSPL is discussion-oriented and both the ontology and glossary evolve only if the
community reaches an agreement. This results in traceability both on decision level and
on change level. Clicking on the tab “Discussions” brings the user to a list of discussions of
that community, as shown in Figure 7.6. Different discussion can be started. Depending
whether a person is a member of the community, some discussions might not be available.
However, all users can leave comments and all users can start “informal” discussions (even
when they are not part of the community). In other words, not only who changes what
is recorded, but also the reasons certain changes have been made by linking changes to
discussion on the platform. This was possible by formalizing the social processes and its
corresponding operators.

Figure 7.6: The discussions taking place in the Date and Time Community.

On the same page, users have the possibility to start new discussions. Depending whether
the user is a member of that community, some requests are not accessible. For instance,
one should be a member to contribute to the lexons, constraints or glosses of that com-
munity. Non-members have the possibility to request to become a member. Users that
are part of another community are able to initiate a social process to discuss a gloss-
equivalence of glosses or the synonymy of terms. Figure 7.7 depicts the form for a request
to remove a particular constraint, and Figure 7.8 depicts the screen containing the thread
after submitting the form.

A quasi-anonymous voting system is used to gather the opinion of people without the
need of participating in the discussion (see Figure 7.7). It is quasi-anonymous in the
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Figure 7.7: Requesting the removal of a constraint.

sense that anyone can see who has voted, but not what they voted on a scale from 1
(strong agreement) to 5 (strong disagreement). This gives community members an idea
inside the community are interested in what parts of the hybrid ontology.

Figure 7.8: The resulting thread after submitted the form depicted in Figure 7.7
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Some requests can be analyzed with the annotated application the platform is aware
of. The application commitments belonging to community members describe how the
application symbols of their system commit to the ontology, allowing the information in
those database systems to be retrieved through the ontology. Of course, the discovery
of counterexamples does not necessarily mean that the statement is false, however, this
information might direct the discussion into another direction. Figure 7.9 shows a dataset
has over 13000 counterexamples for the mandatory constraint on “has” between “Person”
and “Other Name”.

Figure 7.9: Finding counterexamples for statements in the hybrid ontology.

The management of application commitments that enable this feature will be described
in the next section.

7.2.3 Managing Application Commitments

Application owners are able to keep track of their application commitments within the
platform. An application commitment can actually commit to several community com-
mitments at once. Just as with the addition of (enterprise-specific) lexons and constraints,
it is up to the owner of that application to make sure that the whole is consistent. Dif-
ferent versions of the application commitment are stored, which can be used to observe
the changes between versions. In fact, it is possible to even detect the difference between
two arbitrary application commitments. Figure 7.10 depicts what is shown to the user
when two versions of a commitment are compared.

In the current implementation, users are able to associate an Ω-RIDL application com-
mitment with a SPARQL endpoint. The SPARQL endpoints make use of the OWL
implementation of the hybrid ontology (see Figure 7.11), which can be viewed by clicking
on the appropriate tab. That same figure also shows that users are given a link on which
the OWL file can be accessed.

7.2.4 Community Activity

As the last tab implies, all interactions between users and between a user and the system
are logged (see Figure 7.12).
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Figure 7.10: Comparing two versions of an application commitment.

Figure 7.11: OWL implementation of the hybrid ontology.

7.3 Discrete Gloss Evolution

As stated in Chapter 5, the support on discrete gloss evolution and its impact on the
community commitment is supported by the development of:

1. The creation of a grammar for discrete gloss evolution, called the gloss-modality
parser. The grammar – developed with the ANTLR Parser Generator5 – is shown
below. The agent using this parser then uses a strategy pattern to take appropriate
measures depending on the gloss-evolution modality, allowing for extensibility. Note
that white spaces are ignored.

5ANTLR Parser Generator: http://www.antlr.org/
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Figure 7.12: Activity in a community.

// PARSER RULES
// Top rule, starting point of span

rule: span ;
span: sentence | modality | multinuclei ;

// Simple sentence: a unstructured string
sentence: STRING ;

// Application of a modality
modality: ’(’ span modalityDirection span ’)’ ;
modalityDirection: (’<-’ modalityName) | (modalityName ’->’) ;
modalityName: LITERAL;

// Application of a multinuclei
multinuclei: ’{’ LITERAL (span)+ ’}’ ;

// LEXER RULES
LITERAL: (’A’..’Z’)+; // Words in capital letters
STRING: ’"’ ACTUALSTRING ’"’; // Quoted Strings
fragment ACTUALSTRING: ~(’\\’|’"’)*;

2. A Strategy Pattern [ERRJ95] was adopted to handle the specific operations for
each type of modality. Depending on the modality; pre-lexons, pre-constraints or
instances are detected that are then refined by the user before triggering the social
processes.

3. The Apache OpenNLP Toolkit6 is a machine learning based toolkit for the pro-
cessing of natural language text that has been adopted to tokenize, segment and
apply part-of-speech tagging, etc. on the structured glosses to distill nouns, stem
the verbs, etc. for the pre-lexons.

6http://opennlp.apache.org/
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Figure 7.13 depicts a screenshot of a small client which – after asking for the user’s
credentials – retrieves the gloss for a particular term or lexon and parses it. After parsing
(1) the “pretty gloss” is shown to the user as well as information about the gloss’ tree-
structure. In this picture, the Instantiation modality was selected for processing and
retrieved the instances mentioned in the gloss (2). These instances should correspond
with a reference structure for the term being articulated. If that is the case, the user
should be able to choose a set of lexons to populate. The user can choose to use an existing
set of unique, total and identifying attributes, or propose a new set which can contain
new lexons (3, of which details are shown in Figure 7.14). After this step, social processes
for new lexons, new constraints and the acceptance of lexon- and term populations are
launched (4).

(1)

(2)

(3)
(4)

Figure 7.13: Processing a structured gloss for the term “Planet” in the ‘Planet Community’.

Figure 7.14: Populating the attributes to process the mentioned instances.

Selecting and processing other modalities yield in different proposed pre-lexons and pre-
constraints.
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7.4 Querying RDF with R-RIDL

The tool for querying RDF with R-RIDL consists of two modules: one to generate RDF
out of relation databases via a Ω-RIDL application commitment and a module for trans-
forming queries in R-RIDL into a series of SPARQL queries and return the information.

The first module uses Apache Jena7 to query the OWL implementation of the ontology
and the RDF triples in the D2RQ mapping file. It also uses Jena to add additional
statements to the model provided by this mapping file. The output can be saved to a
file that can be used to start the D2RQ server8 (see Figure 7.15). Note, however, that in
order for D2RQ mapping file a to be executable by the D2RQ server, minimal information
about the database (username, password, host, etc.) needs to be provided in the D2RQ
mapping file or added/modified later on.

Figure 7.15: Screenshot of the Atomizer.

Figures 7.16 and 7.17 contain screenshots of a user interface built around a library de-
veloped for R-RIDL. In Figure 7.17, the Ω-RIDL commitment contains a reference to
the community, and thus also to the hybrid ontology and its agreed upon lexons. Also
a SPARQL endpoint - using the predicates defined in the OWL implementation of the
hybrid ontology - is given. The results are shown in columns. Values of the result set
are either resources, or values. In the case of the former, a description of the resource
is retrieved. In the case of the latter, the value is shown. In this example of the LIST
statement, the resource returns a human-readable description of that resource as a Web
page following Linked Data principles [BL98]. Figure 7.17, shows a FOR-LIST statement
in R-RIDL. The LIST statement returns a set of instances, which can be regarded as a
set of unary tuples. The FOR-LIST statement allows the user to create queries returning
a set of tuples of arity n > 1.

