
Semi-Automated Consensus Finding for
Meaning Negotiation

Christophe Debruyne, Johannes Peeters, and Allal Zakaria Arrassi

Semantics Technology and Applications Laboratory (STARLab)
Department of Computer Science

Vrije Universiteit Brussel
Pleinlaan 2, B-1050 BRUSSELS 5, Belgium

{chrdebru, johpeete, aarrassi}@vub.ac.be

Abstract. Finding a consensus between communities to create an on-
tology is a difficult task. An evolutionary process where domain experts
and knowledge engineers work together intensively is needed to support
collaborative communities in defining a common ontology. These commu-
nities model their view of a particular concept while knowledge engineers
try to find a consensus. Negotiation, finding similarities and defining new
points of interests are important processes to achieve such a consensus.
To aid these processes we present several algorithms, built upon a state-
of-the-art community grounded ontology evolution methodology. These
algorithms are illustrated with an example.

1 Introduction

Communities share interests and information in order for them to collaborate.
For such collaborations to be successful, they need instruments to achieve an
agreement on how to communicate about those interests and information. One
of these instruments is an ontology, which is a specification of a shared concep-
tualization [1]. The term quickly became popular in the field of knowledge engi-
neering, where such conceptualizations are externalized formally in a computer
resource. Externalization enables sharing and interoperation between informa-
tion systems, the so called shared agreement [2].

When designing ontologies, we only want to conceptualize a relevant subset
of the world as efficiently as possible [3]. An ontology engineering methodology
is a vital instrument in order for collaborations to succeed. Such a methodology
helps designing these formal, agreed and shared conceptualizations by making
them reusable, reliable, shareable, portable and interoperable. It can also act as
a basis for ontology engineering during class.

Starting from a common ontology, such a methodology requires the different
communities to render their view of a new concept on the common ontology.
This results in a divergence, which needs to be converged in order for a new
version of the common ontology, containing an agreed view of that new concept,
to appear. Ontology integration, of which a survey is provided in [4], takes care of
that convergence. However, finding an agreement is a tedious task and requires

Christophe Debruyne, Johannes Peeters, and Allal Zakaria Arrassi. Semi-automated Consensus Finding for Meaning Negotiation. In Robert Meersman, Zahir Tari, and Pilar Herrero, editors, OTM Workshops, volume 5333 of LNCS, pages 183-192. Springer, 2008

2 C. Debruyne, J. Peeters, A. Z. Arrassi

all communities to work together and discuss their progress. These negotiation
processes were discussed in approaches such as [5, 6]. We name this process
meaning negotiation.

2 Problem Statement

One of the biggest challenges of meaning negotiation, after receiving all the
views, is to define ways to guide that process. Meaning negotiation can be a
semi-automated process, where different algorithms help signalling problems or
streamline the results for future iterations. When problems arise (e.g. a different
semantics for a certain concept), the different communities need to be contacted
for clarity, discussion or negotiation.

Questions can be formulated to indicate where problems might rise. The
knowledge engineer can answer these questions in order to construct an agenda
for the meaning negotiation session. The questions that need to be answered are
threefold:

1. Which relations did the different communities specialize or genereralize, by
using more specialized or general concepts from a taxonomy?

2. Which are the stable parts in the ontology, type hierarchy or template? A
stable part is a subset of concepts and their interrelationships, which were
not changed by the different communities.

3. Which new concepts have to be elaborated in more detail, by defining rela-
tions around them, in a future iteration?

In this paper we propose a solution which answers the three questions men-
tioned above. We formulate the solution and present results from a realistic ex-
ample in the following sections. We conclude with our findings and a discussion
about some future directions, which we find worthwhile investigating.

3 Approach

In this section we present several algorithms answering the questions formulated
in previous section. These algorithms are applied to the different views before
the meaning negotiation session starts. The collaborative ontology engineering
methodology that we extended is the DOGMA-MESS [3] ontology engineering
methodology. We choose DOGMA-MESS for its explicit use of templates, which
guide domain experts to give their conceptualization, not found in other ontology
engineering methodologies such as HCOME [5] and DELIGENT [8].

