
DOGMA-MESS:
A Tool for Fact-Oriented Collaborative Ontology

Evolution ?

Pieter De Leenheer and Christophe Debruyne

Semantics Technology and Applications Research Laboratory (STARLab)
Vrije Universiteit Brussel, Pleinlaan 2, Brussels 5, Belgium

Abstract. Ontologies being shared formal specifications of a domain, are an im-
portant lever for developing meaningful internet systems. However, the problem
is not in what ontologies are, but how they become operationally relevant and sus-
tainable over longer periods of time. Fact-oriented and layered approaches such
as DOGMA have been successful in facilitating domain experts in representing
and understanding semantically stable ontologies, while emphasising reusability
and scalability. DOGMA-MESS, extending DOGMA, is a collaborative ontol-
ogy evolution methodology that supports stakeholders in iteratively interpreting
and modeling their common ontologies in their own terminology and context,
and feeding back these results to the owning community. In this paper we extend
DOGMA Studio with a set of collaborative ontology evolution support modules.

1 Introduction

Ontologies, being formal, computer-based specifications of shared conceptualisations
of the worlds under discussion, are an important lever for developing meaningful com-
munication between people and internet systems [10, 9]. However, the problem is not in
what ontologies are, but how they become community-grounded resources of semantics,
and at the same time be made operationally relevant and sustainable over longer periods
of time. The state of the art in ontology evolution regards change as a pain that must
be technically alleviated by presuming a project-like practice where ontologies are cre-
ated and deployed in discrete steps [6]. The requirements for the “ontology project” are
usually deduced from the technical web service requirements that were solo-designed
by a single application developer, rather than collaboratively grounding them directly
in the community. In the DOGMA framework [13], fact-oriented approaches such as
NIAM/ORM [21, 11] have been proven useful for engineering ontologies. A key char-
acteristic here is that the analysis of information is based on natural language facts.
This brings the advantage that “layman” domain experts are facilitated in building, in-
terpreting, and understanding attribute-free, hence semantically stable ontologies, using
their own terminology. DOGMA-MESS is a teachable and repeatable collaborative on-
tology evolution methodology that supports stakeholders in interpreting and modeling
? We would like to thank Stijn Christiaens for his valuable comments on the usability of the

tool. The research described in this paper was partially sponsored by the EC projects FP6 IST
PROLIX (FP6-IST-027905).

Pieter De Leenheer and Christophe Debruyne. DOGMA-MESS: A Tool for Fact-Oriented Collaborative Ontology Evolution. In Robert Meersman, Zahir Tari, and Pilar Herrero, editors, OTM Workshops, volume 5333 of LNCS, pages 797-806. Springer, 2008



their common ontologies in their own terminology and context, and feeding back these
results to the owning community. In this paper we extend DOGMA Studio with a set
of modules (Perspective Manager, Version Manager, and Community Manager) that
support these fact-oriented collaborative ontology evolution processes.

2 DOGMA Ontology Engineering

The DOGMA1 ontology approach and framework [15] is adopted with the intention
to create flexible, reusable bounded semantics for very diverse computational needs in
communities for an unlimited range of pragmatic purposes. DOGMA has some distin-
guishing characteristics that make it different from traditional approaches such as (i) its
groundings in the linguistic representations of knowledge, (ii) the explicit separation of
the conceptualisation (i.e., lexical representation of concepts and relationships) from its
axiomatisation (i.e., semantic constraints) and (iii) its independence from a particular
representation language. The goal of this separation, referred to as the double articula-
tion principle [19], is to enhance the potential for reuse and design scalability.

Lexons are initially uninterpreted binary fact types, hence underspecified, which
increases their potential for reusability across community perspectives or goals. Lexons
are collected in a lexon base, a reusable pool of possible vocabularies, and represented
as 5-tuples declaring either: a taxonomical relationship (genus): e.g., 〈γ,manager,
is a, subsumes, person〉; or a non-taxonomical relationship (differentia): e.g., 〈γ,
manager, directs, directed by, company〉, where γ is an abstract context identifier,
lexically described by a string in some natural language, and is used to group lexons
that are logically related to each other in the conceptualization of the domain.

Another distinguishing characteristic of DOGMA is the explicit duality (orthogonal
to double articulation) in interpretation between the syntactic level and semantic level.
The goal of this separation is primarily to disambiguate the syntactic representation of
terms in a lexon into concept definitions, which are word senses taken from a commu-
nity glossary such as WordNet2. The meaning of the terms in a lexon is dependent on
the context of elicitation [4]. For example, a term “capital” elicited from a typewriter
manual (read: context γ), it has a different meaning (read: concept definition) than when
elicited from a book on marketing. Though ontologies can differ in syntax, semantics,
and pragmatics, they all are built on this shared vocabulary, called the lexon base.