7http://jena.apache.org/
8http://www.d2rq.org/
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Figure 7.16: Example of the LIST statement in R-RIDL

Figure 7.17: Example of the FOR-LIST statement in R-RIDL

7.5 Conclusions

This chapter demonstrated the tool that supports the hybrid ontology engineering frame-
work, method as well as the use of gloss evolution and commitments presented in the
previous chapters. The tool offers a zero-install approach by providing a web-based col-
laborative environment. The hybrid ontologies developed with this tool allow ontologies
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to be “implemented” in DL-LiteA,id for so-called downstream usage of the ontologies.

For this research, two prototypes that act as clients for the GOSPL server have been
developed; one to support discrete gloss evolution and one for querying RDF via R-
RIDL. These two prototypes have yet to be integrated with the collaborative platform.
A reason for the first is efficiency; the machine learning algorithm for the natural language
processing takes a considerable amount of time to train, which would have been a nuisance
in a web environment. Accepted (structured) glosses need to be retrieved with the client
in order to distill lexons, constraints and instances from the gloss.

A second reason is a limitation of the technology adopted. The server needs to be deployed
as a jar. All libraries and resources (e.g. training data) required to support the NLP, as
well as querying and reasoning over RDF with SPARQL need to be made available to
that jar. That would mean putting third party libraries in the JBoss library folder and
deploy the resources next to the jar. Integration is thus postponed until a more elegant
solution to this problem has been found. Until now, this has not yet been a problem to
validate the ideas.
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Chapter 8

Case Studies
In this chapter, we present two large ontology engineering experiments in which the
GOSPL method and tool were adopted. Both experiments are part of larger case stud-
ies in which GOSPL is deployed. To evaluate the tool, we assessed the user satisfac-
tion concerning system usefulness, information quality and interface quality. As for the
method, an analysis of the interactions and the resulting ontologies provide insights on
the method’s effectiveness.

Before we report on the results of the two experiments, we first present the user satisfac-
tion survey we have adopted for this thesis. The results of the first and second experiment
were partly reported in [CD12] and [DC13] respectively.

8.1 Assessing the User Satisfaction with PSSUQ

Usability is defined by the ISO-9241 standard [ISO98] as the effectiveness, efficiency and
satisfaction with which specified users can achieve specified goals in particular environ-
ments. Usability is a key factor in making the (computer) systems easy to learn and to
use. Usability testing has been extensively studied and applied by Lewis [Lew12] at IBM
Software Group. The results of the usability testing improve the design of a system by
evaluating the organization, presentation and interactivity of the system interface.

Satisfaction was measured using the standardized Post-Study System Usability Ques-
tionnaire (PSSUQ) [Lew93, Lew02] developed by IBM. PSSUQ originally consisted of 19
questions, each question being a statement about the usability of the system. We used
the short version, which consists of only 16 questions. Participants need to answer each
statement using a Likert scale of 7 points, where 1 indicates that the user “strongly agrees”
with the statement, whilst 7 indicates that the user “strongly disagrees” with it. PSSUQ
is based on a comprehensive psychometric analysis, providing scales for three sub-factors,
namely: (1) system usefulness; (2) information quality; and (3) interface quality. The
short (and most recent) version of PSSUQ, illustrated in Table 8.1, was used, in order to
save time. In Table 8.1, the questions correspond with the sub-factors as follows:

• System usefulness: the average of items 1 through 6;
• Information quality: the average of items 7 through 12;
• Interface quality: the average of items 13 through 15;
• Overall: the average of items 1 through 16.

The reason for choosing PSSUQ for this study is mainly because of the rich information
it provides, with little effort from the user, and the extensive IBM documentation and
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Table 8.1: PSSUQ - short version [Lew12]

Item Item Text
Q1 Overall, I am satisfied with how easy it is to use this system.
Q2 It was simple to use this system.
Q3 I was able to complete the tasks and scenarios quickly using this system.
Q4 I felt comfortable using this system.
Q5 It was easy to learn to use this system.
Q6 I believe I could become productive quickly using this system.
Q7 The system gave error messages that clearly told me how to fix problems.
Q8 Whenever I made a mistake using the system, I could recover easily and quickly.
Q9 The information (such as online help, on-screen messages and other documentation)

provided with this system was clear.
Q10 It was easy to find the information I needed.
Q11 The information was effective in helping me complete the tasks and scenarios.
Q12 The organization of information on the system screens was clear.
Q13 The interface of this system was pleasant.
Q14 I liked using the interface of this system.
Q15 This system has all the functions and capabilities I expect it to have.
Q16 Overall, I am satisfied with this system.

experience for the statistics it can provide. Besides the 16 items in the test, the test par-
ticipants can make comments and elaborate on their answers. Based on these comments,
conclusions are drawn and recommendations for improving the human-system interaction
were provided.

The goal of the test is to evaluate the usability of GOSPL in two dimensions: formative
and summative, from the user satisfaction point of view. The formative usability testing
aims at identifying the usability problems of the tool. The summative usability test
consists of a series of measurements (e.g. effectiveness, efficiency, satisfaction) that are
performed in order to compare the usability results against a set of predefined objectives.

8.2 Case 1: Annotating Cultural Events in Brussels

The Open Semantic Cloud for Brussels (OSCB)1 project started on February 1st, 2011
and aims to cover Brussels, metaphorically speaking of course, with a cloud of structured
and interlinked information elements produced by “atomizing” a collection of relevant
databases and other resources into RDF triples. The first use case in the OSCB project
aims at semantic linking cultural events in Brussels.

In this project, access was given to two datasets: one by Agenda.be in XML and a
relational database dump by BOZAR. Agenda.be2 is an initiative of the Foundation for
the Arts and Visit Brussels to provide a federated, up-to-date overview of cultural events

1http://www.oscb.be/
2http://www.agenda.be/
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in Brussels. BOZAR3 is the Centre of Fine Arts in Brussels and stores information about
their cultural events and those of affiliated organizations in their own database. Both
data sets contain information about venues and cultural events mostly in Brussels. The
level of detail, and perspective on this domain is very different when analyzing both data
schemas. One of the goals is thus the creation of an ontology suitable for annotating both
data sets. Next to an ontology mainly developed by the consortium in order to support
this use case, an experiment in the same domain was conducted. The resulting ontologies
of that experiment were subsequently taken into account to refine the ontology built by
the consortium.

The experiment involved 43 people (1 supervisor and 42 students) and lasted about
three months (from March 2012 to May that same year). All students took part in this
experiment as part of an obligatory course on ontologies and ontology engineering, which
is part of the MSc. in Applied Sciences and Engineering: Computer Science curriculum
of the Vrije Universiteit Brussel. Most participants had a background (BSc) in computer
science, software- or hardware engineering. All participants were asked to form groups of
3 to 5 people and were free to choose with whom they wished to collaborate. 11 groups
were formed with one group consisting of only 2 people, which were working students
and had limited possibilities working during office hours. Each group also had to choose
a particular type of cultural event. An overview of each group (group-size and topic) is
given below.

# Topic Size # Topic Size
1 Theater plays 4 7 Exhibitions 5
2 Movies 2 8 Movies 4
3 Concerts 4 9 Concerts 4
4 Festivals 4 10 Concerts 4
5 Exhibitions 4 11 Lan Parties 4
6 Festivals 3

First the groups were asked to develop their own portal for displaying information about
cultural events in their domain. All groups were then asked to develop hybrid ontologies
to enable 1) semantic interoperation between the different portals, 2) enable federation of
the data contained in the different portals. Groups were also asked to use the developed
ontologies to annotate the BOZAR relational database and demonstrate the use of the
annotated data.