3.1 DOGMA and DOGMA-MESS

The DOGMA1 approach developed at STARLab aims at the development of
a useful and scalable ontology engineering approach. In the DOGMA ontology

1 DOGMA: Developing Ontology-Grouned Methods and Applications

Semi-Automated Consensus Finding for Meaning Negotiation 3

engineering approach, ontology construction starts from a (possibly very large)
uninterpreted base of elementary fact types called lexons [9, 10] that are mined
from linguistic descriptions such as existing schemas, a text corpus or formulated
sentences by domain experts.

A lexon is an ordered 5-tuple of the form 〈γ, t1, r1, r2, t2〉, where: t1 and t2 are
respectively the head-term and tail-term, r1 and r2 the role and co-role and γ is
the context in which the lexon holds. A lexon can be read in both directions since
the head-term plays the role in the relation and the tail-term the co-role. The
context is used to disambiguate the terms in case of homonyms, e.g.: a capital
in a geographical context is not the same as a capital in an economical context.
An example of a lexon is depicted in Fig. 1.

Competence ActorBelongs to has

Fig. 1. Example of a lexon in some context γ.

An ontological commitment to such a “lexon base” means selecting or reusing
a meaningful set of facts from it that approximate the intended conceptualiza-
tion, followed by the addition of a set of constraints, or rules, to this subset. This
commitment process is inspired by the fact-based database modeling method
NIAM/ORM [11].

DOGMA was extended with a “Meaning Evolution Support System”, result-
ing in an interorganizational ontology engineering methodology called DOGMA-
MESS [3]. The common ontology is produced in a number of iterations, where
each iteration consists of four stages [12]:

1. Community Grounding : The core domain expert and the knowledge engineer
identify the relevant key concepts with their relations and externalize them
in an ontology. This ontology contains conceptualizations common to and
accepted by the community.

2. Perspective Rendering : In this phase, each stakeholder’s domain expert ren-
ders its perspective on the common ontology, by specializing it to their idea.

3. Perspective Alignment : In perspective alignment a new proposal for the next
version of the common ontology is produced. Relevant material from both
the common ontology and the different perspectives is gathered and aligned.
The methodology allows domain experts to render their view not only by
specialization, which allows new definitions to be created, but also by gen-
eralization. A consequence of this “creative chaos” is that the alignment
process is far from trivial. During that process all the domain and core do-
main experts need to collaborate.

4. Perspective Commitment : In this phase the part of the ontology that is
aligned by the community forms the next version of the common ontology.
All participants finally commit their instance bases (e.g. databases) and
applications to the new version of the ontology.

4 C. Debruyne, J. Peeters, A. Z. Arrassi

A template is provided to the different communities in order to model the
relevant parts. This template can be described as a generalization of a pattern,
either found in the models or through experience of the knowledge engineers. An
example of such a template is given in Fig. 2. Given a template and a taxonomy,
domain experts can specialize the relations in the template’s by replacing the
concepts in that relation by one of its children in the taxonomy. Domain experts
can also extend the taxonomy by introducing new concepts. The latter is also
called a specialization of a template. A revision of the template is needed when
domain experts introduce new relations rather then specialize the given set of
relations, thus making templates also subject to change and evolution.

Type hierarchy

Template

Specialization

Competence

Speech_
Clarity

PoliticianTeacherOperatorPerson

Actor

Competence ActorBelongs to has

Speech_
Clarity

PersonBelongs to has

OperatorBelongs to has

TeacherBelongs to has

PoliticianBelongs to has

Fig. 2. Example of how an organization or community can specialize a given
template using concepts from a taxonomy.

3.2 Algorithms and Experiment

In this section we will present the algorithms. The algorithms are illustrated with
a running example, based on an experiment held at STARLab. Their combined
output gives means to answer the three questions formulated in Section 2. Note
that there is no one-to-one mapping between algorithms and questions.