The perspective commitment layer mediates between the lexon base and its appli-
cations. Each such perspective defines a partial semantic account of an intended con-
ceptualization [10]. It consists of a finite set of axioms that specify which lexons of the
lexon base are interpreted and how they are visible in the committing application, and
(domain) rules that semantically constrain this interpretation. Experience shows that it
is much harder to reach an agreement on domain rules than one on conceptualization
[15]. E.g., the rule stating that each patient is a person who suffers from at least one
disease may be too strong in some domains.

1 Developing Ontology-Grounded Methods and Applications
2 http://wordnet.princeton.edu/



3 Community Evolution

Community dynamics, as illustrated in Fig. 1, is characterised by Nonaka’s [17] four
modes of knowledge conversion: socialisation, externalisation, combination, and inter-
nalisation. At the heart of the community dynamics is the Ontology Server, that bridges
the semiotic gap between the community system parts. It is embedded in a central on-
tology evolution support system we introduced [7] and validated [2] earlier. There are
three types of knowledge workers: the knowledge engineer, the core domain expert
(CDE), and the domain expert (DE). As we will show, in DOGMA-MESS, the involved
ontology evolution processes (community grounding, rendering, alignment, and com-
mitment) are inherently driven by the social knowledge conversion modes.

COMMUNITY GROUNDINGCOMMITMENT

UNIFICATION REFLECTION

SOCIALISATION

EXTERNALISATIO
N

COMBINATION

IN
TE

RN
AL

IS
AT

IO
N

Fig. 1. DOGMA-MESS ontology evolution spiral model.

1. Community Grounding: In this phase, shared conceptions of the world under dis-
cussion that emerged from socialisation are analysed by the CDE. With the assis-
tance of the KE, he identifies the key conceptual patterns that are relevant to be
further externalised to the ontology. This results in a generalised upper common
ontology (UCO) which represents the conceptualizations that are common to and
accepted by the community.

2. Perspective Rendering: All participating stakeholders’ DEs render their perspec-
tive on the UCO, by specialising the conceptual patterns, resulting in a set of di-
verging stakeholder perspectives (SPs). Doing so, ontology evolution is grounded
(bottom-up) in the community, starting with the variety of terminologies found in



the community itself. This allows DEs to syntactically and semantically nuance
their intensions in a more natural manner using their own vocabulary. In order to
impose UCO reuse, different types of perspective reuse policies can be formalised,
including articulation, specialisation, and application. A reuse policy is formalised
by a set of applicable operations on a perspective (see [4].

3. Perspective Unification: In the lower common ontology (LCO), a new proposal
for the next version of the common ontology is produced, combining relevant ma-
terial from the UCO and various stakeholder perspectives. Basically, there is only a
very simple rule: all (selected) definitions need to be full specializations of the con-
ceptual patterns in the UCO. This, however, is overly simplified. In the ontology
evolution process, despite reuse policies, the constructivist paradigm should allow
to override the reuse policies, and hence new definitions to be created that are not
(complete) specializations, but represent new insights for the CDE in preparing new
evolution rounds, for example. This makes the alignment process far from trivial.
This process is conducted collaboratively by all involved DEs, the CDE, and the
KE.

4. Perspective Version Commitment: The part of the LCO that is aligned by the
community forms the legitimate UCO for the next version of the common ontology.
All participating organisations finally internalise and commit their instance bases
to the new version.

In all phases, the views of all stakeholders are considered. This fourfold collaborative
ontology evolution process is iteratively applied until an optimal balance of differences
and commonalities between organisational and common perspectives are reached that
meets the communication goals.

4 DOGMA Studio

DOGMA Studio contains both a Workbench and a Server. The Workbench is con-
structed according to the Eclipse plugin architecture. The loose coupling allows any
arbitrary community to support its own ontology engineering method by customised
ontology viewing, querying or editing plugins. The Server is an advanced J2EE appli-
cation running in a JBoss server which efficiently stores Lexons and Commitments in a
PostgreSQL Database. The manual input method uses the NORM notation, which is an
adaptation of NIAM/ORM2, introduced by [20]. Workbench can also perform conver-
sion to and from the following formats: (i) comma-separated files can be imported in
(exported from) the Perspective Base; (ii) Ω-RIDL commitment files can be imported
in (exported from) the Perspective Commitment Layer; and (iii) RDF(S)/OWL files
can be imported in (exported from) the Perspective Base (see [1, 12]). Following is an
overview of the three main Eclipse perspectives to support the community evolution
processes, i.e. Version Manager, Community Manager, and Perspective Manager. Due
to space limitations the overview is rather limited. For more demo material we refer to
the DOGMA Studio website3.