The experiment resulted in 46 different community commitments. This amount seems
excessive, but the participants had a natural tendency to separate concerns and an im-
portant part of the communities became redundant as time passed by. The first could
be very well explained by their background; most had a background in computer science
or engineering. As for the latter, we will later on explain why communities will not be
removed as one can never know which applications already or ever will commit to those
community commitments. More details about this decision will be given while some of
the usability issues identified in the usability study will be addressed.

3http://www.bozar.be/
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In total, all participants were responsible for almost 7200 social interactions on this
platform including setting up communities, starting discussions, closing discussion, giving
replies, and voting.

8.2.1 Summative and Formative User Satisfaction.

The satisfaction test was undertaken by a group of 15 out of the 42 participants. The
overall usability testing was carried out both implicitly by analyzing the data logs and
the user-system interactions and explicitly, by collecting the user feedback via several
questionnaires. We would like to note that forms filled in for user satisfaction assessment
had no influence on the grade the students obtained for their assignment, which has been
clearly communicated to the student.

Summative User Satisfaction. The results delivered by the PSSUQ questionnaire
are as follows: the overall (average) user satisfaction shows a value of 3.4, the system
usefulness 3.1, the information quality 3.9 and the interface quality 3.4 (see Table 8.2).
There were four groups of volunteers involved in the study, denoted as: A, B, C and D.
The group most satisfied overall is group C, the group most satisfied with the system is
the same group C, the group most satisfied with the information quality is group B and
the group most satisfied with the interface quality is group A. The overall satisfaction
ranking over the four groups is therefore: group C (most satisfied), group B, group D
and group A (least satisfied).

Table 8.2: Summative user satisfaction

Metric A B C D Average
System usefulness 3.4 3.0 2.8 3.1 3.1
Information Quality 4.1 3.8 3.9 3.9 3.9
Interface Quality 3.1 3.6 3.3 3.6 3.4
Overall 3.6 3.4 3.3 3.5 3.4

These results are compared with the system logs indicating the number of user-system
interactions per group, in order to justify the differences on the satisfaction levels per
group. The logs show that the average number of interactions per group corresponds
to the overall satisfaction per group: 1) group A - 94 interactions4; 2) group B - 270
interactions; 3) group C - 350 interactions; and 4) group D - 176 interactions. These
results are also correlated with the quality of work of each group, reflected also by the
final project grade. It is curious, however, to observe that the group which has used the
interface least often (group A) is most satisfied with the interface quality, but are overall
least satisfied with the system.

Formative User Satisfaction. The problems identified by the users in the comments
section of each item are illustrated in Table 8.3. The problem they faced most often

4Averages of interactions are based on the whole group, but only three of the four people in that group
participated in the survey. The average number of interactions for the three users that participated is
85.
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Table 8.3: Summative user satisfaction. INF = Information Quality, INT = Interface Quality
and SYS = System Usefulness. Number of reports is indicated on the right.

Usability problem Nature #
1 The (error) messages displayed by the system were often not clear to the

user. There was in general no online help or documentation available.
INF 6

2 There is no “undo” or “edit” option available INF, INT 5
3 No (top menu) link to the current community in the discussion page INT, INF 5
4 It took a while to understand how the system works SYS 1
5 Sometimes, listing items in the dynamic tables did not go well when after

returning to a page it displayed the first item again.
INT 3

6 There was no “delete” option for the communities that “died” during the
process.

INF, INT 2

7 The user name is not clear (just email addresses appear) INT 1
8 Sometimes, more clicking necessary than that one would expect (e.g.

when browsing through several discussions).
SYS 1

was linked to the absence of intelligible (error) messages and online help/documentation.
Other often cited problems are related to the lack of “edit” and “undo” options; also, the
users mention the need for a better organization and links regarding the (current and
visited) communities. Other problems include clarification of the user names, the “back”
button or the missing request to add gloss in the list box.

Taking the satisfaction results obtained from PSSUQ and the user comments, the fol-
lowing conclusions are derived: out of the three sub-factors identified by PSSUQ, the
system usefulness measure performed best (3.1); the information quality of the system is
the sub-factor that needs most improvement (3.9). This also corresponds to the (infor-
mation quality-related) problems most cited by the users: usability problems 1, 2 and 3
in Table 8.3. Therefore, summative and formative usability testing deliver similar results
when it comes to user satisfaction in this study. The next section will describe how the
aforementioned problems were tackled for the second experiment.

8.2.2 Impact of Glosses on Meaning Negotiation

Concerning the method we observed that terms that were articulated before lexons around
this term were entered into a community commitment were less likely to have changes in
their formal description than those that were not [DV13]. We analyzed the interactions
involving terms in a community with the following criteria: (1) the term had to be
non-lexical, meaning that instances of this concept cannot be printed on a screen, only
its lexical attributes can, (2) the term was the subject of at least 4 interactions (not
including gloss-equivalences and synonyms, thus focusing on the formal and informal
descriptions around this term), and (3) the term took part in at least one lexon. We
took into account terms with a fair amount of activity. This is due to the fact that the
communities employed terms that are only relevant to their application, and therefore
only inspired discussions within that group. These discussions are not interesting as the
community tended to agree on what has been decided for their application.
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We then analyzed how much of these terms changed in terms of their formal description
when the gloss is provided. With these criteria, we identified 49 terms. Of these 49 terms,
38 started with the natural language description as described by the GOSPL method.
Of these 38 terms, 11 of them had changes in their formal description (29%). Of the
remaining 11 terms that did not start with the informal description, 5 of terms had
changes in their formal description (45%).

The reason we left out lexicals is that they often play an attributive role. Lexons are
supposed to be entered when at least one of the terms is articulated. At the start, the
key terms are often described first. And when the second term concerns a lexical in an
attributive role, the community tends to agree on the meaning of this attribute based on
the label of that term. If we were to take lexicals into account, we again observe that
terms that did not start with an informal description are more likely to change its formal
description: 18 terms out of 46 started with a gloss and 6 terms out of 12 did not start
with a gloss.

From this observation we can conclude that aligning the meaning of labels within a com-
munity by means of natural language definitions does contribute to more stable evolution
of formal descriptions of those concepts. Stable here means that previous agreements are
less likely to be reverted.

8.2.3 Using the Ontology

Participants then each annotated a part of the relational database provided by BOZAR
and demonstrated how the ontologies (actually, the OWL implementation thereof) are
used to retrieve and use the annotated information. One example5 is shown in Figure 8.1,
in which information about musical pieces and composers of musical events in BOZAR
are retrieved and later on were enriched with information in DBPedia6.

8.3 Changes in the Prototype

After the first experiment, the following functionalities have been added to the GOSPL
prototype:

• Explicit social processes for defining the key terms and goals that constitute the
semantic interoperability requirements of a community.
• Social processes for communities to agree that terms and roles in formal descrip-

tions refer to the same concepts as classes and properties in other ontologies stored
somewhere on the Web (e.g. OWL ontologies).
• Tool support for collaboratively managing application commitments.
• An RSS feed such that users did not need to check the platform for any new dis-

cussions and observe the activity by means of an RSS reader. The RSS feed has

5Developed by S. Van Laere, P. Stroobants, K. Tanaka and W. Van Rossem.
6http://dbpedia.org/
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Figure 8.1: Using the annotated BOZAR database.
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for each community commitment a separate channel, allowing one to filter to the
community of interest.
• A reputation framework, reported in [DN13]. The reputation framework provides

users how well he or she performs with respect to following the method. The
reputation framework also took into account an evaluation of other users on a
user’s action. The users were presented “scores” as to encourage them to do better.