Experimental Setup The experiment involved five groups of students rep-
resenting fictive organizations with different core businesses: bug tracking, ver-
sioning, document annotation, source code annotation and module management.

Semi-Automated Consensus Finding for Meaning Negotiation 5

The goal was to model a part of the open source community. The first group
provided the basis of a first version of a template, which is depicted in Fig. 3.

The template was given to the remaining four organizations, which had to
specialize it. These specializations had to be examined for differences, similarities
and conflicts.

Files and images concerning the template, specializations and descriptions of
each of the organization’s core businesses as well as the output of the algorithms
can be found at http://wilma.vub.ac.be/~chrdebru/combek/index.html

document

contains/ contained in

project sourcething

contains/ contained in

document project

contained in/contains

document

contained in/contains

class

variable

sourcething method

return value

parameter

comment

object

t

local variable

class variable

abstract class

concrete class

Fig. 3. First version of the template based on the first organization’s model. The
arrows denote the type hierarchy. The terms and role which are colored denote
the binary relations that make up the template.

Algorithm 1 This algorithm looks at the different specializations to determine
which relations of the template were specialized or generalized. We first define
a function relationsOf : C × T → L, where C is the set of concepts, T is the
set of templates and L is the set of all possible sets of lexons. The function
relationsOf returns a subset of lexons in a template t ∈ T where a concept
c ∈ C either plays the role or the co-role.

Given a template t ∈ T and a set of specializations S = {s1, . . . , sn} by the
different communities, the algorithm works as follows:

6 C. Debruyne, J. Peeters, A. Z. Arrassi

– For each concept c ∈ C in t playing either the role or co-role in a binary
relation that needs to be specialized:
• rels← relationsOf(c, t)
• For each si, where i = 1→ |S|
∗ if c ∈ si then
· Look at the taxonomic children of c in si, either from the common

ontology or introduced by the organization. If those children were
used in a specialization of one of the relations in rels, we have
found a specialization.
· Look at the taxonomic parents of c in si. If the concept c in si

has relations not appearing in rels, but appearing in one of its
taxonomic parents2 and that same relation does not appear in
T , we have found a generalization.

This algorithm, which returns the specializations and generalizations by the
organizations, is straightforward and answers the first of the three questions.

Results of Algorithm 1 Only one organization enriched the taxonomy under
one of the existing terms (see Fig. 4). However, none of the organizations had
actually specialized any of the provided binary relations. This was mainly due
to the nature of the experiment, where there was no clear ‘common goal’ for
each of the stakeholders. The organizations were asked to model a part of the
open source community instead, which they did by introducing new concepts
and relations needed for their own core business.

tester

helper

person

translator

author

t

Fig. 4. Some of the terms introduced under the concept ‘person’ by one of the
organizations.

Algorithm 2 The second algorithm will look for candidate concepts in the
different views, which might get introduced in a new version of the common
ontology. The second algorithm also provides an answer to the question of which
are the stable parts in the ontology.

2 The taxonomic parents in the specializations can differ because organizations are
allowed to change the concept’s place in the type hierarchy.

Semi-Automated Consensus Finding for Meaning Negotiation 7

For this process we define a function poc : C × O → C, where C is the
set of all concepts, O the set of all ontologies, templates and specializations.
The function searches a concept in an ontology o ∈ O with a certain label and
returns its parent in the type hierarchy, poc stands thus for Path of Concept. If
the ontology does not contain such a concept, then the functions returns nothing.

We construct a matrix where we create a row for each concept c ∈ C and
a column for the template and each specialization. Then in each cell of the
matrix we output the result of the function poc for that particular concept and
template/specialization.

Concepts Template T Specilization S1 . . . Specialization Sn

label1 poc(label1, T) poc(label1, S1) . . . poc(label1, S2)
label2 poc(label2, T) poc(label2, S1) . . . poc(label2, S2)
label3 poc(label3, T) poc(label3, S1) . . . poc(label3, S2)
.