3 http://www.starlab.vub.ac.be/website/dogmastudio (last access: 5 July 2008)



4.1 Version Manager

The Ontology Version manager provides basic plugins for Viewing and Editing Per-
spective and Pattern Versions.

Ontology Viewer plugin allows to explore the perspectives, patterns, perspective poli-
cies, and their versions that are currently stored in the Server. The tree directory view
sorts the ontologies per domain, as shown in Fig. 2 (top). The first level enlists the
domains (e.g., opensourceartefacts); the second level, within one domain, enlists the
ontologies (e.g., sodocu); the third level, within one ontology, enlists the version his-
tory; the fourth level, within one ontology, enlists the available patterns (and their ver-
sions) (e.g., software artefact); and finally, the fifth level, given a pattern, shows the
perspective version history. To uniquely identify definition versions, we adopted a uni-
verse resource identifier (URI). E.g., domain/ontology/pattern;j#stakeholder,i identifies
a perspective on a pattern, with version number j, rendered by stakeholder, with version
number i.

Ontology Editor plugin has three panes for viewing/editing the taxonomy, the relations,
or the whole pattern or perspective that was selected from the Ontology Viewer. The
latter is illustrated by Fig. 2 (second line) 4. The title bar shows the version URI. Each
part of the perspective has a different colour: pattern parts are coloured blue, UCO parts
are coloured grey, and perspective parts currently rendered by the DE are coloured in
yellow. Figure 2 (third line) shows a fourth pane that displays the events and editing log,
tracking each change operation made to the perspective. For each operation, the pre-
and postconditions are shown indicating why the operation succeeded or failed. Change
logs allows for semantic conflict analysis during change-based merging of parallel SPs.
For a formalisation of this using graph transformation theory see e.g., [5]. Finally, the
Concept Viewer plugin retrieves the concept definition from the Community Glossary
when a term is selected.

4.2 Community Manager

The Community Manager provides plugins for managing tickets and conceptual pat-
terns. During the community grounding phase, for each key concept of interest a ticket
is created with attached a conceptual pattern, and sent to the relevant stakeholders in
the community to render their perspective on it. The Ticket Viewer and the Dialogue
Box are illustrated in Fig. 2 (bottom). A ticket has a title; informal information about
the rendering task; a priority code (high, higher, normal, lower or low); the context in
which the ticket is to be executed; the CDE who created the ticket; and finally, the stake-
holding DEs receiving the ticket. A Dialogue Box is opened prompting the knowledge
worker to open the ontology context in which the evolution task is to be performed. The
Ticket Maker plugins are not illustrated due to space limitations.

4 The examples are in Dutch as they are extracted from a realistic case study (Sect.4.4) that was
conducted in the Netherlands.



Fig. 2. From top to bottom: (1) the Ontology Viewer; (2) the integrated ontology viewing/editing
pane of the Ontology Editor; (3) the events and editing log pane of the Ontology Editor; (4) the
Ticket Viewer and its Dialogue Box.



4.3 Perspective Manager

The Perspective Manager provides a Conflict Viewer, a Conflict Browser, and finally, a
Perspective Analyser.

Conflict Viewer plugin allows the exploration of conflicts against reuse policies in a
graphical way. All conflicts have a conflict code that uniquely identifies the conflict
type, and a conflict ID that facilitates retrieving more detailed information about the
conflict in the Conflict Browser. From within the Conflict Viewer the stakeholder can
check a perspective against all the different combinations of reuse policies that were
defined in [4]. As a stakeholder can have multiple perspectives, he must first select the
perspective he prefers to check.

Conflict Browser Conflict Browser provides detailed information about all conflicts in
a tree structure. The following table shows the meaning of three of the in total eleven
defined conflict codes (Ci, 11 in total):

– C3: NewlyDefinedRelationConflict: a new relation was specified;
– C6: IntroduceTermConflict: a new term was introduced;
– C8: DefinedGenusWithNewConceptConflict: a genus was defined consisting of one

or more newly introduced concepts.