The problems reported in the first experiment shown in Table 8.3 were addressed as
follows:

Problem 1. While teaching the method to the participants, they were offered a docu-
ment and slide set (available online) in which the method and tool were explained. A
running example for the creation of an application commitment was also provided.

Problem 2. Regarding the “delete” and “edit” options, the students were explained that
we were reluctant for allowing editing of posts and comments (e.g. to prevent
abuse). Most of them would be content with a feature that allows a post to be edited
within several seconds. The problem reported here was thus not so much to undo an
action, but rather to edit mistakes such as typos. Also, the outcome of a discussion
sometimes differs from the initial proposition. For some social interactions, the
users are now able to conclude with the final outcome.

Problem 3. Users mentioned that there is no link to the current community in the
discussion page. Such a link did exists, but the users did not notice it. Even
though it was styled as a link with the website’s style sheet, the users seemed to
have overlooked it. The style of the prototype has been adapted and the link to
the community is made more obvious.

Problem 4. The availability of online documentation should solve that problem.
Problem 5. This remark basically boiled down to search parameters being stored in a

session such that users did not have to enter the same filter every time they leave
the page. This was easily solved by storing the filters in a cookie.

Problem 6. There was a wish from the users to delete communities, in particular the
communities that became obsolete (or – as the users put it – “dead”) as the different
communities evolved. Even though they understood that even those communities
might once again become active, they would be happy to be able to “filter” the dead
communities from the list and toggle that filter. We did not wish to provide such a
feature, as one can never know when a particular community can have an uptake.
We therefore did not provide such functionality for the next experiment.

Problem 7. We do not request users to provide an additional username, instead we
strongly encouraged the users to use their institution’s address or an address con-
taining their names.

Problem 8. In communities with many discussions, browsing through the different dis-
cussions could have been cumbersome. This has been partly tackled by storing the
filters in a cookie.
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8.4 Case 2: Research Information Systems

Research information systems – also called Current Research Information Systems [JA10]
– are information systems used by the various actors in the research process and their
use ranges from “the documentation of research projects and their results over easing the
management of research to simplifying research assessment” [BM11]. Research informa-
tion systems require a clear focus on a bounded set of indicators or items of interest that
are agreed upon by the stakeholder group to ensure the proper support of aforementioned
research process [BM11]. Information concerning research activities is often stored at dif-
ferent places on the Web and across several organizations (e.g. databases owned by each
knowledge institution or federated databases by each public administration).

The goal of the second case is to test the use of a knowledge management platform for the
creation of ontologies for publishing the data of a research information system as RDF on
the Web. To this end, we were given a relational database dump by the Department of
Economy, Science and Innovation of the Flemish Government (from here on called EWI)
of their FRIS portal7. FRIS stands for Flanders Research Information Space and aims to
provide a portal for all research activities within Flanders. A problem, however, of this
database is that it is not linked with other datasets found on the Web, such as DBLP8.

The experiment involved 36 students and lasted about three months (from March 2013
to May that same year). All students took part in this experiment as part of an obliga-
tory course on ontologies and ontology engineering, which is part of the MSc. in Applied
Sciences and Engineering: Computer Science curriculum of the Vrije Universiteit Brus-
sel. Again, most participants had a background (BSc) in computer science, software- or
hardware engineering. All participants were asked to form groups of 3 to 4 people and
were free to choose with whom they wished to collaborate. 10 groups were formed, with
one group consisting of only 2 people, which were participants who arrived late. Each
group also had to choose (a part of) an existing research information system. Details on
each group are given below.

# Application Size
1 DBLP 4
2 FRIS (focus on organizations) 4
3 Microsoft Research 4
4 ACM DL 4
5 CORDIS (focus on projects) 4
6 IBM Research 4
7 Journal TOCs 3
8 CORDIS (focus on funding programs) 4
9 CORDIS (focus on organizations) 3
10 CORDIS (focus on funding programs) 2

First, the groups were asked to develop their own system based on the existing application
they have chosen by “reverse engineering” the conceptual schema. All groups were then

7http://www.researchportal.be/index.html
8http://www.informatik.uni-trier.de/~ley/db/
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Table 8.4: Summative user satisfaction: results looking at the groups, average of all complete
groups, average all respondents and results of the previous study.

Average Average
Metric A B C D E groups all users
System usefulness 2.9 2.9 4.0 3.4 2.3 3.1 3.2
Information quality 3.2 3.5 4.3 3.3 3.8 3.6 3.5
Interface quality 3.1 2.8 5.0 3.1 2.3 3.3 3.3
Overall 3.1 3.1 4.4 3.3 2.8 3.3 3.3

asked to develop hybrid ontologies to enable 1) semantic interoperation between the
different systems, 2) enable federation of the data contained in the different system.
Groups were also asked to use the developed ontologies to annotate the FRIS relational
database and demonstrate the use of the annotated data.

The experiment resulted in 24 different community commitments. Again, the participants
had a natural tendency to separate concerns and a part of the communities became
redundant as time passed by. In total, all participants were responsible for around 6890
social interactions on this platform including setting up communities, starting discussions,
closing discussion, giving replies, and voting. We would like to note again that forms filled
in for user satisfaction assessment had no influence on the grade the students obtained
for their assignment, which has been clearly communicated to the student.

8.4.1 Summative and Formative User Satisfaction.

The satisfaction test was undertaken by a group of 23 out of the 36 participants. The
overall usability testing was carried out both implicitly by analyzing the data logs and
the user-system interactions and explicitly, by collecting the user feedback via several
questionnaires.

Summative User Satisfaction. The results delivered by the PSSUQ questionnaire are
as follows (cfr. Table 8.4):

• System usefulness: the average of all groups remained the same as in the previous
study. The overall average, however, had a small decline in satisfaction with 0.1
points.
• Information quality: compared with the previous study, the system performed bet-

ter in terms of information quality with 0.3 points for the groups and 0.4 points for
the overall average.
• Interface quality: for both the group average and the overall average, the interface

quality was deemed more satisfying with 0.1 points compared to the previous study.
• Overall satisfaction: the system performed slightly better in terms of user satisfac-

tion.

The average number of interactions for each group are: 263 for group A, 423 for group
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B, 175 for group C, 89 for group D and 224 for group E. In this experiment, we did not
observe that overall user satisfaction did not increase with use. Group C was overall the
least satisfied of all aspects. Although members of group C had “only” an average of 175
interactions per person, they were involved in most communities. The negative scores
within that group could thus reflect the difficulty of having cross-community interactions.

Formative User Satisfaction. Of the 23 respondents, 17 have left comments. These
comments were analyzed to pinpoint the problems of the tool. When indicating an
occurrence, this corresponds with a respondent making a remark about the issue at least
once. Some respondents commented about a certain issue multiple times in different
comment sections of the survey. The problems identified by the users in the comments
section of each item are as follows:

• Keeping an overview of the discussions (10 occurrences). Some proposals have
been made to tackle this problem: 2 respondents proposed a central notification
system, one respondent proposed the ability to follow the actions of a particular
user, another proposed an RSS feed per community complementing the overall feed9.
Other proposals were: identifying the “hottest” discussions, offering the changes
after last login and even a search function over the whole system.
• The new version of the prototype offered possibilities for creating and managing

versions of application commitments, which are built according to a particular
grammar (5 occurrences). Users noted that the errors while parsing application
commitments were often too obscure to be practical and had to rely too much on
help.
• Correcting mistakes (5 occurrences). The changes made to the tool – to cope

with mistakes or changes in a discussion – proved inadequate to improve the user’s
satisfaction. They wished the ability to “undo” or “cancel” an interaction. One
respondent also suggested the possibility to alter a comment.
• Problems creating constraints (4 occurrences). Surprisingly, the functionality of

building constraints has not changed and yet 4 people reported that the construction
of constraints was confusing. 2 of these 4 respondents also mentioned that the
verbalization of these constraints were not clear.
• The voting mechanism (4 occurrences). 3 respondents wished the system would

require a justification when one is against a proposal. With an additional respondent
stating the voting system to be inadequate for stimulating the discussion.
• Even though documentation was available as well as a running example in the slide

set, participants wished for documentation within the tool next to the material of-
fered (5 occurrences) and more examples (4 occurrences). Three participants merely
noted there was not enough documentation without providing further details.
• Availability of concrete (worked out) examples and tutorials next to the documen-

tation (3 occurrences).
• Availability of help functionality within the tool rather than online in separate

documents (2 occurrences).
• Lastly, there were 4 complaints of the back button resulting in a warning on a

discussion page. This needed to be added as the reputation framework kept track

9Even though one could filter on channel
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of the discussions visited by a user and one of the popular browsers not capturing
the event of clicking the back-button properly. To this end, we asked the users
whether they “wished to leave the page”, whereupon a click on the button “Yes”
called the method for logging it.

8.4.2 Recommendations for Improvement

Taking the satisfaction results obtained from PSSUQ and the user comments, we drive
the following conclusions: out of the three sub-factors identified by PSSUQ the system
usefulness performed best. The users of this study seemed to be less satisfied than in
the previous study. Information quality had a fairly important improvement in terms
of satisfaction with respect to the previous study. Taking into account the complaints
on error handling of the commitment manager (which was added to the prototype), we
can conclude this is a very positive evolution. Both the interface quality and overall
satisfaction evolved positively. The following steps will be taken to improve the system:

1. Investigating how the overview of all the discussions can be improved.
2. Improving the interface for managing the application commitments.
3. Allowing actions to be undone (i.e. “cancel” or “undo”) in case of error.
4. Improving the verbalization and forms for constructing constraints.
5. Participants complained that the voting system did not require users not agreeing

to a proposal to justify their opinion. The goal of the voting system was to allow
users to participate to discussions in a “lightweight” manner. After the experiment,
however, we feel that the voting mechanisms did not contribute to the discussion
and sometimes lead to confusion. We therefore will most likely remove the voting
mechanism.

We observed a need for more worked out examples and the availability of help function-
ality within the tool rather than online in a separate document.

8.4.3 Using the Ontology

Participants then each annotated a part of the relational database provided by EWI and
demonstrated how the ontologies (actually, the OWL implementation thereof) are used
to retrieve and use the annotated information. One such application is the detection
of conflicts of interest. This is particularly important for funding agencies that need
to construct review boards for the evaluation of project proposals. The application10

depicted in Figure 8.2 depicts which person one most probably would not include based
on past collaboration in projects and organizations. Publications were not taken into
account since the dataset provided by EWI – at the time of writing – only contained
some publications of one knowledge institution. The query to detect paper collaborations,
however, can easily be extended.

10Developed by W. Bellen, J.P. Hubrecht, B. Moerman, and L. Van den Heuvel.
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Figure 8.2: Using the annotated EWI database.

8.5 Discussion

In this chapter, we described two experiments in which the GOSPL method and tool
were adopted. On overall, the users were successful in achieving semantic interoperability
between their systems and the existing system we provided them with. Most problems
reported concerned usability and a lack of documentation/guidance within the system,
which we will thus need to improve. Between the two experiments, the tool was refined
and additional functionality to the users was provided. Notwithstanding the problems
experienced by the users with the new functionality provided in the second version of the
tool, the tool did manage to improve its user satisfaction in terms of system usefulness,
information- and interface quality. We also showed that the articulation of concepts with
glosses does have a positive impact on agreements on the formal descriptions of these
concepts.

Every method needs to be teachable, repeatable and traceable. The GOSPL method for
hybrid ontology engineering complies with all three criteria.

Teachable. The DOGMA framework for ontology engineering, on which GOSPL is
based upon, drew inspiration from database design methods and techniques such
as NIAM and ORM. NIAM/ORM and therefore also DOGMA are fact-oriented
approaches in which stakeholders communicate fact types expressed in natural lan-
guage. Fact-oriented approaches differ from frame-oriented approaches (e.g. UML)
by eliminating the distinction between attributes and relations; everything is a fact
between concepts. This reduces the learning curve. The use of natural language to
express these fact types also facilitates the knowledge elicitation processes.

Repeatable. Ontology engineering processes and possible interactions have been for-
malized and therefore repeatable by a community who have been trained or have
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access to the documentation. Because the method is repeatable, the third aspect –
traceability – is a logical consequence.

Traceable. In order to support ontology evolution, one needs to record the changes over
time. As in software engineering, it is a good practice to also document why certain
changes have been made. The different evolution operators on the formal parts are
therefore traceable (who, why, when, etc.), what is not often captured is the whole
process of reaching a decision, with GOSPL, the social processes leading to a change
in the ontology will have been formalized and stored for future reasoning.
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Chapter 9

Conclusions
This chapter provides a reflection on the results presented in this thesis as well as future
work that yet has to be done. Fist, the research questions are restated, and results are
summarized and discussed according to each chapter. Finally, the limitations of the work
conducted in this thesis are touched upon as well as the theoretical and practical research
challenges to be addressed in future research will be described.

9.1 Contributions

This thesis addressed the following research questions:

Q1 What are hybrid ontologies?

Q2 How are hybrid ontologies constructed?

Q3 How can hybrid ontology construction be supported in a necessarily complex col-
laborative setting?

Q4 How does the evolution of a natural language definition of a concept influence the
formal part of a hybrid ontology?

Q5 How does the annotation of application symbols drive the hybrid ontology engi-
neering process?

These were translated in the following research objectives.

O1 Provide an analysis of the state-of-the-art on ontology engineering with
respect to the use of social processes and the use of natural language def-
initions to support the evolution of meaning agreements within a com-
munity.

Starting from a definition of ontology used in computer science that has been re-
fined in this thesis, Chapter 2 provides a survey on ontology languages and ontol-
ogy engineering methods and tools. In this survey, it became apparent that most
method took little or no attention to the use of natural language definitions of
concepts (called glosses in this thesis) for evolving ontologies. As natural language
definitions are a day-to-day tool for humans to align their thoughts and avoid mis-
understanding, a motivation for investigating an ontology engineering method in
which those definitions leading to agreements within a community emerged.
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O2 Develop the notion of hybrid ontologies to support social processes with
natural language definitions for concepts.

Chapter 3 provided a more precise definition for ontologies in computer science,
in which the community aspects were emphasized. Starting from an existing fact-
oriented ontology engineering method in which knowledge is grounded in natural
language, communities were given a more prominent role in ontology artifacts by
providing communities with a special linguistic resource which drives their meaning
agreements. This resulted in the notion of hybrid ontologies: ontologies in which
concepts are both formally described by means of a mathematical formalism and
natural language definitions. Chapter 3 also described and provided a motivation
for the nature of “sameness” agreements of natural language definitions and labels in
the formal descriptions. The social interactions that take place in those communities
were described, which provides one a framework for hybrid ontology engineering.

Chapter 3 furthermore motivated the need for two types of ontological commit-
ments: community- and application commitments. Community commitments con-
tain a selection of shared lexons and constraints on top of these lexons necessary
for a successful semantic interoperation between the different information systems.
Application commitments commit to one or more community commitments next
to an additional selection of (enterprise-specific) lexons and constraints with map-
pings from application symbols to terms and roles in that selection. The double
articulation principle [SMJ02] in GOSPL is not violated, as there is still an ex-
plicit separation between the lexon base containing all plausible fact types and the
restatement of these lexons as selection in both community- and application com-
mitments. In fact, when a community agrees to remove a lexon, some stakeholders
can decide to retain this lexon in their application commitment since it has not
been removed from lexon base.