We can determine what an organization did for a certain concept: introduc-
tion, removal (if the concept does not appear in the column of the organization,
but does appear in the column of the template) or nothing at all.

We can now take possible actions for the concepts given a certain threshold
ε. We assign each concept a score, which is the number of times the concept
appears in the template or one of the specializations divided by the number
of specializations + 1 (for the template). If the majority of the organizations
removed a certain concept, the concept’s score will be lower than ε and hence
become a candidate for dropping. If a certain number of organizations introduced
a concept (not considering the taxonomy), the score goes up. When the score
of a concept is greater than or equal to ε, the concept becomes a candidate for
introducing.

As already mentioned, this algorithm answers two of the three questions,
namely which concepts are considered interesting for a next iteration and which
are the stable parts in the specializations. The latter is answered by looking at
the results of the poc function. If most (if not all) concepts have the same parent,
we consider them stable.

Results of Algorithm 2 The second algorithm showed that, given a certain
threshold, both version and person could be added to a next version of the
ontology. Both terms are also candidates for future iterations of the process. The
resulting matrix (see Table 1 for a part of the matrix) of the second algorithm
also showed that most concepts in the template are stable. One organization
restructured the template’s taxonomy; making only everything below the concept
sourcething truly stable. Note that concepts such as account and admin, which
do not occur in the template found in Fig. 3, have been introduced by one or
more organizations.

8 C. Debruyne, J. Peeters, A. Z. Arrassi

Template Org1 Org2 Org3 Org4 Score
Object T 0.2

Abstract class Class Class Class Class Class 1.0
Account Person 0.2
Admin Person 0.2
Author Person 0.2

Table 1. Part of the matrix constructed by the second algorithm.

When interviewing the different groups about the taxonomy; the groups that
did not alter the type hierarchy argued that such operations would have cost
too much if commitments to the ontology were already made. The group that
changed the type hierarchy found that such (possibly costly) operations in early
stages of ontology engineering are ground, provided if they would benefit the
reusability and correct level of abstraction of the ontology in the long run.

Algorithm 3 The third and last algorithm will look for candidate relations
between concepts, which will be introduced in a next version of the common
ontology. This algorithm uses the output of the second algorithm.

The algorithm works as follows: given a second threshold α ≤ ε, for each
concept c marked as a candidate for introduction in the previous algorithm:

– List all the relations of that concept for each specialization.
– Register the occurrences of each of these relations across all specializations,

solely looking at the lexical representation of these relations (or lexons).
– If the average occurrence of a relation is greater than or equal to α, the

relation and (if not yet introduced) the other concept, are included in a next
version of the template as well.

Results of Algorithm 3 Two organizations introduced the term version and
person was introduced by three organizations. Due to the very different natures
of the core businesses; the organizations have not introduced similar relations
between concepts.

3.3 Meaning Negotiation

The results of these three algorithms were taken to the meaning negotiation
session, where they were discussed. During this discussion some problems arose,
which became points of the agenda of that meeting. One of these problems
was the difference between the terms version and revision, since the results
marked the term version as a candidate for introduction and not revision. Some
organizations argued they denote the same concept. After discussing the context
of both terms (and the relations around the concepts), all organizations agreed
they were different.

Semi-Automated Consensus Finding for Meaning Negotiation 9

One organization restructured the type hierarchy to benefit future reuse,
while others considered this too much of a risk (and a cost) when commitments
to that ontology were already made. Since the majority of the stakeholders did
not want to risk that cost, the changes to the type hierarchy were ignored. We
also found that providing a very basic taxonomy would have encouraged the
organizations to introduce new terms more neatly in a type hierarchy.

4 Discussion

One of the most difficult tasks in ontology engineering is to find a consensus be-
tween different stakeholders while trying to define a common ontology. Meaning
negotiation, where problems and conflicts within the different views among the
stakeholders are discussed, is therefore an important process. This process can
be guided by answering three questions about the different views: (1) what re-
lations have been generalized or specialized, (2) what are the stable parts in the
ontology and (3) what are new interesting concepts that have to be modelled in
future iterations. These three questions will point out the problems, which can
be used to construct an agenda for the meaning negotiation process.