When expanding the line, description of the involved concepts and relationships, and
a cause for the conflict is revealed. This allows the DE in finding related conflicts that
caused this particular conflict, and how it could be solved. Conflicts can be sorted based
on conflict id, type, or cause. As an example, consider Fig. 3. The conflicts concern a
perspective that has a specialisation reuse policy with a pattern in the UCO. When a
specialisation policy holds, the DE is restricted to operators that specialise relationships
by reusing concepts that were already defined in the UCO [4]. The first conflict with ID
6 has code C3, and indicates that a new relation is defined <Deelhandeling5, resulteert
in, resultaat van, Product>. The proposed solution is to drop the relation. The second
conflict with ID 3 and code C6 indicates that a term Rapport6 is introduced in the per-
spective while introducing new terms is restricted by the policy. The third conflict with
ID 5 and code C8 was caused by conflict 6 as the introduction of <Rapport, is a, sub-
sumes, Product”> involves a newly introduced term Rapport, which is not allowed. The
Conflict Browser also notes that conflict 5 would be automatically resolved if conflict 3
is resolved.

Perspective Analyser plugin allows the Knowledge Worker to explore and analyse the
differences and similarities between divergent stakeholder perspectives that were con-
currently rendered on one original pattern. The plugin consists of two views, both il-
lustrated in Fig. 4. When selecting a concept or relationship, summarising statistics are
shown. When clicking on a term in a pattern, the Analyser parses for each stakeholder
perspective the change log, and shows how the term evolved, illustrated on the bottom
of Fig. 4.

5 Partial Activity
6 Report



Fig. 3. The Perspective Manager Eclipse perspective.

4.4 Validation

We validated the DOGMA-MESS tools in the context of a realistic case study of the Eu-
ropean CODRIVE7 project. The CODRIVE project aims at contributing to a competency-
driven vocational education by using state-of-the-art ontology methodology and infras-
tructure in order to develop a conceptual, shared and formal KR of competence do-
mains. Domain stakeholders included educational institutes and public employment or-
ganisations from various European countries. The resulting shared “Vocational Compe-
tency Ontology” will be used by all partners to build interoperable competency models.
All the samples in this paper were drawn from this case study. For an elaboration on the
case study and design choices made for DOGMA-MESS, we ref to [2] and [3]

5 Discussion and Future Work

The current version of DOGMA Studio has a number of improvements on schedule.
We plan to extend the colour palette in the Ontology Editor. E.g., red could be used for
parts that are depricated. We also could use colour ranges to indicate the percentage of
agreement on a certain concept in the UCO. The Community Manager will be further
extended with an underlying community ontology that will give a semantic helicopter
view on the current situation when creating tickets and patterns. First-class citizens of
this ontology are inspired from related ontological frameworks. E.g., inspired by [8], a
community a a special type of social system for which different directions and aims are

7 CODRIVE is an EU Leonardo da Vinci Project (BE/04/B/F/PP-144.339).



Fig. 4. Analysing Stakeholder Perspectives: the top view shows statsitics when selecting an arbi-
trary definition. The bottom view is shown when selecting a term in a pattern.

set, as well-established common goals towards which the community strives in order
to create added value and which normally are accomplished by coherent (collabora-
tive) actions that are performed by subscribed legitimate stakeholders and where these
actions are aiming at changing the community state in a desired way. Other examples
include SIOC8. In order to support the perspective unification process, we are currently
implementing a meaning negotiation and argumentation module, that is inspired by re-
lated tools such as HCOME [14] and Diligent [18].

6 Conclusion

The problem in ontology engineering is not on what ontologies are, but how they be-
come operationally relevant and sustainable over longer periods of time, and how proper
methodology and tool support can be provided. DOGMA-MESS, extending the fact-
oriented and layered ontology framework DOGMA, is a collaborative ontology evo-
lution methodology that supports stakeholders in iteratively interpreting and modeling
their common ontologies in their own terminology and context, and feeding back these
results to the owning community. In this paper we extend DOGMA Studio with a set of
MESS modules: Version Manager, Community Manager, and Perspective Manager.

References

1. D. Bach, R. Meersman, P. Spyns, and D. Trog. Mapping OWL-DL into ORM/RIDL. In
Meersman et al. [16], pages 742–751.

2. S. Christiaens, P. De Leenheer, A. de Moor, and R. Meersman. Business use case: Ontologis-
ing competencies in an interorganisational setting. In M. Hepp, P. De Leenheer, A. de Moor,
and Y. Sure, editors, Ontology Management for the Semantic Web, Semantic Web Services,
and Business Applications, from Semantic Web and Beyond: Computing for Human Experi-
ence. Springer, 2008.