O3 Develop a method for hybrid ontology engineering.

Chapter 4 adopts the hybrid ontology engineering framework described in Chapter 3
for proposing a method for hybrid ontology engineering called GOSPL, which stands
for Grounding Ontologies with Social Processes and natural Language.

The method prescribed constraints that need to be fulfilled in order for some com-
munity interactions to take place and the outcome of these community interactions
to be executed. Key in this chapter is that the community aligns their thoughts on
their shared concepts by means of glosses before formally describing these concepts.
The agreement of natural language definitions thus precedes the formal description
of concepts. The conditions for community interactions concerning the creation
of lexons and constraints are in terms of the existence of these natural language
definitions.

O4 Determine which parts of the method can benefit from the evolution of
those natural language definitions.

Chapter 5 provides an answer for the 4th research question by describing the notion
of discrete gloss evolution, thereby reaching the 4th objective. Discrete gloss evolu-
tion assumes that glosses to describe concepts evolve over time for a reason and that
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this evolution should have an impact on the formal description of these concepts.
Rhetorical Structure Theory (RST) [MT88] provides a list of possible modalities
sentences have on other sentences. In this thesis, a selection of these modalities was
adopted for discrete gloss evolution as well as the definition of additional modalities
specific for GOSPL.

The adopted modalities give a hint on the type of lexons, constraints and instances
than can be elicited from natural language definitions. Discrete gloss evolution
thus allows the start of several interactions within the community to agree on these
lexons, constraints and instances that should naturally follow from this particular
gloss. In the end, the verbalization of the lexons and constraints of a concept should
as closely resemble the gloss of that concept or, in other words, the community
should deep the verbalization of lexons and constraint of this concept to be gloss-
equivalent with their gloss of that concept.

O5 Determine which parts of the method can benefit from the annotation
of existing (legacy) systems.

Chapter 6 determined how commitment – and in particular application commit-
ments – are used to steer social interactions within a community by pinpointing
the problems in the formal descriptions of concepts. This was done in several
steps. First, an appropriate logic was adopted in which the lexons and constraints
in commitments were translated in a lossless manner. Lossless means there exists
a bijective mapping between all possible permitted populations of the lexons and
constraints, and the translation thereof. This translation is then used to annotate
the legacy datasets.

Secondly, an appropriate interpretation function for constraints was defined to give
an answer to the tension field between the open and closed world assumptions. This
is necessary as information systems that need to properly interoperate in a semantic
way require some of the shared and agreed upon constraints to be followed by all
systems. Queries are then formulated in such a way that for each constraint, coun-
terexamples are sought. These counterexamples provide the communities working
on their community commitment to analyze some of the consequences of the for-
malization discussed and allow them to take appropriate measures.

Finally, with the translation of lexons and constraints into an ontology implementa-
tion language and the annotation of the legacy databases with that translation, the
community can use the lexons to explore the annotated data. For this third part,
an existing conceptual query language for binary fact types was adopted. Queries
in this query language are translated into intermediate SPARQL queries to obtain
the results. The goal of this work was not to provide yet another query language for
building services, but rather to have a truly conceptual layer on top of annotated
datasets.

O6 Develop a tool that is based on this aforementioned method.

Chapter 7 presented a description of a web base collaborative tool for hybrid ontol-
ogy engineering based on the methods described in Chapter 4 and the use of discrete
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gloss evolution and application commitment, respectively presented in Chapters 5
and 6.

O7 Evaluate the contributions and – by consequence – their conceptual de-
sign.

Finally, we presented the results of a usability study of the method and prototype
in a use case in the cultural events domain involving 40+ users in Chapter 8. Users
were overall successful in achieving semantic interoperability. They were thus able
to achieve all agreements necessary for annotating legacy datasets. There were
little remarks on the method; mostly interface issues and unexpected behaviors
were reported. Analysis of the data did show that concepts that were articulated
before a formal description was given tended to be more stable in their description
than concepts that were first formally described.

The contribution of this thesis was a method and tool for collaborative and distributed
hybrid ontology engineering, in which communities own the ontology and agreements
lead to ontology evolution. In other words, it is the outcome of these interactions (e.g.
dialogues) that gradually evolves the ontology to better approximate the community’s
reality to support semantic interoperability between their information systems.

9.2 Limitations and Future Work

• Lossless schema transformation of commitments in more expressive DLs.
A lossless transformation of community- and application commitments into DL-
LiteA,id was described in Chapter 6. The choice for this particular DL was motivated
by its fair expressiveness (certainly with respect to relational databases) as well
as the MASTRO [CDGL+11] framework which allows for efficient querying and
reasoning of relational databases annotated with DL ontologies in that dialect.
This DL dialect was expressive enough for (and actually intended for) supporting
unique, total identifiers for concepts. More expressive DLs, e.g. allowing for a
translation of inclusive mandatory constraints, are not tractable. As future work,
an investigation of translating these “problematic” constraints into these DLs and
providing a proof for lossless schema transformation would be in place.

• Inclusion of non-binary fact types in DOGMA and GOSPL. During ex-
periment conducted in 2011 and 2012, of which results are reported respectively
in [DM11] and [DM12], the participants where taught that unary fact types could
be easily transformed a lossless manner into a binary fact type in which the role is
played exactly once by the object type and the number of instances of the newly
introduced object type is limited to two.

During the experiment, however, the participants did state that the introduction
of unary fact types would be welcome, as unary predicates are useful to describe
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what SBVR [OMG09] calls characteristics1: abstraction of a property of an object
or set of objects that serve as qualifiers, e.g. “being green”, “is terminated”, etc.

One can imagine that an interface for hybrid ontology engineering could support
automatic translation of unary fact types into lexon (and the necessary constraints).
However, this would render the creation of application commitments more difficult
as this translation need to be transparent. Another solution would be the extending
the DOGMA framework to support unary predicates. This extension would be
straightforward: redefining the lexon base, extending the g1 function to cope with
all sorts of fact types, defining new social processes, and so on. The translation into
a DL and a Ω-RIDL language to support unary fact types will, however, require
more effort.

• Classifying users according to their social interactions and evolution of
application commitments. Future work includes the investigation of automati-
cally and dynamically assigning user-roles (and therefore responsibilities) to mem-
bers in a community on the collaborative platform by mining their social interac-
tions and evolution of their application commitments. In previous work reported
in [DLDP09], it was already shown that simple data mining techniques could be
applied to classify users according to their social interactions. This work, however,
was preliminary and needs to be further developed. This research direction is im-
portant as quite a few methods assume an exhaustive set of user-roles (to start
with).

However, we assume that the user-roles may vary over communities; not reject-
ing that commonalities across communities cannot be found. It would therefore
be beneficial to identify emerging types of users in a community, label them and
them assign them processes, responsibilities accordingly. Examples would be to
identify community leaders who would have the right to close and record the out-
come of a discussion. By classifying users, one could also automatically configure a
social interaction that needs to take place to work out a concept in the community
commitment by looking for members with different competences.