In this paper we extended a state of the art collaborative ontology engineering
methodology, called DOGMA-MESS, with three algorithms answering these pro-
posed questions. These algorithms were applied in an experiment where groups
of students simulated the methodology to model a part of the open source com-
munity by representing fictive organizations. The list of similarities and conflicts
between the different models was limited due to the very different core business
of the organizations, but the algorithms showed their potential in constructing
an agenda for a meaning negotiation session.

5 Future Work

The algorithms were currently applied on the models at lexical level, applying
them while also taking into account the type hierarchy or glossaries would add
semantics to these algorithms.

Even though the results proved promising, the constructed algorithms still
need to be validated with a use case of substantial size. Such an experimental
setup will also result in an implemenation of the algorithms.

Another trail worth investigating is applying the extention to other collabo-
rative ontology engineering methodologies like HCOME [5] and DELIGENT [8].
The difference between those methodologies and DOGMA-MESS is the explicit
use of templates, which is used as input by the algorithms, by the latter.

Acknowledgements

We would like to thank our Professor Robert Meersman and everyone at VUB
STARLab for aiding us with this experiment as well as proposing us to try and
publish the results. We would also like to thank Simon Janssens, a Computer
Science student at the VUB, for assisting us with this experiment.

10 C. Debruyne, J. Peeters, A. Z. Arrassi

References

1. Gruber, T.R.: A Translation Approach to Portable Ontology Specifications. Knowl-
edge Acquisition 5 (1993) 199-220

2. Jarrar, M., Meersman, R.: 3. In: Ontology Engineering - The DOGMA Approach.
Volume 1 of Advances inWeb Semantic, A state-of-the Art SemanticWeb Advances
in Web Semantics IFIP2.12. Springer-sbm (2007)

3. de Moor, A., De Leenheer, P., Meersman, R.: DOGMA-MESS: A meaning evolution
support system for interorganizational ontology engineering. In Schärfe, H., Hitzler,
P., Ohrstrom, P., eds.: Conceptual Structures: Inspiration and Application. Volume
4068., Aalborg, Denmark, Springer Berlin / Heidelberg (2006) 189-202

4. Kalfoglou, Y., Schorlemmer, W.M.: Ontology mapping: The state of the art. In
Kalfoglou, Y., Schorlemmer, W.M., Sheth, A.P., Staab, S., Uschold, M., eds.: Se-
mantic Interoperability and Integration. Volume 04391 of Dagstuhl Seminar Pro-
ceedings., Dagstuhl, Germany, Internationales Begegnungs- und Forschungszentrum
fuer Informatik (IBFI) (2005)

5. Kotis, K., Vouros, A.: Human-centered ontology engineering: The hcome method-
ology. Knowledge and Information Systems 10 (2006) 109-31

6. Kunz, W., Rittel, H.: Issues as elements of information systems. Working Paper 131,
Institute of Urban and Regional Development, University of California, Berkeley,
California (1970)

7. Pinto, H.S., Staab, S., Tempich, C.: Diligent: Towards a fine-grained methodology
for distributed, loosely-controlled and evolving engingeering of ontologies. In: In
Proceedings of the 16th European Conference on Artificial Intelligence (ECAI, IOS
Press (2004) 393-397

8. Meersman, R.: Semantic ontology tools in is design. In Ras, Z.W., Skowron, A., eds.:
ISMIS ’99. Volume 1609 of Lecture Notes in Computer Science., Springer (1999) 30-
45

9. Meersman, R.: Reusing certain database design principles, methods and design tech-
niques for ontology theory, construction and methodology. Technical report, VUB
STARLab (2001)

10. Halpin, T.A.: Information Modeling and Relational Databases: From Conceptual
Analysis to Logical Design. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA (2001)

11. De Leenheer, P.: Towards an ontological foundation for evolving agent communities
(2008) Invited paper for IEEE ESAS 2008.