8 htttp://www.sioc-project.org



3. P. De Leenheer. Meaningful competency-centric human resource management: a case study
for Dogma Mess. In Proc. of European Semantic Technology Conference 2008 (Vienna,
Austria), 2008.

4. P. De Leenheer, A. de Moor, and R. Meersman. Context dependency management in ontol-
ogy engineering: a formal approach. LNCS Journal on Data Semantics, 8:26–56, 2007.

5. P. De Leenheer and T. Mens. Using graph transformation formal collaborative ontology
evolution. In Proc. of Agtive (Kassel, Germany), volume 5088 of LNCS. Springer, 2007.

6. P. De Leenheer and T. Mens. Ontology evolution: State of the art and future directions. In
M. Hepp, P. De Leenheer, A. de Moor, and Y. Sure, editors, Ontology Management for the
Semantic Web, Semantic Web Services, and Business Applications. Springer, 2008.

7. A. de Moor, P. De Leenheer, and R. Meersman. DOGMA-MESS: A meaning evolution
support system for interorganizational ontology engineering. In In Proc. of the 14th Int’l
Conference on Conceptual Structures (ICCS 2006) (Aalborg, Denmark), LNAI 4068, pages
189–203. Springer Verlag, 2006.

8. E.D. Falkenberg. FRISCO : A framework of information system concepts. Technical report,
IFIP WG 8.1 Task Group, 1998.

9. T.R. Gruber. A translation approach to portable ontology specifications. Knowledge Acqui-
sition, 5(2):199–220, 1993.

10. N. Guarino and P. Giaretta. Ontologies and knowledge bases. towards a terminological clari-
fication. In N. Mars, editor, Towards Very Large Knowledge Bases: Knowledge Building and
Knowledge Sharing, pages 25–32. IOS Press, 1995.

11. T. Halpin and T. Morgan. Information Modeling and Relational Databases, Second Edition.
Morgan Kaufmann Publishers, 2008.

12. M. Jarrar. Mapping ORM into the SHOIN/OWL description logic. In Meersman et al. [16],
pages 729–741.

13. M. Jarrar, J. Demey, and R. Meersman. On reusing conceptual data modeling for ontology
engineering. Journal on Data Semantics, 1(1):185–207, 2003.

14. K. Kotis and G. Vouros. Human-centered ontology engineering: The HCOME methodology.
Knowledge and Information Systems, 10:109–131, 2005.

15. R. Meersman. Semantic ontology tools in IS designs. In In Proc. of the International Sym-
posium on Methodologies for Intelligent Systems (ISMIS), pages 30–45, 1999.

16. R. Meersman, Z. Tari, and P. Herrero, editors. On the Move to Meaningful Internet Systems
2007: OTM 2007 Workshops, OTM Confederated International Workshops and Posters, AWe-
SOMe, CAMS, OTM Academy Doctoral Consortium, MONET, OnToContent, ORM, PerSys,
PPN, RDDS, SSWS, and SWWS 2007, Vilamoura, Portugal, November 25-30, 2007, Pro-
ceedings, Part I, volume 4805 of Lecture Notes in Computer Science. Springer, 2007.

17. I. Nonaka and H. Takeuchi. The Knowledge-Creating Company : How Japanese Companies
Create the Dynamics of Innovation. Oxford University Press, May 1995.

18. H. Pinto, S. Staab, and C. Tempich. Diligent: Towards a fine-grained methodology for dis-
tributed, loosely-controlled and evolving engineering of ontologies. In Proceedings of the
16th European Conference on Artificial Intelligence (ECAI 2004), Valencia, Spain, 2004.

19. P. Spyns, R. Meersman, and M. Jarrar. Data modelling versus ontology engineering. SIG-
MOD Record, 31(4):12–17, 2002.

20. D. Trog, J. Vereecken, S. Christiaens, P. De Leenheer, and R. Meersman. T-lex: A role-based
ontology engineering tool. In R. Meersman, Z. Tari, and P. Herrero, editors, OTM Workshops
(2), volume 4278 of Lecture Notes in Computer Science, pages 1191–1200. Springer, 2006.

21. G. Verheijen and J. Van Bekkum. NIAM, an information analysis method. In Proc. of the
IFIP TC-8 Conference on Comparative Review of Information System Methodologies (CRIS
82). North-Holland, 1982.