• Capturing agreements outside the GOSPL prototype. One important limi-
tation of the GOSPL tool is that it is not able to capture agreements made outside
the system. Indeed, when agreements need to be made, nothing is better to have
the stakeholders around a table for a face-to-face meeting when that is feasible.
Nowadays, even teleconferences with video such as Skype allow people to sit virtu-
ally together to discuss matters. While discussing, people use all sorts of means to
structure and get their thoughts across: mind mapping, brainstorming, searching
for documents, and so on. All these interactions between community members as
well as the man-machine interactions are useful to store, reason upon and even
use for mining user categories as mentioned in the item above. To this end, one
could draw inspiration from frameworks for computer supported cooperative work
such as presented in [LCD08]. In [LCD08], a framework was presented in which all
sorts of existing tools could be plugged in and all interactions between users and

1A feature that the Business Semantics Glossary (http://www.collibra.com/) supports.
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man-machine is logged. This framework could be adopted to provide the commu-
nity to adopt teleconferences, mind mapping tools and the like to reach agreements
to develop the hybrid ontology to eventually store the outcome on the GOSPL
platform.

• Capturing the dependencies in meaning agreements across communities.
An aspect not addressed in this thesis is the reason two or more communities agree
on labels or glosses are referring to the same concept. Reasons could be the wish to
reuse a formal description of a concept already defined elsewhere. Another reason
might be the specialization of a concept (i.e. creating a subtype), or even extending
an existing concept. This all depends on the semantic interoperability requirements
of the community.

Related is the work of [DdMM07], which introduced the notion of context depen-
dencies in the DOGMA framework. Context dependencies constrain the possible
relations between the entity described and its context. For instance, given the term
task and its relations in some context γ (which is called a template by the authors),
a specialization dependency states that each other context with a specialization de-
pendency on task must provide a specialization of that template. In this case, that
could mean the relations in that template are refined with subtypes of each of the
concepts in that relation. [DdMM07] provided four simple dependencies of which
one is more concerned on the versioning of ontologies. Context dependencies were
used to let multiple organizations define their perspective, e.g. by means of special-
izing a template, and then negotiate a common agreement from those perspectives
via a meaning evolution support system [dMDM06].

In GOSPL, the context identifiers are limited to communities and there is an explicit
distinction between community- and application commitments. However, the notion
of community dependencies could start from the work done by [DdMM07]. The
community dependencies between commitments (both community and application)
emerge from and need to be stored in the outcome of social interactions.

Rather than seeing all commitments as one big graph via the synonyms and gloss-
equivalences introduced by all communities, one can reason over these dependen-
cies to consult parts of the graph. For instance, given community γ1 ∈ Γ, γ1’s
community commitment is considered reference complete if and only if all terms
in the community commitment are referable, or one of the synonyms in another
community commitment is referable, regardless whether that the other community
commitment is referable as well.
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Appendix A

7-step Algorithm
This appendix presents an algorithm that transforms (maps) an ORM schema losslessly
into a normalized relational database schema with constraints added.

A condition for this algorithm to work is to have a RM-reference complete ORM schema.
An ORM Schema is said to be RM-reference complete if every object type (OT) in that
schema RM-referable. An object type A in an ORM schema is RM-referable if and only
if either:

• A is a lexical object type (LOT);
• A is a non-lexical object type (NOLOT) and

– A has a unique simple reference (see Definition 11);
– A has a unique composite reference (see Definition 12);
– A is the subtype of an RM-referable object type.

Note that any object type may be referable in more than one way and that non-lexical
object types have a reference declared at type level, which means that the reference is
expressed in terms of object types and declared constraints only. In other words, its
reference is independent of the schema’s population.

When all object types are RM-referable, the Relational Model “7-step” Mapping Algo-
rithm can be applied to transform the ORM model into a relational model. The refer-
ences will thus be used to create primary keys and foreign keys in the relational database
schema. The steps are shown in Algorithm 41.The seven steps of this algorithm are as
follows:

Algorithm 4 The Relational Model “7-step” Mapping Algorithm for ORM
1: Verify RM-reference completeness
2: Group around non-subtype entities
3: Group around subtypes (and add supertype reference)
4: Map “n >= 2 uniqueness” constraints
5: Make lexical (= choose references)
6: Map remaining constraints
7: Eliminate “reference” relations

1In this thesis, a simplified version of the RM-algorithm was adopted, used in the Information Systems
course developed by prof. dr. Robert Meersman. Another version of this mapping algorithm is presented
in [HM08].
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Verify RM-reference completeness. We already covered the RM-reference complete-
ness of an ORM schema in the previous section. Figure A.1 contains an example
of a RM-reference complete ORM schema which will be used to demonstrate the
remaining six steps. The ORM was intentionally kept very simple for the sake of
the example.
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Figure A.1: Example of a RM-reference complete ORM schema

Group around non-subtype entities. Choose a non-subtype non-lexical object type,
lets call this the focus-NOLOT. For each OT (LOT or NOLOT) that is connected
to the focus-NOLOT by a fact type not marked as “grouped”, and such that the
role played by the focus-NOLOT is identifying: concatenate the OT name with its
co-role label in that fact type, and add this OT-co-role as field into a record type
structure; give this grouped structure the label of the focus-NOLOT. Mark each
such fact type in the ORM schema as “grouped”. Mark with a double arrow all
OT-co-roles combinations that identify focus-NOLOT as unique. There must be
at least one since the schema is RM-reference complete. Mark with underline all
NOLOT-co-role (non-lexical) fields. Mark with parentheses those OT-co-role fields
that connect with non-total (non-mandatory) roles on the focus.

For the example, this step would result in:

Name_of Year_of_birth_of

Cm_of

Title_of Year_of Art_Type_of

Artist

Height

Work_Of_Art

Weight YearKg_of Nr_of
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Group around subtypes. Groups as before, but add an identifying non-lexical field
for each NOLOT that is a direct supertype. In this example, this would result in:

Work_Of_Art_subsu
ming Height_ofPainting

Work_Of_Art_subsu
ming Weight_ofSculpture

Map “n >= 2 uniqueness” constraints. The DOGMA ontology engineering frame-
work is limited to the use of binary fact types. For every fact type with an internal
uniqueness constraint spanning more than 1 role. Create a record type structure
and give this structure a label. Add references to the two OTs in that fact type and
mark them as identifying one tuple in that relation. This results in:

Work_Of_Art_with_c
ontributor Artist_contributed_toContribution

Make lexical. For each of the fields with a dashed underline, replace that field with all
lexical attributes identifying that OT:

Name_of Nr_of_Year_of_birth_
of

Title_of Nr_of_Year_of Art_Type_of

Artist

Work_Of_Art

Nr_of_Year_of_Work
_Of_Art_subsuming Cm_of_Height_ofPainting

Kg_of_Weight_ofSculpture

Contribution

Title_of_Work_Of_Art
_subsuming

Nr_of_Year_of_Work
_Of_Art_subsuming

Title_of_Work_Of_Art
_subsuming

Nr_of_Year_of_Work
_Of_Art_subsuming

Title_of_Work_Of_Art
_subsuming

Name_of_Artist_cont
ributed_to

Nr_of_Year_of_birth_
of_Artist_contributed

_to

Cm_ofHeight Weight YearKg_of Nr_of

Map remaining constraints. Constructing the foreign key constraints as well as other
ORM constraints (e.g. subset constraints). Note that - depending on the particular
DBMS - some of these constraints cannot be mapped and have to reside at the
application layer. In the image below, the foreign constraints are represented with
arrows.
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Name_of_Artist_cont
ributed_to

Nr_of_Year_of_birth_of
_Artist_contributed_to

Title_of Nr_of_Year_of

Nr_of_Year_of_Work
_Of_Art_subsuming

Title_of_Work_Of_Art
_subsuming

Name_of Nr_of_Year_of_birth_
of

Nr_of Cm_of

Art_Type_of

Kg_of

Artist

Year

Work_Of_Art

Height Weight

Nr_of_Year_of_Work
_Of_Art_subsuming Cm_of_Height_ofPainting

Kg_of_Weight_ofSculpture

Contribution

Title_of_Work_Of_Art
_subsuming

Nr_of_Year_of_Work
_Of_Art_subsuming

Title_of_Work_Of_Art
_subsuming

Eliminate “reference” relations. Reference relations are relations in which all fields
constitute the primary key. Except when one wants to keep such a relation to keep
an exhaustive list of instances of the corresponding OT or even store tuples that do
not necessarily play a role with other OTs, those relations can be removed. In the
example, for instance, one might not wish to keep such a list for years, heights and
weights and therefore chooses to remove those relations.

Name_of_Artist_cont
ributed_to

Nr_of_Year_of_birth_of
_Artist_contributed_to

Title_of Nr_of_Year_of

Nr_of_Year_of_Work
_Of_Art_subsuming

Title_of_Work_Of_Art
_subsuming

Name_of Nr_of_Year_of_birth_
of

Art_Type_of

Artist

Work_Of_Art

Nr_of_Year_of_Work
_Of_Art_subsuming Cm_of_Height_ofPainting

Kg_of_Weight_ofSculpture

Contribution

Title_of_Work_Of_Art
_subsuming

Nr_of_Year_of_Work
_Of_Art_subsuming

Title_of_Work_Of_Art
_subsuming
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Appendix B

D2RQ Generated Mapping

CREATE TABLE piece (
id int(10) unsigned NOT NULL AUTO_INCREMENT,
name varchar(250) NOT NULL,
year int(4) NOT NULL,
price_value bigint(20) DEFAULT NULL,
currency varchar(3) DEFAULT NULL,
PRIMARY KEY (id),
UNIQUE KEY name (name,year))

The annotation that D2RQ generated for this table is given below.

@prefix map: <d2r-mappings/mappingOnlyPiece.ttl#> .
@prefix db: <> .
@prefix vocab: <http://localhost:2020/vocab/resource/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix d2rq: <http://www.wiwiss.fu-berlin.de/suhl/bizer/D2RQ/0.1#> .
@prefix jdbc: <http://d2rq.org/terms/jdbc/> .

map:database a d2rq:Database;
d2rq:jdbcDriver "com.mysql.jdbc.Driver";
d2rq:jdbcDSN "jdbc:mysql://localhost/art2";
d2rq:username "myUserName";
d2rq:password "mySecret :-)";
jdbc:autoReconnect "true";
jdbc:zeroDateTimeBehavior "convertToNull".

map:piece a d2rq:ClassMap;
d2rq:dataStorage map:database;
d2rq:uriPattern "piece/@@piece.id@@";
d2rq:class vocab:piece;
d2rq:classDefinitionLabel "piece".

map:piece__label a d2rq:PropertyBridge;
d2rq:belongsToClassMap map:piece;
d2rq:property rdfs:label;
d2rq:pattern "piece #@@piece.id@@".

map:piece_id a d2rq:PropertyBridge;
d2rq:belongsToClassMap map:piece;
d2rq:property vocab:piece_id;
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d2rq:propertyDefinitionLabel "piece id";
d2rq:column "piece.id";
d2rq:datatype xsd:unsignedInt.

map:piece_name a d2rq:PropertyBridge;
d2rq:belongsToClassMap map:piece;
d2rq:property vocab:piece_name;
d2rq:propertyDefinitionLabel "piece name";
d2rq:column "piece.name".

map:piece_year a d2rq:PropertyBridge;
d2rq:belongsToClassMap map:piece;
d2rq:property vocab:piece_year;
d2rq:propertyDefinitionLabel "piece year";
d2rq:column "piece.year";
d2rq:datatype xsd:int.

map:piece_price_value a d2rq:PropertyBridge;
d2rq:belongsToClassMap map:piece;
d2rq:property vocab:piece_price_value;
d2rq:propertyDefinitionLabel "piece price_value";
d2rq:column "piece.price_value";
d2rq:datatype xsd:long.

map:piece_currency a d2rq:PropertyBridge;
d2rq:belongsToClassMap map:piece;
d2rq:property vocab:piece_currency;
d2rq:propertyDefinitionLabel "piece currency";
d2rq:column "piece.currency".
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Appendix C

R-RIDL Grammar
grammar QueryRIDL_FLAT;
options {language = Java; k=2;}
@header {package vub.starlab.gospl.ridl.parser;}
@lexer::header {package vub.starlab.gospl.ridl.parser;}
/*--------------------------------------------------------
* PARSER RULES
*--------------------------------------------------------*/

rule:
(LIST setExpression)

| (FOR setExpression
LIST forElementarSetExpression (AS string)?
(COMMA forElementarSetExpression (AS string)?)*);

/*--------------------------------------------------------
* FOR LIST SPECIFIC PARSER RULES
*--------------------------------------------------------*/

forElementarSetExpression:
(ANY forElementarSetExpression)

| (roleLabel (forSetReference)?);
forSetReference:

forReference
| (NOT forSetReference);

forReference: roleLabel forElementarSetExpression?;
/*--------------------------------------------------------
* LIST PARSER RULES
*--------------------------------------------------------*/

anyExpression: ANY elementarSetExpression;
booleanOperator: AND | OR;
elementarSetExpression:

(termLabel (setReference)?)
| setDefinition
| occurrence;

expression: term (termOperator term)*;
factor: number | string | (LBRACE expression RBRACE);
factorOperator: DIVISION | TIMES ;
number: NUMERICCONSTANT;
occurrence:

expression
| ( LBRACE theExpression RBRACE )
| ( LBRACE anyExpression RBRACE )
| theExpression
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| anyExpression;
operator: EQ | NEQ | LT | GT | LTE | GTE;
reference: roleLabel elementarSetExpression ;
roleLabel: LITERAL;
setDefinition: LBRACKET (occurrence (COMMA occurrence)*)? RBRACKET;
setExpression:

elementarSetExpression
(setOperation elementarSetExpression)*;

setOperation: UNION | INTERSECTION | SETMINUS;
setReference:

reference
| (NOT setReference)
| (LBRACE setReference (booleanOperator setReference)* RBRACE)
| (operator occurrence);

string: STRING;
term: factor (factorOperator factor)*;
termLabel: LITERAL;
termOperator: MINUS | PLUS;
theExpression: THE r=elementarSetExpression;
/*--------------------------------------------------------
* LEXER RULES
*--------------------------------------------------------*/

WHITESPACE: ( ’\t’ | ’ ’ | ’\r’ | ’\n’| ’\u000C’ )+;
UNION: ’UNION’;
INTERSECTION: ’INTERSECTION’;
SETMINUS: ’MINUS’;
ANY: ’ANY’; THE: ’THE’;
OR: ’OR’; AND: ’AND’; NOT: ’NOT’;
AS: ’AS’; COMMA: ’,’; DIVISION: ’/’;
EQ: ’=’; FOR: ’FOR’; GT: ’>’;
GTE: ’>=’; LBRACE: ’(’; LBRACKET: ’[’;
LIST: ’LIST’; LITERAL: (HC|LC)(HC|LC|DIGIT|’_’)*;
LT: ’<’; LTE: ’<=’; MINUS: ’-’;
NEQ: ’<>’; NUMERICCONSTANT: (’-’)? DIGIT+ (’.’ DIGIT+)?;
PLUS: ’+’; RBRACE: ’)’; RBRACKET: ’]’;
STRING: ’\’’ ACTUALSTRING ’\’’; TIMES: ’*’;
fragment ACTUALSTRING: ~(’\\’|’\’’)*;
fragment DIGIT: ’0’..’9’;
fragment HC: ’A’..’Z’;
fragment LC: ’a’..’z’;
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